release of location and well planning

Upload: prakharmathur14

Post on 14-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Release of location and Well Planning

    1/33

    1

    SUMMER INTERNSHIP

    REPORT

    Submitted to:

    Dr. R. K. Bawa Dr. Sharad Kr. Shankar

    General Manager (Chemistry) Dy. General Manager (Chemistry)ONGC, Jodhpur ONGC, Jodhpur

    Submitted by :

    Prakhar MathurB. Tech. 2nd year (Petroleum Technology)

    School of Petroleum TechnologyPandit Deendayal Petroleum University,

    Gandhinagar

    PANDIT DEENDAYAL PETROLEUM UNIVERSITY

  • 7/29/2019 Release of location and Well Planning

    2/33

    2

    ACKNOWLEDGEMENT

    Apart from the efforts of me, the success of this project depends largely on the

    encouragement and guidelines of many others. I take this opportunity to express

    my gratitude to the people who have been instrumental in the successful

    completion of this project.

    I would like to show my greatest appreciation to Dr Sharad Kr. Shankar and

    Dr. R. K. Bawa. I cant say thank you enough for tremendous support and help.

    I feel motivated and encouraged every time I attend their meeting. Without their

    encouragement and guidance this project would not have materialized.

    The guidance and support received from all the team members such as ,

    Mr. Vikram Saxena , Mr. Atul Kumar and Mr. Baireddy Aneel, was vital for

    the success of the project. I am grateful for their constant support and help.

    My thanks and appreciation also goes to my colleague in developing the project

    and people who have willingly helped me out with their abilities.

  • 7/29/2019 Release of location and Well Planning

    3/33

    3

    CONTENTS

    CONTENTS PAGE NO.

    INTRODUCTION OF ONGC 4

    WELL PLANNING 11

    OVERVIEW OF PLANNING PROCESS 14

    GTO 15CASING 16

    WELLHEAD SELECTION 20

    BOP REQUIREMENT 22

    CEMENTING PROGRAMME 23

    MUD PROGRAMME 24

    BIT AND HYDRAULICS PROGRAMME 26EVALUATION REQUIREMENTS 27

    WELL COST ESTIMATION 31

    REFERENCES 33

  • 7/29/2019 Release of location and Well Planning

    4/33

    4

    INTRODUCTION OF ONGC

    ONGC - WORLDD NO. 1 E & P COMPANY

    ONGC has achieved the distinction of Numero Uno ranking in the pure E & P

    category, not only in Asia, but on the global scale. ONGC has been ranked 18th

    in the overall listing of global energy companies as per plats top 250 Global

    Energy Company Ranking 2010.

    PERFORMANCE : 2009-10

    Highest reserve accretion in last two decades

    ONGC accreted 82.98 Million Tonnes of Oil Equivalent (MTOE) of Ultimate

    Reserves (3P) in domestic operated fields-the highest in last two decades. Total

    reserve accretion in domestic basins has been 87.37 MTOE (including 4.39

    MTOE from ONGC share in joint ventures (JVs)). Initial in place reserve

    accretion in domestic basins was 273.42 MTOE including 22.82 MTOE from

    ONGC share in JVs.

    Reserve Replacement Ratio (RRR)

    Reserve Replacement Ratio i.e. the ratio of reserve accretion to the production

    of ONGC in its domestic oil fields in this fiscal has been quite impressive at

    1.74 for 3P reserves; again the highest in last two decades. This is 5th

    consecutive ONGC maintain RRR of more than 1 against global feature of

    lower than 1 registered by large number of oil companies.

    Oil & gas Production levels maintained

    ONGC has maintained oil and gas production levels despite global trend ofdeclining production from matured oil fields. During FY10, the combine oil

    and gas production of ONGCs share in PSC-JVs, was 60.93 MTOE;

    marginally lower as compared to 61.23 MTOE in FY09. Production from

    overseas fields registered 8.87 MTOE; the highest ever.

    Largest oil and gas producer in the country

  • 7/29/2019 Release of location and Well Planning

    5/33

    5

  • 7/29/2019 Release of location and Well Planning

    6/33

    6

    Oil and gas production from domestic fields, including ONGCs share in PSC

    JVs has been 52.06 MTOE during FY10 against 52.45 MTOE during FY09.

    ONGC accounted for 79% of Indias crude oil and 54% of natural gas

    production during FY10.

    Highest-ever production from overseas assets ONGC Videsh Limited

    (OVL) , the flagship wholly owned subsidiary for overseas operations has now

    footprints across 15 countries with 39 projects Since its first hydrocarbon

    revenue from overseas in 200203 from Vietnam, this year OVL registered

    highest-ever production of 8.87 MTOE of oil and gas.

    ONGC bags highest number of blocks in NELP-VIII

    In NELP-VIII bid round, ONGC in partnership with its consortia members,

    submitted the bids for 25 exploration blocks and won 17 of these. In the eight

    NELP round which have been rolled out so far, ONGC has won 50% of the

    blocks i.e. 121 out of 242blocks awarded by Govt. of India. ONGC now hold 80

    NELP blocks (70 as operator)and 62 nomination blocks.

    Alternate sources of energy

    %! MW Wind power farms set up near Bhuj in Gujrat with an investment of

    rs3,080 million in September, 2009 is already is already operational. The

    electricity generated is wheeled through Gujarat state electricity grid for captive

    consumption by ONGC at Ankleshar, Ahmedabad, Mehsana and vadodara

    ONGC plans to setting up 102MW wind farm in Rajasthan.

    ONGC Energy Centre set up for holistic research for new and alternate energy

    sources has been pursuing a number of new projects like-thermo-chemical

    generation of hydrogen, bioconversion of coal/ oil to methane gas, Uranium

    exploration, Solid state lighting and Solar PV Energy Farm.

    Corporate Social Responsibility (CSR)

    ONGC has earmarked 2% of net profit fir various CSR projects. A dedicated

    group at the corporate level with regional support oversees the CSR project

    implementation. Some of the major schemes in the policy includes;

    Education including vocational courses.

  • 7/29/2019 Release of location and Well Planning

    7/33

    7

    Health care

    Entrepreneurship (self help and lively hood generation) schemes.

    Infrastructure support near our operational areas.

    Environment protection, Ecological conservation, promotion.

    Womens empowerment, girl child development, gender sensitive

    projects.

    Water management including ground water recharge.

    Global rankings

    No. 1 E & P company in the world among leading global energy majors

    as per plats 2010.

    No. 24 in PFC ENERGY 50 Ranked 24th

    among the global publicity-listed energy companies as per PFC Energy50 list (January, 2010).

    Finance Asia ranks ONGC no. 1 among Indian blue chips. Ranked

    number 1 Top Blue Chip of the India in the Finance Asia 100 list for

    2009 with the highest aggregate net profit(before exceptional) over the

    period 2006-2008.

    ONGC ranked at 155th position in Forbes Global 2000 list for 2010.

    National rankings

    ONGC ranked at second position in FE500 list 2010.

    Business today Ranks ONGC as best company to work for in core sector.

    AWARDS

    OISD Awards

    ONGC and MRPL have won the following six Oil Industry Safety Awards for

    the year 2008-2009, instituted by Oil Industry Safety Directorate (DISD),

    MoP&NG. Cauvery Asset has been declared as winner in the category Oil &

    Gas Assets (Onshore) on safety standards.

  • 7/29/2019 Release of location and Well Planning

    8/33

    8

    Heera Processing plant has been adjudged as the best offshore production

    Platform under PSUs category on safety standards.

    Sagar Shakti has been adjudged as the best offshore drilling rig, under

    PSU category on safety standards.

    MRPL has been ranked number two in Refineries category.

    MRPL has also been rated as the most safe refinery in last three years.

    ONGCs Rajahmundry Asset has been rated as the most safe Onshore Oil

    & Gas Asset in last three years.

    ONGCian Shri Supriyo Chowdhury, Chief Engineer (Drilling), Assam

    Asset has been selected for a cash award for his valuable contribution in

    the area of safety.

    Dainik Bhaskar India Pride Awards for Excellence

    ONGC bagged the coveted Gold Award in the CSR category of thr Dainik

    Bhaskar India Pride Awards for Excellence in PSUs instituted by Dainik

    Bhaskar Group (October, 2010).

    ONGC bags Best Overall Performance Award for oil and gas conservation

    programmes

    ONGC bagged the Best Overall Performance Award instituted by Petroleum

    Conservation Research Association (PCRA) amongst the upstream sector Oil

    companies for the oil nad gas conservation programmes during the year 2009

    (January, 2010).

    ONGC bags 5th

    BML Munjal Award for excellence in Learning &

    Development

    ONGC clinched 5th

    BML Munjal Award for excellence in Learning &

    Development in Public sector category, instituted in the name of Dr. Brijmohan

    Lall Munjal (BML), Chairman, Hero Group (March, 2010).

  • 7/29/2019 Release of location and Well Planning

    9/33

    9

    DSIG Award to ONGC

    ONGC clinched two DSIG-PSU awards 2010, one for excellent overall

    Performance in category of Heavy Weights and the other for Highest Market

    Capitalisation amongst PSUs in the category of Wealth Builders (April, 2010).

    ONGC gets Amity Leadership for Business Excellence for leveraging IT

    ONGC has been awarded Amity Leadership for Business Excellence for

    leveraging IT in Oil & Gas Industry instituted by the Amity University

    (January, 2010).

    Golden Peacock award for corporate Governance

    ONGC has been conferred with Golden Peacock Award for Excellence in

    Corporate Governance for 2009 instituted by the World Council of Corporate

    Governance, London (October, 2009)

    Hazira Plant bags commendation at CII-ITC Sustainability Awards 2009

    ONGC, Hazira Plant received Commendation for Strong Commitment among

    independent units for the year 2009 at the CII-ITC Sustainability Awards

    (November, 2009).

  • 7/29/2019 Release of location and Well Planning

    10/33

    10

    ONGC in Rajasthan

    The forward base office of ONGC is located at Jodhpur. In Rajasthan ONGC is

    exploring gas from Thar Desert of Jaisalmer. The Jaisalmer Basin, Western

    Rajasthan is located at the eastern flank of Indus Basin. Presence of huge

    volume of sediments with adequate good source reservoir rock combination

    marks this basin prospective for hydrocarbon exploration. A number of

    significant oil and gas fields have been discovered in the Indus basin across our

    frontiers. However, such discoveries are relatively few in numbers do not

    commensurately match with the vast prospective basinal area for exploration.

    Accordingly, ONGC limited exploration for hydrocarbons in Rajasthan since its

    inception in 1956. However, exploratory inputs had been rather limited due to

    various logistic problems and also due to the lack of major discovery in this

    basin except two gas fields at Manhera Tibba and Ghotaru. Nevertheless

    interception of recent seismic data acquired through in house and outside

    agencies have resulted in identification of a number of structural prospects. No

    discovery has been made since 1983. Till end of 1989 indication of oil have

    been found in few wells but commercial oil strike has remained elusive. A gas

    collection station (GCS) has been established in Gamnewala (around 100 k.m.

    away from Jaisalmer) and the gas collected here is supplied to RVVNL

    (Rajasthan Vidyut Vitaran Nigam Limited) Ramgarh for running turbine to

    produce electricity.

    Since the year 2002 ONGC has struck gas at Cinnewala field which is good in

    terms of quality and quantity of hydrocarbons and may hopefully usher in a new

    era for ONGC in Rajasthan.

  • 7/29/2019 Release of location and Well Planning

    11/33

    11

    WELL PLANNING

    Well planning is perhaps the most demanding aspect of drilling engineering. It

    requires the integration of engineering principles, corporate or personal

    philosophies, and experience factors. Although well planning methods and

    practices may vary within the drilling industry, the end result should be a safely

    drilled, minimum-cost hole that satisfies the reservoir engineer's requirements

    for oil and gas production.

    Well Planning is defined as those, primarily engineering activities, which follow

    on from the identification of a subsurface target for a well (exploration,appraisal, or development well) until the completion of that well. This includes:

    Definition of well objectives

    Planning of the well trajectory

    Selection of drilling hardware (bits, tubulars, mud, etc.)

    Planning of casing points

    Logging objectives and selection of logging tools (MWD, LWD, wirelinelogs)

    Test program and decision criteria for testing Completion program and criteria for completion

    Well Planning in context of platform planning (i.e., planning a group of wells

    from a platform or pad at one time to allow engineering and economic

    optimization of the entire platform). This ties to entire field development

    planning (for a given set of targets in a new field, optimize the number andlocations of platforms)

    Well Planning Objective

    The objective of well planning is to formulate a program from many variables

    for drilling a well that has the following characteristics:

    Safety

    Minimum cost

    Usable

    Unfortunately, it is not always possible to accomplish these objectives on each

    well due to constraints based on items such as geology and drilling equipment,

    i.e., temperature, casing limitations, hole sizing, or budget.

  • 7/29/2019 Release of location and Well Planning

    12/33

    12

    WELL PLANNING

  • 7/29/2019 Release of location and Well Planning

    13/33

    13

    Safety: Safety should be the highest priority in well planning. Personnel

    considerations must be placed above all other aspects of the plan. In some cases,

    the plan must be altered during the course of drilling the well when unforeseen

    drilling problems endanger the crew. Failure to stress crew safety has resulted in

    loss of life and burned or permanently crippled individuals.

    The second priority involves the safety of the well. The well plan must be

    designed to minimize the risk of blowouts and other factors that could createproblems. This design requirement must be adhered to vigorously in all aspects

    of the plan.

    Minimum Cost. A valid objective of the well planning process is to minimize

    the cost of the well without jeopardizing the safety aspects.

    In most cases, costs can be reduced to a certain level as additional effort is

    given to the planning (Fig. 1-1). It is not noble to build "steel monuments" in the

    name of safety if the additional expense is not required. On the other hand,monies should be spent as necessary to develop a safe system.

    Usable Holes. Drilling a hole to the target depth is not completely satisfactory if

    the final well configuration is not usable. In this case, the term usable implies

    the following

    The hole diameter is sufficiently large so an adequate completion can

    The hole or producing formation is not irreparably damaged.

    Fig.1. Well costs can be reduced dramatically if proper well planning is

    implemented

  • 7/29/2019 Release of location and Well Planning

    14/33

    14

    Classification of Well Types

    The drilling engineer is required to plan a variety of well types, including

    the following:

    Well Type Characteristics

    Wildcat

    Exploratory

    Step-out

    Infill

    Re-entry

    Not known (or little) geological foundation

    for site selection.

    Site based on seismic data, satellite surveys,

    etc.; no known drilling data in the

    prospective horizon.

    Delineates the reservoir's boundaries; drilled

    after the exploratory discovery(s); site

    location usually based on seismic data.

    Drills the known productive portions of the

    reservoir; site selection usually based on

    patterns, drainage radius, etc.

    Existing well re entered to deepen, side track,

    rework, or recomplete; various amounts of

    planning required, depending on purpose ofre-entry

    Overview of the Planning Process

    Well planning is an orderly process. It requires that some aspects of the plan be

    developed before designing other items. For example, the mud density plan

    must be developed before the casing program since mud weights have an impact

    on pipe requirements. Fig. 1-2 illustrates a commonly used flow path for a well

    plan.

    Bit programming can be done at any time in the plan after the historical data

    have been analyzed. The bit program is usually based on the drilling parameters

    from offset wells. However, bit selection can be affected by the rimed plan, i.e.,

    the performance of PCD bits in oil muds. In addition, bit sizing may be

    controlled by casing drift diameter requirements. Casing and tubing should be

    considered as an integral design. This fact is particularly valid for production

    casing. A design criteria for tubing is the drift diameter of the production

    casing, whereas the production casing can be affected adversely by the packer-

  • 7/29/2019 Release of location and Well Planning

    15/33

    15

    to-tubing forces created by the tubing's tendencies for movement.

    Unfortunately, these calculations are complex and often neglected.

    The completion plan must be visualized reasonably early in the process. Its

    primary effect is on the size of casing and tubing to be used if oversized tubing

    or packers are required. In addition, the plan can require the use of high strengthtubing or unusually long seal assemblies in certain situations.

    Activities before starting drilling operation

    Activities undertaken prior to start of drilling operation can be broken down into

    the following:

    1. Release of location.2. Survey of surface/subsea location. Sometimes the cost can be reduced by

    a small change in surface location.

    3. Civil works and foundation for onshore drill site and soil coring/sea bedsurvey in case of offshore well.

    4. Preparation of Geo-technical order.5. Preparation of complete well plan/programme.6. Preparation of bill of material and initiation of purchase procedure, if

    required.

    7. Procedures from obtaining sanction for purchase to receipt of material.8. Rig allocation and its shifting to the new location.

    GEO TECHNICAL ORDER

    The various input data are thoroughly analysed and the geo technical order is

    prepared which provides broad guidelines for drilling of well.

    G.T.O. furnishes the following details:

    1. General data like well name, well no., area, location, water depth,elevation, well type, category, objectives of well, etc.

    2. Geological data, which consists of following details depth, age,

    formation, oil/gas shows, electro logging, etc.

    3. Mud parameters consisting of mud type, specific gravity, viscosity, pH,

    percentage of sand, etc.

  • 7/29/2019 Release of location and Well Planning

    16/33

    16

    4. Drilling data including casing policy and rise of cement, drilling type,

    type & size of bits, no. of bits expected, RPM of rotary, etc.

    5. Remarks, if any.

    CASING

    Importance of casing :

    To prevent weak formation from collapsing and causing caving of thehole.

    Serving as a high strength flow conduit to surface for both drilling andproduction fluids.

    Protecting fresh water bearing formation getting contaminated fromdrilling and production fluids.

    Provide suitable support for wellhead equipment, tubing and subsurfaceequipment.

    Provide safe passage for running wire line equipment. Allowing isolated communication with selective perforated formation of

    interest.

    Types of Casing and TubingDrilling environments often require several casing strings in order to reach the

    total desired depth. Someof the strings are as follows:

    Drive or structural conductor

    Surface

    Intermediate (also known as protection pipe) liners

    Production (also known as an oil string)

    Tubing (flow string)

    Fig shows the relationship of some of these casing strings. In addition, the

    illustration shows some of the problems and drilling hazards that the strings are

    designed to control.

    All wells will not use each type of casing. The conditions to be encountered in

    each well must be analyzed to detennine the types and amount of pipe necessary

    to drill it. The general functions of all casing strings are as follows:

  • 7/29/2019 Release of location and Well Planning

    17/33

    17

    segregate and isolate various formations to minimize drilling problems ormaximize production

    furnish a stable well with a known diameter through which future drillingand completion operations can be executed

    provide a secure means to which pressure control equipment can beattached

    Drive Pipe or Conductor Casing. The first string run or placed in the well is

    usually the drive pipe, or conductor casing. The normal depths range from 100-

    300 ft. In soft-rock areas such as southern Louisiana or most offshore

    environments, the pipe is hammered into the ground with a large diesel hammer.

    Hard-rock areas require that a large-diameter, shallow hole be drilled before

    running and cementing the pipe. Conductor casing can be as elaborate as heavy

    wall steel pipe or as simple as a few old oil drums tacked together.

    A primary purpose of this string of pipe is to provide a fluid conduit from the bit

    to the surface. Very shallow fonnations tend to wash out severely and must be

    protected with pipe. In addition, most shallow fonnations exhibit some type of

    lost circulation problem that must be minimized. An additional function of the

    pipe is to minimize hole caving problems.

    Gravel beds and unconsolidated rock will continue to fall into the well if notstabilized with casing. Typically, the operator is required to drill through these

    zones by pumping viscous muds at high rates.

    Structural Casing. Occasionally, drilling conditions will require that an

    additional string of casing be run between the drive pipe and surface casing.

    Typical depths range from 600-1,000 ft. Purposes for the pipe include solving

    additional lost circulation or hole caving problems and minimizing kick

    problems from shallow gas zones.

    Surface Casing. Many purposes exist for running surface casing, including the

    following:

    cover freshwater sands

    maintain hole integrity by preventing caving minimize lost circulationinto shallow, permeable zones

    cover weak zones that are incompetent to control kick-imposed pressures

    provide a means for attaching the blowout preventers .support the weight

    of all casing strings (except liners) run below the surface pipe.

  • 7/29/2019 Release of location and Well Planning

    18/33

    18

    Intermediate Casing. The primary applications of intermediate casing involve

    abnormally high formation pressures. Since higher mud weights are required to

    control these pressures, the shallower weak formations must be protected to

    prevent lost circulation or stuck pipe. Occasionally, intermediate pipe is used to

    isolate salt zones or zones that cause hole problems, such as heaving andsloughing shales.

    Liners. Drilling liners are used for the same purpose as intermediate casing.Instead of running the pipe to the surface, an abbreviated string is used from the

    bottom of the hole to a shallower depth inside the intermediate pipe. Usually the

    overlap between the two strings is 300-500 ft. Inthis case, the intermediate pipe

    is exposed to the same drilling considerations as the liner.

    Drilling (and production) liners are used frequently as a cost-effective method

    to attain pressure or fracture gradient control without the expense of running a

    string to the surface. When a liner is used, the upper exposed casing, usually

    intermediate pipe, must be evaluated with respect to burst and collapsepressures for drilling the open hole below the liner. Remember that a full string

    of casing can be run to the surface instead of a liner if required, i.e., two

    intermediate strings.

    Production Casing. The production casing is often called the oil string.

    The pipe may be set at a depth slightly above, midway through, or below the

  • 7/29/2019 Release of location and Well Planning

    19/33

    19

    pay zone. The pipe has the following purposes:

    isolate the producing zone from the other formations

    provide a work shaft of a known diameter to the pay zone

    protect the production tubing equipment

    Tie-back String. The drilling liner is often used as part of the production

    casing rather than running an additional full string of pipe from the surface to

    the producing zone. The liner is tied-back or connected to the surface by

    running the amount of pipe required to connect to the liner top. This procedure

    is particularly common when

    1) Producing hydrocarbons are behind the liner and

    2) The deeper section is not commercial.

    Setting Depth Design Procedures

    'Casing seat depths are directly affected by geological conditions. In some

    cases, the prime criterion for selecting casing seats is to cover exposed, severe

  • 7/29/2019 Release of location and Well Planning

    20/33

    20

    lost circulation zones. In others, the seat selection may be based on differential

    sticking problems, perhaps resulting from pressure depletion in a field. In deep

    wells, however, the primary consideration is usually based on controlling

    abnormal formation pressures and preventing their exposure to weaker shallow

    zones. The design criteria of controlling formation pressures generally appliestomost drilling areas.

    Selecting casing seats for pressure control purposes starts with knowing

    geological conditions such as formation pressures and fracture gradients. Thisinformation is generally available within an acceptable degree of accuracy. Pre-

    spud calculations and. the actual drilling conditions will determine the exact

    locations for each casing seat. The principle used to determine setting depth

    selection can be adequately described by the adage, "hindsight is 20-20." The

    initial step is to determine the formation pressures and fracture gradients that

    will be penetrated in the well. After these have been established, the operator

    must design a casing program based on the assumption that he already knows

    the behavior of the well even before it is drilled.This principle is used extensively for infill drilling where the known conditions

    dictate the casing program. Using these guidelines, the operator can select the

    most effective casing program that will meet the necessary pressure

    requirements and minimize the casing cost.

    WELLHEAD SELECTION

    Having completed the casing design, we have all the information required to

    allow us to select a wellhead.

    A wellhead is a general term used to describe the component at the surface of

    an oil or gas well that provides the structural and pressure-containing interface

    for the drilling and production equipment.

    The primary purpose of a wellhead is to provide the suspension point and

    pressure seals for the casing strings that run from the bottom of the hole sections

    to the surface pressure control equipment.While drilling the oil well, surface

    pressure control is provided by a blowout preventer (BOP). If the pressure is not

    contained during drilling operations by the column of drilling fluid, casings,

    wellhead, and BOP, a well blowout could occur.

    Once the well has been drilled, it is completedto provide an interface with the

    reservoir rock and a tubular conduit for the well fluids. The surface pressure

  • 7/29/2019 Release of location and Well Planning

    21/33

    21

    control is provided by a christmas tree, which is installed on top of the

    wellhead, with isolation valves and choke equipment to control the flow of well

    fluids during production.

    Wellheads are typically welded onto the first string of casing, which has beencemented in place during drilling operations, to form an integral structure of the

    well. In exploration wells that are later abandoned, the wellhead may be

    recovered for refurbishment and re-use.

    Offshore, where a wellhead is located on the production platform it is called

    a surface wellhead, and if located beneath the water then it is referred to as

    asubsea wellhead or mudline wellhead.

    The wellhead must of correct pressure rating, designed for the desired

    service like H2S and be capable of accommodating all designed and

    contingent casing strings.

    Components:

    The primary components of a wellhead system are:

    casing head

    casing spools

    casing hangers packoffs (isolation) seals

    bowl protectors / wear bushings

    test plugs

    mudline suspension systems

    tubing heads

    tubing hangers

    tubing head adapters

    Having selected a well head, its specifications should be included in the Drilling

    Programme along with a sectional view of its components stack up.

  • 7/29/2019 Release of location and Well Planning

    22/33

    22

    BOP REQUIREMENTWhen primary control of the well has been lost due to insufficient mudhydrostatic pressure, it becomes necessary to seal the well to prevent an

    uncontrolled flow, or blowout, of formation fluids. The equipment that seals thewell is the blowout preventer (BOP).

    Types of Blowout Preventers

    Annular Blowout Preventers Annular Preventer Ram Preventer

    Drill pipe Blowout Preventers

    Annular (Spherical) Preventers

    The first preventer normally closed when Shut in procedures are initiated is the

    annular preventer. The four basic segments of the annular preventer are the

    head, body, piston, and steel-ribbed packing element . When the preventer's

    closing mechanism is actuated hydraulic pressure is applied to the piston,causing it to slide upward and force the packing element to extend into the

    wellbore around the drillstring. The preventer element is opened by applying

    hydraulic pressure in a manner that slides the piston downward and allows thepacking to return to its original position.

    Ram Preventers

    Unlike the operational manner of the annular preventer, the ram preventers sealthe annulus by forcing two elements to make contact with each other in the

    annular area. These elements have rubber packing seals that affect the complete

    closure. Other than the sealing mechanism, ram blowout preventers (pipe, blind,

    and shear) differ greatly from annular preventers in that each type and size of

    ram has one function and cannot be used in a variety of applications.

  • 7/29/2019 Release of location and Well Planning

    23/33

    23

    Blind rams seal the well if pipe is not in the hole. The element isflatfaced and contains a rubber section. The rams are not designed to

    effect a seal when pipe is in the hole, although occasionally the pipe will

    be cut if the blind rams are accidentally closed. Precautions should thusbe taken with the blowout preventer control panel to ensure the blind

    rams cannot be accidentally closed.

    Shear rams are specially designed blind rams. As the word "shear"indicates, this type of ram will seal if pipe is in the hole by shearing, or

    cutting, the pipe and sealing the open wellbore.

    The requirement of the above mentioned BOPs depends upon the companys

    policy and anticipated bottom hole pressures. Surface holes have either no BOP

    requirement, or will need to use a diverter.

    CEMENTING PROGRAMME

    The 3 main factors that must be considered at the planning stage are :

    Slurry Design

    Casing Accesories Selection

    Displacement rate & methods

    SLURRY DESIGN:

    Cement tests should always be performed on representative samples of cement,

    additives and mix water as supplied from the rig. Cement tests are detailed in

    API 10, references a & b.

    THICKENING TIME:

    Thickening time tests are designed to determine the length of time which a

    cement slurry remains in a pumpable state under simulated wellbore conditionsof temperature and pressure. The pumpability, or consistency, is measured in

    Bearden Consistency units (Bc); each unit being equivalent to the spring

    deflection observed with 2080 gm-cm of torque when using the weight-loaded

    type calibration device. The measure takes no account of the effect of fluid loss.Thus, thickening times in the wellbore may be reduced if little, or no, fluid loss

    control is specified in the slurry design. Results should quote the time to reach

    70 Bc - generally considered to be the maximum pumpable consistency.

    FLUID-LOSS

  • 7/29/2019 Release of location and Well Planning

    24/33

    24

    Fluid-loss tests are designed to measure the slurry dehydration during, and

    immediately after cement placement. Under simulated wellbore conditions, the

    slurry is tested for filtrate loss across a standardised filter press at differential

    pressures of 100 psi or 1000 psi. The test duration is 30 minutes and results are

    quoted as ml/30 min.

    COMPRESSIVE STRENGTH

    The measurement of the uniaxial compressive strength of two-inch cubes ofcement provides an indication of the strength development of the cement at

    downhole conditions. The slurry samples are cured for 8, 12, 16 and 24 hours at

    bottom-hole temperatures and pressures and the results reported in psi. Dynamic

    measurements using ultrasonic techniques correlate well with API test results,

    but can lead to over-estimation of the strength.

    RHEOLOGY

    Ensuring that the rheological behaviour of the slurry downhole is similar to thatspecified in the design is essential for effective cement placement. The slurry

    viscosity is measured using a rotational viscometer, such as a Fann. The slurry

    sample should be conditioned for 20 minutes in an atmospheric consistometer

    before measurements are taken. Readings should be taken at ambient conditions

    and at BHCT when possible. Measurements should be limited to a maximum

    speed of 300 rpm (shear rate 511 1/s). Readings should also be reported at 200,

    100, 60, 30, 6 and 3 rpm.

    CEMENTING AND CASING HARDWARES

    Some or all of the following equipment is used during cementing operations.

    1. Guide shoes

    2. Float Collars

    3. Baskets and Centralisers

    4. Cement Plugs5. Multistage Collars

    MUD PROGRAMMEThe following information should be collected and used when selecting drilling

    fluid or fluids for a particular well. It should be noted that it is common to

    utilise two or three different fluid types on a single well.

    Pore pressure /fracture gradient plots to establish the minimum / maximum

    mud weights to be used on the whole well, see Chapters One and Two for

    details.

  • 7/29/2019 Release of location and Well Planning

    25/33

    25

    Offset well data (drilling completion reports, mud recaps, mud logs etc.) from

    similar wells in the area to help establish successful mud systems, problematic

    formations, potential hazards, estimated drilling time etc.

    Geological plot of the prognosed lithology.

    Casing design programme and casing seat depths. The casing schemeeffectively divides the well into separate sections; each hole section may have

    similar formation types, similar pore pressure regimes or similar reactivity to

    mud. Basic mud properties required for each open hole section before it is cased off.

    Restrictions that might be enforced in the area i.e. government legislation in

    the area, environmental concerns etc.

    Drilling Mud Properties :

    MUD WEIGHT OR MUD DENSITY FUNNEL VISCOSITY

    PLASTIC VISCOSITY (PV)

    YIELD POINT

    GEL STRENGTHS

    FLUID LOSS AND FILTER CAKE

    SOLIDS CONTROL EQUIPMENT

    Having decided on the mud system to be used for the well, the mud treatmentequipment available on the rigs should be appraised to check compatibility with

    the selected system. The treatment equipment falls into the four main groups:

    Shale shakers(60)

    Mud cleaners(30)

    De-sanders and De-Silters(60-15)

    Centrifuge (1-2)

    Solids contaminants and gas entrapped in mud can be removed from mud infour stages:

    Screen separation: shale shakers, scalper screens and mud cleaner screens.

    Settling separation in non-stirred compartments: sand traps and settling pits.

    Removal of gaseous contaminants by vacuum degassers or similar equipment

    Forced settling by the action of centrifugal devices including hydrocyclones

    (desanders, desilters and micro-cones) and centrifuges.

  • 7/29/2019 Release of location and Well Planning

    26/33

    26

    BIT AND HYDRAULICS PROGRAMME

    Bit selection begins with a thorough examination of bit records from offset

    wells data. The best and worst performance and dull bit grading in formations

    comparable to the well being designed should be examined, analysed and the

    used to determine the characteristics of the best performing drill bits. In

    particular attention should be placed on the details such as the premature failure

    of bits, reasons drillbits pulled, dull characteristics of inserts: whether the insertswere worn or broken, etc. A drill bit that had broken inserts clearly indicate that

    the formation should have been drilled with a much harder drillbit. This detailed

    examination will be explained in the next sections of this chapter.

    Data required for the correct bit selection include the following:

    1. Prognosed lithology column with detailed description of each formation

    2. Drilling fluid details

    3. Well profile

    When drilling directional wells the Directional Contractor should be asked to

    provide an assessment of the required BHA changes, motor requirements and

    any limitations on bit operating parameters which may impact on the selection

    of bits. In addition bit characteristics in terms of walk, build and drop

    tendencies will need to be assessed for their impact on the well path.

    When using a mud motor in the assembly all tri-cone bits should have a motorbearing system which allows extended use at high motor RPMs or a fixed

    cutter bit should be selected.

    Due consideration should always be given to the jet system of the bit. When

    drilling soft shale sections where the major limitations on ROP is bottom hole

    and cutter cleaning, the use of centre jet, extended jets or lateral jet bits should

    be considered.

    There are 3 types of drilling bits:1. Drag bits2. Roller cone or rock bits3. Diamond bitsa) PDC (Polycrystalline Diamond Compact) bitsb) TSP (Thermally Stable Polycrystalline) bits

  • 7/29/2019 Release of location and Well Planning

    27/33

    27

    The hydraulics system serves many purposes in the well. Since it is centered

    around the mud system, the purposes of mud and hydraulics are often common

    to each other .

    The hydraulics system has many effects on the well. Therefore, the reasons forgiving attention to hydraulics are abundant. The more common reasons are as

    follows:

    control subsurface pressures

    provide a buoyant effect to the drillstring and casing minimize hole

    erosion due to the mud's washing action during movement

    remove cuttings from the well, clean the bit, and remove cuttings from

    below the bit

    increase penetration rate size surface equipment such as pumps

    control surge pressures created by lowering pipe into the well

    minimize wellbore pressure reductions from swabbing when pulling pipefrom the well

    Evaluate pressure increases in the wellbore when circulating the mud.

    maintain control of the well during kicks

    Quite often, these effects are interrelated, which increases the difficulty in

    optimization.

    There are two main theories concerning how much hydraulic horsepower should

    be expended at the bit to gain maximum cleaning efficiency. The first theory isthe maximum hydraulic horsepower theory, which in practice means expending

    2/3rd

    of the available HHP at the bit. The alternative theory is the maximum jet

    impact theory which in practice means expending around 50% of the available

    HHP at the bit.

    EVALUATION REQUIREMENTS

    In this part of the programme, the evaluation requirements necessary to meet thewell objectives should be formatted as follows:

    Drilling log requirements

    Mud logging requirements

    Coring requirements

    MWD requirements

    Electric logging requirements

    Testing requirements

  • 7/29/2019 Release of location and Well Planning

    28/33

    28

    LOG INTERPRETATION OBJECTIVES

    The objective of log interpretation depends very much on the user.Quantitative analysis of well logs provides the analyst with values for a

    variety of primary parameters, such as: porosity water saturation, fluid type (oil/gas/water) lithology permeability From these, many corollary parameters can be derived by integration (and

    other means) to arrive at values for:

    hydrocarbons-in-place reserves (the recoverable fraction of hydrocarbons in-place) mapping reservoir parameters But not all users of wireline logs have quantitative analysis as their

    objective. Many of them are more concerned with the geological andgeophysical aspects. These users are interested in interpretation for:

    well-to-well correlation facies analysis regional structural and sedimentary history In quantitative log analysis, the objective is to define the type of reservoir (lithology) its storage capacity (porosity) its hydrocarbon type and content (saturation) its producibility (permeability)

    GAMMA RAY LOG

    Gamma Rays are high-energy electromagnetic waves which are emittedby atomic nuclei as a form of radiation

    Gamma ray log is measurement of natural radioactivity in formationverses depth.

    It measures the radiation emitting from naturally occurring U, Th, and K.

    It is also known as shale log. GR log reflects shale or clay content. Clean formations have low radioactivity level. Correlation between wells, Determination of bed boundaries, Evaluation of shale content within a formation, Mineral analysis, Depth control for log tie-ins, side-wall coring, or perforating. Particularly useful for defining shale beds when the sp is featureless

    GR log can be run in both open and casedhole

  • 7/29/2019 Release of location and Well Planning

    29/33

    29

    Spontaneous Potential Log (SP)

    The spontaneous potential (SP) curve records the naturally occurringelectrical potential (voltage) produced by the interaction of formation

    connate water, conductive drilling fluid, and shale The SP curve reflects a difference in the electrical potential between a

    movable electrode in the borehole and a fixed reference electrode at the

    surface Though the SP is used primarily as a lithology indicator and as a

    correlation tool, it has other uses as well:

    permeability indicator, shale volume indicator porosity indicator, and measurement of Rw (hence formation water salinity).

    Neutron Logging

    The Neutron Log is primarily used to evaluate formation porosity, but thefact that it is really just a hydrogen detector should always be kept in

    mind

    It is used to detect gas in certain situations, exploiting the lower hydrogendensity, or hydrogen index

    The Neutron Log can be summarized as the continuous measurement ofthe induced radiation produced by the bombardment of that formationwith a neutron source contained in the logging tool which sources emit

    fast neutrons that are eventually slowed by collisions with hydrogen

    atoms until they are captured (think of a billiard ball metaphor where the

    similar size of the particles is a factor). The capture results in the

    emission of a secondary gamma ray; some tools, especially older ones,

    detect the capture gamma ray (neutron-gamma log). Other tools detect

    intermediate (epithermal) neutrons or slow (thermal) neutrons (bothreferred to as neutron-neutron logs). Modern neutron tools most

    commonly count thermal neutrons with an He-3 type detector.

    Induction Logs are used in wells that do not use mud or water, but oil-based

    drilling fluids or air, which are nonconductive and, therefore, cannot use electric

    logs. Induction uses the interaction of magnetism and electricity to determineResistivity.

    The Density Log

    The formation density log is a porosity log that measures electron density

    of a formation

  • 7/29/2019 Release of location and Well Planning

    30/33

    30

    Dense formations absorb many gamma rays, while low-densityformations absorb fewer. Thus, high-count rates at the detectors indicate

    low-density formations, whereas low count rates at the detectors indicate

    high-density formations.

    Therefore, scattered gamma rays reaching the detector is an indication offormation Density.Scale and units:

    The most frequently used scales are a range of 2.0 to 3.0 gm/cc or 1.95 to 2.95gm/cc across two tracks.

    A density derived porosity curve is sometimes present in tracks #2 and #3 along

    with the bulk density (rb) and correction (Dr) curves. Track #1 contains a

    gamma ray log and caliper.

    Methods of Well Logging:

    Resistivity Log

    Basics about the Resistivity:

    Resistivity measures the electric properties of the formation, Resistivity is measured as, R in W per m, Resistivity is the inverse of conductivity, Theability to conduct electric current depends upon:

    The Volume of water,

    The Temperature of the formation, The Salinity of the formation

    The Resistivity Log:Resistivity logs measure the ability of rocks to conduct electrical current

    and are scaled in units of ohm-meters.

    The Usage:

    Resistivity logs are electric logs which are used to:

    Determine Hydrocarbon versus Water-bearing zones,

    Indicate Permeable zones, Determine Resisitivity Porosity.

    Acoustic Log

    Acoustic tools measure the speed of sound waves in subsurfaceformations. While the acoustic log can be used to determine porosity in

    consolidated formations, it is also valuable in other applications, such as:

    Indicating lithology (using the ratio of compressional velocity over shear

    velocity),

  • 7/29/2019 Release of location and Well Planning

    31/33

    31

    Determining integrated travel time (an important tool forseismic/wellbore correlation),

    Correlation with other wells Detecting fractures and evaluating secondary porosity,

    Evaluating cement bonds between casing, and formation, Detecting over-pressure, Determining mechanical properties (in combination with the density log),

    and Determining acoustic impedance (in combination with the density log).

    WELL COST ESTIMATIONREASONS FOR COSTING

    As will be discussed later, there are many elements which comprise the well

    cost. These range from rig, casing, people, drilling equipment etc.

    The final sheet summarizing the well cost is usually described as the AFE:

    Authorisation For Expenditure. The AFE is the budget for the well. Once

    the AFE is prepared, it should then be approved and signed by a senior managerfrom the operator.

    The AFE sheet would also contain: project description, summary and phasing of

    expenditure, partners shares and well cost breakdown. Details of the well will

    be attached to the AFE sheet as a form of technical justification.

    There are several reasons for producing a well cost, including:

    1. Budgetary control2. Economics3. Partners recharging4. Shareholders

    The AFE is then used as a document for partners recharging, paying contractors

    and an overall control on the well spending.

    FACTORS AFFECTING WELL COSTS

    Well costs for a single well depend on:

    1. Geographical location: land or offshore, country

    2. Type of well: exploration or development, HPHT or sour gas well

  • 7/29/2019 Release of location and Well Planning

    32/33

    32

    3. Drillability

    4. Hole depth

    5. Well target(s)

    6. Profile (vertical/ horizontal /multilateral)

    7. Subsurface problems8. Rig costs: land rig, jack-up, semi-submersible or drillship and rating of rig

    9. Completion type

    10. Knowledge of the area: wildcat, exploration or development

    The total well costs for a development drilling programme comprising several

    wells depend on:

    Rig rate

    Well numbers and well type

    Total hole depth

    Well layout and spacing

    Specifications of equipment Target tolerances

    Water depth for offshore wells

    Elements of well cost:

    1. Preparatory2. Manpower3. Services4. Materials5. Project Overheads6. Regional and Headquarter overheads7. Depreciation of rig equipments8. Depreciation of drill pipes

  • 7/29/2019 Release of location and Well Planning

    33/33

    REFERENCES

    www.wikipedia.com

    Google Images

    Drilling Operations Manual (ONGC)

    www.rigzone.com

    Drilling Engineering - A Complete Well Planning Approach by Neal J.

    Adams

    Well Engineering & Construction by Hussain Rabia