references and discussion

15
References and Discussion 2004.08 Toshiyuki Ihara

Upload: kirti

Post on 09-Jan-2016

16 views

Category:

Documents


3 download

DESCRIPTION

References and Discussion. 2004.08 Toshiyuki Ihara. References. 1 Akiyama et. al. , Solid State Communications 122 (2002) 169 1D doped T-Wire / density dependence of PL / X,X-,plasma emission / PL weak FES 2 Takagiwa et. al. , JPCS 63 (2002) 1587 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: References and Discussion

References and Discussion

2004.08 Toshiyuki Ihara

Page 2: References and Discussion

1 Akiyama et. al. , Solid State Communications 122 (2002) 1691D doped T-Wire / density dependence of PL / X,X-,plasma emission / PL weak FES

2 Takagiwa et. al. , JPCS 63 (2002) 1587Theory : 2DEG / density dependence of FES in absorption spectra / X,X-,Continuum

3 Laruelle, PRB, 65 (2002) 1953031D doped LSL / PL at high density / strong FES by Fano resonance

4 Laruelle, PRB, 65 (2002) 1953021D doped LSL / PL and PLE at high density / Moss-Burstein shift / no 1D features

5 Kapon, Physica E, 11 (2001) 2241D doped V-groove / PL, PLE at high density / PL FES (?) / PLE weak FES (?)

6 Kaur, phys. Stat. sol. A 178,465 (2000)2D doped 10nm well / density dependence of PL, PLE / X,X-,continuum / FES

7 Yusa, PRB 62 15390 (2000)2D doped 20nm well / density dependence of PL,photocurrent / X,X- / FES of X

8 V. Huard, PRL 84 (1999) 1872D CdTe doped 10nm well / density dependence of absorption / X,X- / w2-w1=EF+Eb

9 Kim, Physica E7 517 (2000)1D doped v-groove / PL / FES at n=2

10Brown, PRB 54 (1996) R110822D doped 5nm well / density dependence of absorption / X,X- but hard to resolve

11Finkelstein, PRL 74 (1995) 9762D doped 20nm well / density dependence of PL,PLE / X,X-,plasma

12Sekiyama, PRB 51 (1995) 13899Cu salt / PL / Fermi-liquid or Luttinver-liquid

13G.D Mahan, Phys. Rev. 153 (1967) 882Theory : 3D Metal / x-ray absorption / power-law divergent in absorption spectra

14Hawrylak, Phys. Rev. B44 (1991) 3821Theory : 2D electron system / emission, absorption / X, X- / power-law divergent

15Nozieres et al. Phys. Rev. 178 (1969) 1097Theory : 3D metal / x-ray absorption / reduced FES by Anderson infrared catastrophe

16Combescot, J. Phys. (Paris) 32 (1971) 1097Theory : 2D electron system / absorption of X, continuum / power-law divergent

References

Page 3: References and Discussion

Reference Akiyama et. al. , Solid State Communications 122 (2002) 169 Takagiwa et. al. , JPCS 63 (2002) 1587

Page 4: References and Discussion

ReferenceLaruelle, PRB, 65 (2002) 195303Laruelle, PRB, 65 (2002) 195302

Page 5: References and Discussion

ReferenceKapon, Physica E, 11 (2001) 224

Page 6: References and Discussion

ReferenceKaur, phys. Stat. sol. A 178,465 (2000)

Page 7: References and Discussion

ReferenceYusa, PRB 62 15390 (2000)V. Huard, PRL 84 (1999) 187

Page 8: References and Discussion

ReferenceKim, Physica E7 517 (2000)Brown, PRB 54 (1996) R11082

Page 9: References and Discussion

ReferenceFinkelstein, PRL 74 (1995) 976

Page 10: References and Discussion

ReferenceSekiyama, PRB 51 (1995) 13899

Page 11: References and Discussion

ReferenceHawrylak, Phys. Rev. B44 (1991) 3821

Page 12: References and Discussion

abstract

We measured PL and PLE spectra in an n-type doped T-shaped quantum wire (T-wire) of superior quality, where the electron density (n1D) is tuned by applying gate voltage.

We found interesting differences between one-dimensional (1D) and 2D electron systems by comparing the spectral features of 1D quantum wire with that of 2D quantum well which is measured in the same T-wire sample.

In the 2D well, we observed the smooth evolution from the trion peak at low n2D to fermi-edge singularity (FES) at high n2D, which is analogous to results reported for 2D well by other groups.

In the 1D wire, we observed strong FES of trion peak which disappears at high n1D.

In addition, we found rapid decay of exciton peak with n1D, large trion binding energy in the 1D wire, that might be the characteristic features in 1D system.

高品質 n 型ドープ単一 T 型量子細線 ゲート電圧で電子濃度を変えられる

PL ・ PLE 測定の電子濃度依存性 同サンプルで 2 次元電子系の PL ・ PLE 測定もできる

1次元電子系での FES の特異な変化(フェルミエッジで w1 吸収 (trion) が消え、弱い w2 らしき吸収 (exciton?) が残る)

← 原因の候補: FES の消滅 (1D 電子系でフェルミエッジがない ) 、偏光依存性 ( ある意味 1Dの特徴 ) など

1D の方が exciton ・ trion の減衰が早い・ 2D では w1,w2 の FES が高電子濃度でも残る。

Trion の吸収ピークが非対称、高エネルギー側のテールが FES のべき発散に対応している。

Trion の binding energy が 1D の方が大きい 2meV / 1.5meV

Page 13: References and Discussion

Figure

Page 14: References and Discussion

Figure

Page 15: References and Discussion

Discussion