Transcript
  • Hindawi Publishing CorporationJournal of Function Spaces and ApplicationsVolume 2013, Article ID 257537, 7 pageshttp://dx.doi.org/10.1155/2013/257537

    Research ArticleHigher Order Commutators of Fractional Integral Operator onthe Homogeneous Herz Spaces with Variable Exponent

    Liwei Wang,1 Meng Qu,2 and Lisheng Shu2

    1 School of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China2 School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, China

    Correspondence should be addressed to Liwei Wang; [email protected]

    Received 28 March 2013; Accepted 20 May 2013

    Academic Editor: Dachun Yang

    Copyright Β© 2013 Liwei Wang et al. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    By decomposing functions, we establish estimates for higher order commutators generated by fractional integral with BMOfunctions or the Lipschitz functions on the homogeneous Herz spaces with variable exponent.These estimates extend some knownresults in the literatures.

    1. Introduction

    Let 𝑏 be a locally integrable function, 0 < 𝛽 < 𝑛, and π‘š ∈ N;the higher order commutators of fractional integral operatorπΌπ‘š

    𝛽,𝑏are defined by

    πΌπ‘š

    𝛽,𝑏𝑓 (π‘₯) = ∫

    R𝑛

    [𝑏 (π‘₯) βˆ’ 𝑏 (𝑦)]π‘š

    π‘₯ βˆ’ π‘¦π‘›βˆ’π›½

    𝑓 (𝑦) 𝑑𝑦. (1)

    Obviously, 𝐼0𝛽,𝑏

    = 𝐼𝛽and 𝐼1

    𝛽,𝑏= [𝑏, 𝐼

    𝛽]. The famous

    Hardy-Littlewood-Sobolev theorem tells us that the frac-tional integral operator 𝐼

    𝛽is a bounded operator from the

    usual Lebesgue spaces 𝐿𝑝1(R𝑛) to 𝐿𝑝2(R𝑛) when 0 < 𝑝1

    <

    𝑝2

    < ∞ and 1/𝑝1βˆ’ 1/𝑝

    2= 𝛽/𝑛. Also, many generalized

    results about 𝐼𝛽and the commutator [𝑏, 𝐼

    𝛽] on some function

    spaces have been studied; see [1–3] for details.It is well known that the main motivation for studying

    the spaces with variable exponent arrived in the nonlinearelasticity theory and differential equations with nonstandardgrowth. Since the fundamental paper [4] by Kováčik andRákosnı́k appeared in 1991, the Lebesgue spaces with variableexponent 𝐿𝑝(β‹…)(R𝑛) have been extensively investigated. In therecent twenty years, boundedness of some important operat-ors, for example, the Calderón-Zygmund operators, frac-tional integrals, and commutators, on 𝐿𝑝(β‹…)(R𝑛) has beenobtained; see [5–7]. Recently, Diening [8] extended the

    (𝐿𝑝1(R𝑛), 𝐿𝑝2(R𝑛)) boundedness of 𝐼

    𝛽to the Lebesgue spaces

    with variable exponent. Izuki [7] first introduced the Herzspaces with variable exponent �̇�𝛼,π‘ž

    𝑝(β‹…)(R𝑛), which is a general-

    ized space of the Herz space �̇�𝛼,π‘žπ‘

    (R𝑛); see [9, 10], and in caseof 𝑏 ∈ BMO(R𝑛), he obtained the boundedness propertiesof the commutator [𝑏, 𝐼

    𝛽]. The paper [11] by Lu et al. indi-

    cates that the commutator [𝑏, 𝐼𝛽] with 𝑏 ∈ BMO(R𝑛) and

    with 𝑏 ∈ Lip𝛼(R𝑛) (0 < 𝛼 ≀ 1) has many different pro-

    perties. In 2012, Zhou [12] studied the boundedness of 𝐼𝛽

    on the Herz spaces with variable exponent and proved thatthe boundedness properties of the commutator [𝑏, 𝐼

    𝛽] also

    hold in case of 𝑏 ∈ Lip𝛼(R𝑛) (0 < 𝛼 ≀ 1). The higher

    order commutators πΌπ‘šπ›½,𝑏

    are recently considered byWang et al.in the paper [13, 14]; they established the BMO and theLipschitz estimates for πΌπ‘š

    𝛽,𝑏on the Lebesgue spaces with vari-

    able exponent 𝐿𝑝(β‹…)(R𝑛). Motivated by [7, 12–14], in thisnote, we establish the boundedness of the higher order com-mutators πΌπ‘š

    𝛽,𝑏on the Herz spaces with variable exponent.

    For brevity, |𝐸| denotes the Lebesgue measure for ameasurable set 𝐸 βŠ‚ R𝑛, and 𝑓

    𝐸denotes the mean value of 𝑓

    on 𝐸 (𝑓𝐸= (1/|𝐸|) ∫

    𝐸

    𝑓(π‘₯)𝑑π‘₯). The exponent 𝑝(β‹…)means theconjugate of 𝑝(β‹…), that is, 1/𝑝(β‹…)+1/𝑝(β‹…) = 1.𝐢 denotes a pos-itive constant, which may have different values even in thesame line. Let us first recall some definitions and nota-tions.

    CORE Metadata, citation and similar papers at core.ac.uk

    Provided by MUCC (Crossref)

    https://core.ac.uk/display/186894263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

  • 2 Journal of Function Spaces and Applications

    Definition 1. For 0 < 𝛾 ≀ 1, the Lipschitz space Lip𝛾(R𝑛) is

    the space of functions 𝑓 satisfying

    𝑓Lip𝛾

    = supπ‘₯,π‘¦βˆˆR𝑛,π‘₯ ΜΈ= 𝑦

    𝑓 (π‘₯) βˆ’ 𝑓 (𝑦)

    π‘₯ βˆ’ 𝑦𝛾

    < ∞. (2)

    Definition 2. For𝑓 ∈ 𝐿1loc(R𝑛

    ), the boundedmean oscillationspace BMO(R𝑛) is the space of functions 𝑓 satisfying

    𝑓BMO = sup

    𝐡

    1

    |𝐡|∫𝐡

    𝑓 (π‘₯) βˆ’ 𝑓𝐡 𝑑π‘₯ < ∞, (3)

    where the supremum is taken over all balls 𝐡 in R𝑛.

    Definition 3. Let 𝑝(β‹…) : 𝐸 β†’ [1,∞) be a measurable func-tion.

    (1) The Lebesgue space with variable exponent 𝐿𝑝(β‹…)(𝐸) isdefined by

    𝐿𝑝(β‹…)

    (𝐸) = {𝑓 is measurable : ∫𝐸

    (

    𝑓 (π‘₯)

    πœ†)

    𝑝(π‘₯)

    𝑑π‘₯

    < ∞ for some constant πœ† > 0} .

    (4)

    (2) The space with variable exponent 𝐿𝑝(β‹…)loc (𝐸) is definedby

    𝐿𝑝(β‹…)

    loc (𝐸)

    = {𝑓 : 𝑓 ∈ 𝐿𝑝(β‹…)

    (𝐾) for all compact subsets 𝐾 βŠ‚ 𝐸 } .(5)

    The Lebesgue space 𝐿𝑝(β‹…)(𝐸) is a Banach space with theLuxemburg norm

    𝑓𝐿𝑝(β‹…)(𝐸) = inf {πœ† > 0 : ∫

    𝐸

    (

    𝑓 (π‘₯)

    πœ†)

    𝑝(π‘₯)

    𝑑π‘₯ ≀ 1} . (6)

    We denote

    π‘βˆ’= ess inf {𝑝 (π‘₯) : π‘₯ ∈ 𝐸} ,

    𝑝+= ess sup {𝑝 (π‘₯) : π‘₯ ∈ 𝐸} ,

    P (𝐸) = {𝑝 (β‹…) : π‘βˆ’> 1, 𝑝

    +< ∞} ,

    B (𝐸) = {𝑝 (β‹…) : 𝑝 (β‹…) ∈ P (𝐸) ,

    𝑀 is bounded on 𝐿𝑝(β‹…) (𝐸)} ,

    (7)

    where the Hardy-Littlewood maximal operator 𝑀 is definedby

    𝑀𝑓(π‘₯) = supπ‘Ÿ>0

    π‘Ÿβˆ’π‘›

    ∫𝐡(π‘₯,π‘Ÿ)∩𝐸

    𝑓 (𝑦) 𝑑𝑦, (8)

    where 𝐡(π‘₯, π‘Ÿ) = {𝑦 ∈ R𝑛 : |π‘₯ βˆ’ 𝑦| < π‘Ÿ}.

    Proposition 4 (see [15]). If 𝑝(β‹…) ∈ P(𝐸) satisfies

    𝑝 (π‘₯) βˆ’ 𝑝 (𝑦) ≀

    βˆ’πΆ

    log (π‘₯ βˆ’ 𝑦),

    π‘₯ βˆ’ 𝑦 ≀

    1

    2,

    𝑝 (π‘₯) βˆ’ 𝑝 (𝑦) ≀

    𝐢

    log (𝑒 + |π‘₯|),

    𝑦 ≀ |π‘₯| ,

    (9)

    then one has 𝑝(β‹…) ∈ B(𝐸).

    Let π΅π‘˜= {π‘₯ ∈ R𝑛 : |π‘₯| β©½ 2π‘˜}, 𝑅

    π‘˜= π΅π‘˜\π΅π‘˜βˆ’1

    , and πœ’π‘˜= πœ’π‘…π‘˜

    be the characteristic function of the set π‘…π‘˜for π‘˜ ∈ Z. For

    π‘š ∈ N, we denote πœ’π‘š

    = πœ’π‘…π‘š

    ifπ‘š β‰₯ 1, and πœ’0= πœ’π΅0

    .

    Definition 5 (see [7]). For 𝛼 ∈ R, 0 < π‘ž ≀ ∞ and 𝑝(β‹…) ∈P(R𝑛).

    (1) The homogeneous Herz spaces �̇�𝛼,π‘žπ‘(β‹…)

    (R𝑛) are definedby

    �̇�𝛼,π‘ž

    𝑝(β‹…)(R𝑛

    ) = {𝑓 ∈ 𝐿𝑝(β‹…)

    loc (R𝑛

    \ {0}) :𝑓

    �̇�𝛼,π‘ž

    𝑝(β‹…)(R𝑛)

    < ∞} , (10)

    where𝑓

    �̇�𝛼,π‘ž

    𝑝(β‹…)(R𝑛)

    ={2π›Όπ‘˜π‘“πœ’π‘˜

    𝐿𝑝(β‹…)(R𝑛)}∞

    π‘˜=βˆ’βˆž

    β„“π‘ž(Z). (11)

    (2) The nonhomogeneous Herz spaces 𝐾𝛼,π‘žπ‘(β‹…)

    (R𝑛) are de-fined by

    𝐾𝛼,π‘ž

    𝑝(β‹…)(R𝑛

    ) = {𝑓 ∈ 𝐿𝑝(β‹…)

    loc (R𝑛

    ) :𝑓

    𝐾𝛼,π‘ž

    𝑝(β‹…)(R𝑛)

    < ∞} , (12)

    where𝑓

    𝐾𝛼,π‘ž

    𝑝(β‹…)(R𝑛)

    ={2π›Όπ‘šπ‘“πœ’π‘š

    𝐿𝑝(β‹…)(R𝑛)}∞

    π‘š=0

    β„“π‘ž(N). (13)

    In this note, we obtain the following results.

    Theorem 6. Suppose that 𝑏 ∈ Lip𝛽1

    (R𝑛) (0 < 𝛽1

    < 1),𝑝2(β‹…) ∈ P(R𝑛) satisfies conditions (9) in Proposition 4. If

    0 < π‘Ÿ < min {1/(𝑝1)+, 1/(𝑝

    2)+}, 0 < 𝛽 + π‘šπ›½

    1< π‘›π‘Ÿ, 0 <

    𝛼 < π‘›π‘Ÿ βˆ’ 𝛽 βˆ’ π‘šπ›½1, 0 < π‘ž

    1≀ π‘ž2

    < ∞, and 1/𝑝1(π‘₯) βˆ’

    1/𝑝2(π‘₯) = (𝛽 + π‘šπ›½

    1)/𝑛, then the higher order commutators

    πΌπ‘š

    𝛽,𝑏are bounded from �̇�𝛼,π‘ž1

    𝑝1(β‹…)(R𝑛) to �̇�𝛼,π‘ž2

    𝑝2(β‹…)(R𝑛).

    Theorem 7. Suppose that 𝑏 ∈ BMO(Rn), 𝑝2(β‹…) ∈ P(R𝑛)

    satisfies conditions (9) in Proposition 4. If 0 < π‘Ÿ <min {1/(𝑝

    1)+, 1/(𝑝

    2)+}, 0 < 𝛽 < π‘›π‘Ÿ, 0 < 𝛼 < π‘›π‘Ÿ βˆ’ 𝛽,

    0 < π‘ž1

    ≀ π‘ž2

    < ∞, and 1/𝑝1(π‘₯) βˆ’ 1/𝑝

    2(π‘₯) = 𝛽/𝑛, then the

    higher order commutators πΌπ‘šπ›½,𝑏

    are bounded from �̇�𝛼,π‘ž1𝑝1(β‹…)(R𝑛) to

    �̇�𝛼,π‘ž2

    𝑝2(β‹…)(R𝑛).

    Remark A. The previous main results generalize the(𝐿𝑝(β‹…)

    (R𝑛), πΏπ‘ž(β‹…)(R𝑛)) boundedness of the higher ordercommutators πΌπ‘š

    𝛽,𝑏in [13] to the case of the Herz spaces with

    variable exponent. If π‘š = 1, our conclusions coincide withthe corresponding results in [7, 12]. Moreover, the sameboundedness also holds for the nonhomogeneous case.

  • Journal of Function Spaces and Applications 3

    2. Proof of Theorems 6 and 7

    To prove our main results, we need the following lemmas.

    Lemma 8 (see [4]). Let 𝑝(β‹…) ∈ P(R𝑛); if 𝑓 ∈ 𝐿𝑝(β‹…)(R𝑛) and𝑔 ∈ 𝐿𝑝

    (β‹…)

    (R𝑛), then

    ∫R𝑛

    𝑓 (π‘₯) 𝑔 (π‘₯) 𝑑π‘₯ ≀ π‘Ÿπ‘

    𝑓𝐿𝑝(β‹…)(R𝑛)

    𝑔𝐿𝑝(β‹…)(R𝑛)

    , (14)

    where π‘Ÿπ‘= 1 + 1/𝑝

    βˆ’βˆ’ 1/𝑝

    +.

    Lemma 9 (see [7]). Let 𝑝(β‹…) ∈ B(R𝑛); then for all balls 𝐡 inR𝑛,

    1

    |𝐡|

    πœ’π΅πΏπ‘(β‹…)(R𝑛)

    πœ’π΅πΏπ‘(β‹…)(R𝑛)

    ≀ 𝐢. (15)

    Lemma 10 (see [7]). Let 𝑝2(β‹…) ∈ B(R𝑛); then for all balls 𝐡 in

    R𝑛 and all measurable subsets 𝑆 βŠ‚ 𝐡, one can take a constant0 < π‘Ÿ < 1/(𝑝

    2)+, so that

    πœ’π‘†πΏπ‘

    2(β‹…)

    (R𝑛)πœ’π΅

    𝐿𝑝

    2(β‹…)

    (R𝑛)

    ≀ 𝐢(|𝑆|

    |𝐡|)

    π‘Ÿ

    . (16)

    Lemma 11 (see [8]). Suppose that 𝑝1(β‹…) ∈ P(R𝑛) satisfies

    conditions (9) in Proposition 4, 0 < 𝛽 < 𝑛/(𝑝1)+and 1/𝑝

    1(π‘₯)βˆ’

    1/𝑝2(π‘₯) = 𝛽/𝑛; then

    𝐼𝛽(𝑓)

    𝐿𝑝2(β‹…)(R𝑛)≀ 𝐢

    𝑓𝐿𝑝1(β‹…)(R𝑛). (17)

    Lemma 12 (see [13]). Suppose that 𝑝1(β‹…), 𝑝2(β‹…) ∈ P(R𝑛).

    (1) Let 0 < 𝛽 < 𝑛/(𝑝1)+, 𝑏 ∈ BMO(Rn). If 𝑝

    2(β‹…) satisfies

    conditions (9) in Proposition 4 and 1/𝑝1(π‘₯)βˆ’1/𝑝

    2(π‘₯) =

    𝛽/𝑛, thenπΌπ‘š

    𝛽,𝑏(𝑓)

    𝐿𝑝2(β‹…)(R𝑛)≀ 𝐢‖𝑏‖

    π‘š

    BMO𝑓

    𝐿𝑝1(β‹…)(R𝑛). (18)

    (2) Let 0 < 𝛽 + π‘šπ›½1< 𝑛/(𝑝

    1)+, 𝑏 ∈ Lip

    𝛽1

    (R𝑛) (0 < 𝛽1<

    1). If 𝑝2(β‹…) satisfies conditions (9) in Proposition 4 and

    1/𝑝1(π‘₯) βˆ’ 1/𝑝

    2(π‘₯) = (𝛽 + π‘šπ›½

    1)/𝑛, then

    πΌπ‘š

    𝛽,𝑏(𝑓)

    𝐿𝑝2(β‹…)(R𝑛)≀ 𝐢‖𝑏‖

    π‘š

    Lip𝛽1

    𝑓𝐿𝑝1(β‹…)(R𝑛). (19)

    Lemma 13 (see [16]). Let 𝑏 ∈ BMO(Rn), π‘˜ > 𝑗 (π‘˜, 𝑗 ∈ N);one has

    (1) πΆβˆ’1||𝑏||π‘šBMO ≀ supπ΅βŠ‚R𝑛(1/||πœ’π΅||𝐿𝑝(β‹…)(R𝑛))||(𝑏 βˆ’π‘π΅)π‘š

    πœ’π΅||𝐿𝑝(β‹…)(R𝑛) ≀ 𝐢||𝑏||

    π‘š

    BMO;(2) ||(𝑏 βˆ’ 𝑏

    𝐡𝑗

    )π‘š

    πœ’π΅π‘˜

    ||𝐿𝑝(β‹…)(R𝑛) ≀ 𝐢(π‘˜ βˆ’ 𝑗)

    π‘š

    ||𝑏||π‘š

    BMOΓ—||πœ’π΅π‘˜

    ||𝐿𝑝(β‹…)(R𝑛).

    Proof of Theorem 6. Let 𝑓 ∈ �̇�𝛼,π‘ž1𝑝1(β‹…)(R𝑛); we can write

    𝑓 (π‘₯) =

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    𝑓 (π‘₯) πœ’π‘—(π‘₯) =

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    𝑓𝑗(π‘₯) . (20)

    For 0 < π‘ž1/π‘ž2≀ 1, applying the inequality

    (

    ∞

    βˆ‘

    𝑖=1

    π‘Žπ‘–)

    π‘ž1/π‘ž2

    ≀

    ∞

    βˆ‘

    𝑖=1

    π‘Žπ‘ž1/π‘ž2

    𝑖(π‘Žπ‘–> 0, 𝑖 = 1, 2 . . .) , (21)

    we obtainπΌπ‘š

    𝛽,𝑏(𝑓)

    π‘ž1

    �̇�𝛼,π‘ž2

    𝑝2(β‹…)(R𝑛)

    = 𝐢(

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    2π›Όπ‘ž2π‘˜πΌπ‘š

    𝛽,𝑏(𝑓) πœ’π‘˜

    π‘ž2

    𝐿𝑝2(β‹…)(R𝑛)

    )

    π‘ž1/π‘ž2

    ≀ 𝐢

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    2π›Όπ‘ž1π‘˜

    (

    π‘˜βˆ’2

    βˆ‘

    𝑗=βˆ’βˆž

    πΌπ‘š

    𝛽,𝑏(𝑓𝑗) πœ’π‘˜

    𝐿𝑝2(β‹…)(R𝑛))

    π‘ž1

    + 𝐢

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    2π›Όπ‘ž1π‘˜

    (

    ∞

    βˆ‘

    𝑗=π‘˜βˆ’1

    πΌπ‘š

    𝛽,𝑏(𝑓𝑗) πœ’π‘˜

    𝐿𝑝2(β‹…)(R𝑛))

    π‘ž1

    = π‘ˆ1+ π‘ˆ2.

    (22)

    We first estimate π‘ˆ1. Noting that if π‘₯ ∈ 𝑅

    π‘˜, 𝑦 ∈ 𝑅

    𝑗, and

    𝑗 ≀ π‘˜ βˆ’ 2, then |π‘₯ βˆ’ 𝑦| ∼ |π‘₯| ∼ 2π‘˜, we get

    πΌπ‘š

    𝛽,𝑏(𝑓𝑗) πœ’π‘˜

    ≀ βˆ«π‘…π‘—

    𝑏 (π‘₯) βˆ’ 𝑏 (𝑦)π‘š

    π‘₯ βˆ’ π‘¦π‘›βˆ’π›½

    𝑓𝑗(𝑦)

    𝑑𝑦 β‹… πœ’

    π‘˜(π‘₯)

    ≀ 𝐢2π‘˜(π›½βˆ’π‘›)

    βˆ«π‘…π‘—

    𝑏 (π‘₯)βˆ’ 𝑏 (𝑦)π‘š

    𝑓𝑗(𝑦)

    𝑑𝑦 β‹… πœ’

    π‘˜(π‘₯)

    ≀ 𝐢2π‘˜(𝛽+π‘šπ›½

    1βˆ’π‘›)

    β€–π‘β€–π‘š

    Lip𝛽1

    βˆ«π‘…π‘—

    𝑓𝑗(𝑦)

    𝑑𝑦 β‹… πœ’

    π‘˜(π‘₯) .

    (23)

    By Hölder’s inequality, Lemmas 9 and 10, we haveπΌπ‘š

    𝛽,𝑏(𝑓𝑗) πœ’π‘˜

    𝐿𝑝2(β‹…)(R𝑛)

    ≀ 𝐢2π‘˜(𝛽+π‘šπ›½

    1βˆ’π‘›)

    β€–π‘β€–π‘š

    Lip𝛽1

    𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)

    Γ—πœ’π΅π‘˜

    𝐿𝑝2(β‹…)(R𝑛)

    πœ’π΅π‘—

    𝐿𝑝

    1(β‹…)

    (R𝑛)

    ≀ 𝐢2π‘˜(𝛽+π‘šπ›½

    1)

    β€–π‘β€–π‘š

    Lip𝛽1

    𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)

    Γ—πœ’π΅π‘—

    𝐿𝑝

    1(β‹…)

    (R𝑛)

    πœ’π΅π‘˜

    βˆ’1

    𝐿𝑝

    2(β‹…)

    (R𝑛)

    ≀ 𝐢2π‘˜(𝛽+π‘šπ›½

    1)

    β€–π‘β€–π‘š

    Lip𝛽1

    𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)

    Γ—πœ’π΅π‘—

    𝐿𝑝

    1(β‹…)

    (R𝑛)

    πœ’π΅π‘—

    βˆ’1

    𝐿𝑝

    2(β‹…)

    (R𝑛)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    (R𝑛)πœ’π΅π‘˜

    𝐿𝑝

    2(β‹…)

    (R𝑛)

    ≀ 𝐢2π‘˜(𝛽+π‘šπ›½

    1)

    2π‘›π‘Ÿ(π‘—βˆ’π‘˜)

    β€–π‘β€–π‘š

    Lip𝛽1

    𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)

    Γ—πœ’π΅π‘—

    𝐿𝑝

    1(β‹…)

    (R𝑛)

    πœ’π΅π‘—

    βˆ’1

    𝐿𝑝

    2(β‹…)

    (R𝑛).

    (24)

  • 4 Journal of Function Spaces and Applications

    Note that

    𝐼𝛽+π‘šπ›½

    1

    (πœ’π΅π‘—

    ) (π‘₯) β‰₯ 𝐼𝛽+π‘šπ›½

    1

    (πœ’π΅π‘—

    ) (π‘₯) β‹… πœ’π΅π‘—

    (π‘₯)

    = βˆ«π΅π‘—

    𝑑𝑦

    π‘₯ βˆ’ π‘¦π‘›βˆ’π›½βˆ’π‘šπ›½

    1

    β‹… πœ’π΅π‘—

    (π‘₯)

    β‰₯ 𝐢2𝑗(𝛽+π‘šπ›½

    1)

    β‹… πœ’π΅π‘—

    (π‘₯) .

    (25)

    By Lemmas 8 and 11, we obtain

    πœ’π΅π‘—

    βˆ’1

    𝐿𝑝

    2(β‹…)

    (R𝑛)≀ 𝐢2βˆ’π‘›π‘—

    πœ’π΅π‘—

    𝐿𝑝2(β‹…)(R𝑛)

    ≀ 𝐢2βˆ’π‘›π‘—

    2βˆ’π‘—(𝛽+π‘šπ›½

    1)𝐼𝛽+π‘šπ›½

    1

    (πœ’π΅π‘—

    )𝐿𝑝2(β‹…)(R𝑛)

    ≀ 𝐢2βˆ’π‘—(𝛽+π‘šπ›½

    1)

    2βˆ’π‘›π‘—

    πœ’π΅π‘—

    𝐿𝑝1(β‹…)(R𝑛)

    ≀ 𝐢2βˆ’π‘—(𝛽+π‘šπ›½

    1)πœ’π΅π‘—

    βˆ’1

    𝐿𝑝

    1(β‹…)

    (R𝑛).

    (26)

    Combining (24) and (26), we have the estimate

    πΌπ‘š

    𝛽,𝑏(𝑓𝑗) πœ’π‘˜

    𝐿𝑝2(β‹…)(R𝑛)≀ 𝐢2(π‘˜βˆ’π‘—)(𝛽+π‘šπ›½

    1βˆ’π‘›π‘Ÿ)

    Γ— β€–π‘β€–π‘š

    Lip𝛽1

    𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛).

    (27)

    Thus,

    π‘ˆ1≀ 𝐢‖𝑏‖

    π‘šπ‘ž1

    Lip𝛽1

    Γ—

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    π‘˜βˆ’2

    βˆ‘

    𝑗=βˆ’βˆž

    2𝛼𝑗𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)2(π‘˜βˆ’π‘—)(𝛽+π‘šπ›½

    1βˆ’π‘›π‘Ÿ+𝛼)

    )

    π‘ž1

    .

    (28)

    If 1 < π‘ž1

    < ∞, noting that 𝛽 + π‘šπ›½1βˆ’ π‘›π‘Ÿ + 𝛼 < 0, by

    Hölder’s inequality, we have

    π‘ˆ1≀ 𝐢‖𝑏‖

    π‘šπ‘ž1

    Lip𝛽1

    Γ—

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    π‘˜βˆ’2

    βˆ‘

    𝑗=βˆ’βˆž

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    2(π‘˜βˆ’π‘—)(𝛽+π‘šπ›½

    1βˆ’π‘›π‘Ÿ+𝛼)π‘ž

    1/2

    )

    Γ— (

    π‘˜βˆ’2

    βˆ‘

    𝑗=βˆ’βˆž

    2(π‘˜βˆ’π‘—)(𝛽+π‘šπ›½

    1βˆ’π‘›π‘Ÿ+𝛼)π‘ž

    1/2

    )

    π‘ž1/π‘ž

    1

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    Lip𝛽1

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    ∞

    βˆ‘

    π‘˜=𝑗+2

    2(π‘˜βˆ’π‘—)(𝛽+π‘šπ›½

    1βˆ’π‘›π‘Ÿ+𝛼)π‘ž

    1/2

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    Lip𝛽1

    π‘“π‘ž1

    �̇�𝛼,π‘ž1

    𝑝1(β‹…)(R𝑛)

    .

    (29)

    If 0 < π‘ž1≀ 1, by inequality (21), we have

    π‘ˆ1≀ 𝐢‖𝑏‖

    π‘šπ‘ž1

    Lip𝛽1

    Γ—

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    π‘˜βˆ’2

    βˆ‘

    𝑗=βˆ’βˆž

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    2(π‘˜βˆ’π‘—)(𝛽+π‘šπ›½

    1βˆ’π‘›π‘Ÿ+𝛼)π‘ž

    1

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    Lip𝛽1

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    ∞

    βˆ‘

    π‘˜=𝑗+2

    2(π‘˜βˆ’π‘—)(𝛽+π‘šπ›½

    1βˆ’π‘›π‘Ÿ+𝛼)π‘ž

    1

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    Lip𝛽1

    π‘“π‘ž1

    �̇�𝛼,π‘ž1

    𝑝1(β‹…)(R𝑛)

    .

    (30)

    Next, we estimate π‘ˆ2. By Lemma 12(2), we obtain

    π‘ˆ2≀ 𝐢‖𝑏‖

    π‘šπ‘ž1

    Lip𝛽1

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    ∞

    βˆ‘

    𝑗=π‘˜βˆ’1

    2𝛼𝑗𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)2𝛼(π‘˜βˆ’π‘—)

    )

    π‘ž1

    . (31)

    If 1 < π‘ž1< ∞, by Hölder’s inequality, we have

    π‘ˆ2≀ 𝐢‖𝑏‖

    π‘šπ‘ž1

    Lip𝛽1

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    ∞

    βˆ‘

    𝑗=π‘˜βˆ’1

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    2𝛼(π‘˜βˆ’π‘—)π‘ž

    1/2

    )

    Γ— (

    ∞

    βˆ‘

    𝑗=π‘˜βˆ’1

    2𝛼(π‘˜βˆ’π‘—)π‘ž

    1/2

    )

    π‘ž1/π‘ž

    1

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    Lip𝛽1

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    𝑗+1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(π‘˜βˆ’π‘—)π‘ž

    1/2

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    Lip𝛽1

    π‘“π‘ž1

    �̇�𝛼,π‘ž1

    𝑝1(β‹…)(R𝑛)

    .

    (32)

    If 0 < π‘ž1≀ 1, by inequality (21), we have

    π‘ˆ2≀ 𝐢‖𝑏‖

    π‘šπ‘ž1

    Lip𝛽1

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    ∞

    βˆ‘

    𝑗=π‘˜βˆ’1

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    2𝛼(π‘˜βˆ’π‘—)π‘ž

    1

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    Lip𝛽1

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    𝑗+1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(π‘˜βˆ’π‘—)π‘ž

    1

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    Lip𝛽1

    π‘“π‘ž1

    �̇�𝛼,π‘ž1

    𝑝1(β‹…)(R𝑛)

    .

    (33)

    Combining the estimates for π‘ˆ1and π‘ˆ

    2, the proof of

    Theorem 6 is completed.

    Proof of Theorem 7. Let 𝑓 ∈ �̇�𝛼,π‘ž1𝑝1(β‹…)(R𝑛); we can write

    𝑓 (π‘₯) =

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    𝑓 (π‘₯) πœ’π‘—(π‘₯) =

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    𝑓𝑗(π‘₯) . (34)

  • Journal of Function Spaces and Applications 5

    By inequality (21), we obtain

    πΌπ‘š

    𝛽,𝑏(𝑓)

    π‘ž1

    �̇�𝛼,π‘ž2

    𝑝2(β‹…)(R𝑛)

    = 𝐢(

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    2π›Όπ‘ž2π‘˜πΌπ‘š

    𝛽,𝑏(𝑓) πœ’π‘˜

    π‘ž2

    𝐿𝑝2(β‹…)(R𝑛)

    )

    π‘ž1/π‘ž2

    ≀ 𝐢

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    2π›Όπ‘ž1π‘˜

    (

    π‘˜βˆ’2

    βˆ‘

    𝑗=βˆ’βˆž

    πΌπ‘š

    𝛽,𝑏(𝑓𝑗) πœ’π‘˜

    𝐿𝑝2(β‹…)(R𝑛))

    π‘ž1

    + 𝐢

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    2π›Όπ‘ž1π‘˜

    (

    ∞

    βˆ‘

    𝑗=π‘˜βˆ’1

    πΌπ‘š

    𝛽,𝑏(𝑓𝑗) πœ’π‘˜

    𝐿𝑝2(β‹…)(R𝑛))

    π‘ž1

    = 𝑉1+ 𝑉2.

    (35)

    For 𝑉1, using Hölder’s inequality and Lemma 8, we have

    πΌπ‘š

    𝛽,𝑏(𝑓𝑗) πœ’π‘˜

    ≀ 𝐢2π‘˜(π›½βˆ’π‘›)

    βˆ«π‘…π‘—

    𝑏 (π‘₯) βˆ’ 𝑏 (𝑦)π‘š

    𝑓𝑗(𝑦)

    𝑑𝑦 β‹… πœ’

    π‘˜(π‘₯)

    ≀ 𝐢2π‘˜(π›½βˆ’π‘›)

    π‘š

    βˆ‘

    𝑖=0

    𝐢𝑖

    π‘š

    𝑏 (π‘₯) βˆ’ 𝑏

    𝐡𝑗

    π‘šβˆ’π‘–

    Γ— βˆ«π‘…π‘—

    𝑏𝐡𝑗

    βˆ’ 𝑏 (𝑦)

    𝑖 𝑓𝑗(𝑦)

    𝑑𝑦

    ≀ 𝐢2π‘˜(π›½βˆ’π‘›)

    𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)

    Γ—

    π‘š

    βˆ‘

    𝑖=0

    𝐢𝑖

    π‘š

    𝑏 (π‘₯) βˆ’ 𝑏

    𝐡𝑗

    π‘šβˆ’π‘–(𝑏𝐡𝑗

    βˆ’ 𝑏)𝑖

    πœ’π‘—

    𝐿𝑝

    1(β‹…)

    (R𝑛).

    (36)

    By Lemmas 9, 10, and 13, we have

    πΌπ‘š

    𝛽,𝑏(𝑓𝑗) πœ’π‘˜

    𝐿𝑝2(β‹…)(R𝑛)

    ≀ 𝐢2π‘˜(π›½βˆ’π‘›)

    𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)

    Γ—

    π‘š

    βˆ‘

    𝑖=0

    𝐢𝑖

    π‘š

    (𝑏 (π‘₯) βˆ’ 𝑏

    𝐡𝑗

    )π‘šβˆ’π‘–

    πœ’π‘˜

    𝐿𝑝2(β‹…)(R𝑛)

    Γ—

    (𝑏𝐡𝑗

    βˆ’ 𝑏)𝑖

    πœ’π‘—

    𝐿𝑝

    1(β‹…)

    (R𝑛)

    ≀ 𝐢2π‘˜(π›½βˆ’π‘›)

    𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)

    Γ—

    π‘š

    βˆ‘

    𝑖=0

    𝐢𝑖

    π‘š(π‘˜ βˆ’ 𝑗)

    π‘šβˆ’π‘–

    β€–π‘β€–π‘šβˆ’π‘–

    BMOπœ’π΅π‘˜

    𝐿𝑝2(β‹…)(R𝑛)

    Γ— ‖𝑏‖𝑖

    BMOπœ’π΅π‘—

    𝐿𝑝

    1(β‹…)

    (R𝑛)

    = 𝐢(π‘˜ βˆ’ 𝑗 + 1)π‘š

    β€–π‘β€–π‘š

    BMO𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)

    Γ— 2π‘˜(π›½βˆ’π‘›)

    πœ’π΅π‘˜

    𝐿𝑝2(β‹…)(R𝑛)

    πœ’π΅π‘—

    𝐿𝑝

    1(β‹…)

    (R𝑛)

    ≀ 𝐢(π‘˜ βˆ’ 𝑗 + 1)π‘š

    β€–π‘β€–π‘š

    BMO𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)

    Γ— 2π‘˜π›½πœ’π΅π‘—

    𝐿𝑝

    1(β‹…)

    (R𝑛)

    πœ’π΅π‘˜

    βˆ’1

    𝐿𝑝

    2(β‹…)

    (R𝑛)

    ≀ 𝐢(π‘˜ βˆ’ 𝑗 + 1)π‘š

    β€–π‘β€–π‘š

    BMO𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)

    Γ— 2π‘˜π›½πœ’π΅π‘—

    𝐿𝑝

    1(β‹…)

    (R𝑛)

    πœ’π΅π‘˜

    βˆ’1

    𝐿𝑝

    2(β‹…)

    (R𝑛)

    πœ’π΅π‘—

    𝐿𝑝

    2(β‹…)

    (R𝑛)πœ’π΅π‘˜

    𝐿𝑝

    2(β‹…)

    (R𝑛)

    ≀ 𝐢(π‘˜ βˆ’ 𝑗 + 1)π‘š

    β€–π‘β€–π‘š

    BMO𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)

    Γ— 2π‘˜π›½

    2π‘›π‘Ÿ(π‘—βˆ’π‘˜)

    πœ’π΅π‘—

    𝐿𝑝

    1(β‹…)

    (R𝑛)

    πœ’π΅π‘—

    βˆ’1

    𝐿𝑝

    2(β‹…)

    (R𝑛).

    (37)

    Note that

    𝐼𝛽(πœ’π΅π‘—

    ) (π‘₯) β‰₯ βˆ«π΅π‘—

    𝑑𝑦

    π‘₯ βˆ’ π‘¦π‘›βˆ’π›½

    β‹… πœ’π΅π‘—

    (π‘₯) β‰₯ 𝐢2𝑗𝛽

    β‹… πœ’π΅π‘—

    (π‘₯) .

    (38)

    By Lemmas 8 and 11, we obtain

    πœ’π΅π‘—

    βˆ’1

    𝐿𝑝

    2(β‹…)

    (R𝑛)≀ 𝐢2βˆ’π‘›π‘—

    πœ’π΅π‘—

    𝐿𝑝2(β‹…)(R𝑛)

    ≀ 𝐢2βˆ’π‘›π‘—

    2βˆ’π‘—π›½

    𝐼𝛽(πœ’π΅π‘—

    )𝐿𝑝2(β‹…)(R𝑛)

    ≀ 𝐢2βˆ’π‘—π›½

    2βˆ’π‘›π‘—

    πœ’π΅π‘—

    𝐿𝑝1(β‹…)(R𝑛)

    ≀ 𝐢2βˆ’π‘—π›½

    πœ’π΅π‘—

    βˆ’1

    𝐿𝑝

    1(β‹…)

    (R𝑛).

    (39)

    Combining (37) and (39), we have the estimate

    πΌπ‘š

    𝛽,𝑏(𝑓𝑗) πœ’π‘˜

    𝐿𝑝2(β‹…)(R𝑛)≀ 𝐢(π‘˜ βˆ’ 𝑗 + 1)

    π‘š

    Γ— β€–π‘β€–π‘š

    BMO2(π‘˜βˆ’π‘—)(π›½βˆ’π‘›π‘Ÿ)

    𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛).

    (40)

    Thus,

    𝑉1≀ 𝐢‖𝑏‖

    π‘šπ‘ž1

    BMO

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    π‘˜βˆ’2

    βˆ‘

    𝑗=βˆ’βˆž

    2𝛼𝑗𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)

    Γ—(π‘˜ βˆ’ 𝑗 + 1)π‘š

    2(π‘˜βˆ’π‘—)(π›½βˆ’π‘›π‘Ÿ+𝛼)

    )

    π‘ž1

    .

    (41)

  • 6 Journal of Function Spaces and Applications

    In case of 1 < π‘ž1

    < ∞, noting that 𝛽 βˆ’ π‘›π‘Ÿ + 𝛼 < 0, byHölder’s inequality, we have

    𝑉1≀ 𝐢‖𝑏‖

    π‘šπ‘ž1

    BMO

    Γ—

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    π‘˜βˆ’2

    βˆ‘

    𝑗=βˆ’βˆž

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    2(π‘˜βˆ’π‘—)(π›½βˆ’π‘›π‘Ÿ+𝛼)π‘ž

    1/2

    )

    Γ— (

    π‘˜βˆ’2

    βˆ‘

    𝑗=βˆ’βˆž

    (π‘˜ βˆ’ 𝑗 + 1)π‘šπ‘ž

    2(π‘˜βˆ’π‘—)(π›½βˆ’π‘›π‘Ÿ+𝛼)π‘ž

    1/2

    )

    π‘ž1/π‘ž

    1

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    BMO

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    ∞

    βˆ‘

    π‘˜=𝑗+2

    2(π‘˜βˆ’π‘—)(π›½βˆ’π‘›π‘Ÿ+𝛼)π‘ž

    1/2

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    BMO𝑓

    π‘ž1

    �̇�𝛼,π‘ž1

    𝑝1(β‹…)(R𝑛)

    .

    (42)

    In case of 0 < π‘ž1≀ 1, by inequality (21), we have

    𝑉1≀ 𝐢‖𝑏‖

    π‘šπ‘ž1

    BMO

    Γ—

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    π‘˜βˆ’2

    βˆ‘

    𝑗=βˆ’βˆž

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    Γ— (π‘˜ βˆ’ 𝑗 + 1)π‘šπ‘ž1

    2(π‘˜βˆ’π‘—)(π›½βˆ’π‘›π‘Ÿ+𝛼)π‘ž

    1

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    BMO

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    Γ—

    ∞

    βˆ‘

    π‘˜=𝑗+2

    (π‘˜ βˆ’ 𝑗 + 1)π‘šπ‘ž1

    2(π‘˜βˆ’π‘—)(π›½βˆ’π‘›π‘Ÿ+𝛼)π‘ž

    1

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    BMO𝑓

    π‘ž1

    �̇�𝛼,π‘ž1

    𝑝1(β‹…)(R𝑛)

    .

    (43)

    For 𝑉2, by Lemma 12(1), we obtain

    𝑉2≀ 𝐢‖𝑏‖

    π‘šπ‘ž1

    BMO

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    ∞

    βˆ‘

    𝑗=π‘˜βˆ’1

    2𝛼𝑗𝑓𝑗

    𝐿𝑝1(β‹…)(R𝑛)2𝛼(π‘˜βˆ’π‘—)

    )

    π‘ž1

    . (44)

    If 1 < π‘ž1< ∞, by Hölder’s inequality, we have

    𝑉2≀ 𝐢‖𝑏‖

    π‘šπ‘ž1

    BMO

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    (

    ∞

    βˆ‘

    𝑗=π‘˜βˆ’1

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    2𝛼(π‘˜βˆ’π‘—)π‘ž

    1/2

    )

    Γ— (

    ∞

    βˆ‘

    𝑗=π‘˜βˆ’1

    2𝛼(π‘˜βˆ’π‘—)π‘ž

    1/2

    )

    π‘ž1/π‘ž

    1

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    BMO

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    𝑗+1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(π‘˜βˆ’π‘—)π‘ž

    1/2

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    BMO𝑓

    π‘ž1

    �̇�𝛼,π‘ž1

    𝑝1(β‹…)(R𝑛)

    .

    (45)

    If 0 < π‘ž1≀ 1, by inequality (21), we have

    𝑉2≀ 𝐢‖𝑏‖

    π‘šπ‘ž1

    BMO

    ∞

    βˆ‘

    π‘˜=βˆ’βˆž

    ∞

    βˆ‘

    𝑗=π‘˜βˆ’1

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    2𝛼(π‘˜βˆ’π‘—)π‘ž

    1

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    BMO

    ∞

    βˆ‘

    𝑗=βˆ’βˆž

    2π›Όπ‘—π‘ž1

    𝑓𝑗

    π‘ž1

    𝐿𝑝1(β‹…)(R𝑛)

    𝑗+1

    βˆ‘

    π‘˜=βˆ’βˆž

    2𝛼(π‘˜βˆ’π‘—)π‘ž

    1

    ≀ πΆβ€–π‘β€–π‘šπ‘ž1

    BMO𝑓

    π‘ž1

    �̇�𝛼,π‘ž1

    𝑝1(β‹…)(R𝑛)

    .

    (46)

    Combining the estimates for 𝑉1and 𝑉

    2, consequently, we

    have provedTheorem 7.

    Acknowledgments

    The authors thank the referees for their valuable commentsto the original version of this note. This paper is supportedby the NSF of China (no. 11201003); the Natural ScienceFoundation of Anhui Higher Education Institutions of China(no. KJ2011A138; no. KJ2013B034).

    References

    [1] D. R. Adams, β€œA note on Riesz potentials,” Duke MathematicalJournal, vol. 42, no. 4, pp. 765–778, 1975.

    [2] S. Lu and D. Yang, β€œHardy-Littlewood-Sobolev theorems offractional integration on Herz-type spaces and its applications,”Canadian Journal of Mathematics, vol. 48, no. 2, pp. 363–380,1996.

    [3] S. G. Shi and Z. W. Fu, β€œBoundedness of sublinear operatorswith rough kernels on weighted Morrey spaces,” Journal ofFunction Spaces and Applications, vol. 2013, Article ID 784983,9 pages, 2013.

    [4] O. Kováčik and J. Rákosnı́k, β€œOn spaces 𝐿𝑝(π‘₯) and π‘Šπ‘˜,𝑝(π‘₯),”Czechoslovak Mathematical Journal, vol. 41, no. 4, pp. 592–618,1991.

    [5] L. Diening and M. Růžička, β€œCalderón-Zygmund operators ongeneralized Lebesgue spaces 𝐿𝑝(β‹…) and problems related to fluiddynamics,” Journal für die Reine und Angewandte Mathematik,vol. 563, pp. 197–220, 2003.

    [6] C. Capone, D. Cruz-Uribe, and A. Fiorenza, β€œThe fractionalmaximal operator and fractional integrals on variable 𝐿𝑝spaces,” Revista Mathemática Iberoamericana, vol. 23, no. 3, pp.743–770, 2007.

    [7] M. Izuki, β€œCommutators of fractional integrals on Lebesgueand Herz spaces with variable exponent,” Rendiconti del CircoloMatematico di Palermo, vol. 59, no. 3, pp. 461–472, 2010.

    [8] L. Diening, β€œRiesz potential and Sobolev embeddings on gene-ralized Lebesgue and Sobolev spaces 𝐿𝑝(β‹…) and π‘Šπ‘˜,𝑝(β‹…),” Mathe-matische Nachrichten, vol. 268, pp. 31–43, 2004.

    [9] S. Z. Lu, D. C. Yang, and G. E. Hu, Herz Type Spaces and TheirApplications, Science Press, Beijing, China, 2008.

    [10] Z.-W. Fu, Z.-G. Liu, S.-Z. Lu, andH.-B.Wang, β€œCharacterizationfor commutators of 𝑛-dimensional fractional Hardy operators,”Science in China A, vol. 50, no. 10, pp. 1418–1426, 2007.

    [11] S. Lu, Q. Wu, and D. Yang, β€œBoundedness of commutators onHardy type spaces,” Science in China A, vol. 45, no. 8, pp. 984–997, 2002.

  • Journal of Function Spaces and Applications 7

    [12] T. Zhou, Commutators of Fractional Integrals on Spaces WithVariable Exponent, Dalian Maritime University, 2012.

    [13] H. B.Wang, Z.W. Fu, andZ.G. Liu, β€œHigher order commutatorsof Marcinkiewicz integrals on variable Lebesgue spaces,” ActaMathematica Scientia A, vol. 32, no. 6, pp. 1092–1101, 2012.

    [14] H. B.Wang, Function Spaces withVariable Exponent andRelatedTopics, China University of Mining and Technology, 2012.

    [15] A. Nekvinda, β€œHardy-Littlewood maximal operator on𝐿𝑝(π‘₯)

    (R𝑛),” Mathematical Inequalities & Applications, vol. 7, no.2, pp. 255–265, 2004.

    [16] M. Izuki, β€œBoundedness of commutators on Herz spaceswith variable exponent,” Rendiconti del Circolo Matematico diPalermo, vol. 59, no. 2, pp. 199–213, 2010.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of


Top Related