references. [ 1 ] abramowitz m., stegun i. pp. 149 …978-3-642-84716-5/1.pdf · corrosion and...

59
REFERENCES. [ 1 ] ABRAMOWITZ M., STEGUN I. "Handbook of Mathematical Functions". Dover Publications, inc., New-York, 1970. [ 2] ALARCON E., MARTIN A., PARIS F. "Improved BE in torsion Problems". Recent advances in BEM, Pentech Press, pp. 149-165, 1978. [ 3 ] ALKIRE R., MIRAREFI A.A. "The Current Distribution Within Tubular Elec- trodes under Laminar Flow". J. Electrochem. Soc.: Vol. 120, No. 11, pp. 1507-1515, 1973. [ 4 ] ALKIRE R., VARJIAN R. " Resistive Wire Electrodes". J. Electrochem. Soc.: Vol. 121, pp. 622-631, 1974. [ 5] ALKIRE R., VARJIAN R. "Moving Resistive Wire Electrodes". J. Electrochem. Soc.: Vol. 124, pp. 388-395, 1977 [ 6 ] ALKIRE R., MIRAREFI A.A. "Current Distribution in a Tubular Electrode un- der Laminar Flow: Two Electrode Reactions". J. Electrochem. Soc.: Vol. 124, No.8, pp. 1214-1220, 1977. [ 7 ] ALKIRE R., BERGH T., SANI R.L. "Predicting Electrode Shape Change with Use of Finite Element Methods". J. Electrochem. Soc.: Vol. 125, pp. 1981-1988, 1978.

Upload: phamkien

Post on 06-Apr-2018

231 views

Category:

Documents


4 download

TRANSCRIPT

REFERENCES.

[ 1 ] ABRAMOWITZ M., STEGUN I.

"Handbook of Mathematical Functions".

Dover Publications, inc., New-York, 1970.

[ 2] ALARCON E., MARTIN A., PARIS F.

"Improved BE in torsion Problems". Recent advances in BEM, Pentech Press,

pp. 149-165, 1978.

[ 3 ] ALKIRE R., MIRAREFI A.A. "The Current Distribution Within Tubular Elec­trodes under Laminar Flow". J. Electrochem. Soc.: Vol. 120, No. 11,

pp. 1507-1515, 1973.

[ 4 ] ALKIRE R., VARJIAN R. " Resistive Wire Electrodes". J. Electrochem. Soc.: Vol. 121, pp. 622-631,

1974.

[ 5] ALKIRE R., VARJIAN R. "Moving Resistive Wire Electrodes".

J. Electrochem. Soc.: Vol. 124, pp. 388-395,

1977 •

[ 6 ] ALKIRE R., MIRAREFI A.A.

"Current Distribution in a Tubular Electrode un­der Laminar Flow: Two Electrode Reactions". J. Electrochem. Soc.: Vol. 124, No.8,

pp. 1214-1220, 1977.

[ 7 ] ALKIRE R., BERGH T., SANI R.L.

"Predicting Electrode Shape Change with Use of Finite Element Methods".

J. Electrochem. Soc.: Vol. 125, pp. 1981-1988,

1978.

225

[ 8 ] ANZA J., AHEDO E., DARIVA I., ALARCON E.

"A New Boundary Condition solved with B.I.E.M.".

Proceedings of the 4th Int. Sem. on BEM 1982,

pp. 607-617, Springer-Verlag, 1982.

[ 9] ASADA K., HINE FUMIO, YOSHIZAWA S., OKADA S.

"Mass Transfer and Current Distribution under

Free Convection Conditions".

J. Electrochem. Soc.: Vol. 107, pp. 243-246,

1960.

[10J ASTLEY D.J.

"A Method for Calculating the Extent of Galvanic

Corrosion and Cathodic Protection in Metal Tubes

Assuming Unidirectional Current Flow".

Corrosion Science, Vol. 23, No.8, pp. 801, 1983.

[ 11 J BAUDOUX P.

"Electricit~, Tome I, Tome II".

Presses Acad~miques europ~ennes Bruxelles, 1956,

1960.

[ 12J BERGH T. A.

"Application of a Finite Element Method to

Transient Electrode Shape Change".

Ph. D. Thesis, University of Illinois at Urbana­

Champaign, 1978.

[13J BIALECKI R., NOWAK A. J.

"Boundary Value Problems in Heat Conduction with

Nonlinear Material and Nonlinear Boundary Condi­

tions" .

Appl. Math. Modelling, Vol. 5, pp. 417-421, 1981.

[14J BIALECKI R., NAHLIK R., LAPKOWSKI M.

"Applying the Boundary Element Method to Electro­

chemical Calculations of Primary Current Distri­

bution" .

Electrochemica Acta, Vol. 29, No.7, pp. 905-910,

1984.

226

[ 15] BINNS K.J., LAWRENSON P.I.

"Analysis and Computation of Electric and Magne­

tic Field Problems".

Pergamon Press, 1973.

[ 16] BOCKRIS J.O'M., REDDY A.K.N. "Modern Electrochemistry".

Vol. 2, Plenum Press, New York, 1972.

[ 17] BOCKRIS J.O'M., CONWAY B.E., YEAGER E., WHITE R.E. "Comprehensive Treatise of Electrochemistry".

Vol. 2, Electrochemical Processing, Plenum Press, New York and London, 1981.

[ 18J BOLTEUS L., TULLBERG O. "BEMSTAT. A New Type of Boundary Element Program

for Two-dimensional Elasticity Problems".

Proceedings of the 3th Int. Sem. on BEM 1981,

pp. 518-538, Springer-Verlag, 1981.

[ 19J BREBBIA C.A., BUTTERFIELD R.

"Formal Equivalence of Direct and Indirect Boun­dary Element Methods".

Applied Math. Modelling, Vol. 2, pp. 132-134,

1978.

[ 20J BREBBIA C.A. "Weighted Residual Classification of Approximate

Methods". Applied Math. Modelling, Vol. 2, pp. 160-164,

1978.

[ 21J BREBBIA C.A.

"The Boundary Element Method for Engineers".

A Halsted Press book, John Wiley & Sons, 1978.

[ 22J BREBBIA C.A., WALKER S.

"Boundary Elements Techniques in Engineering".

Newness-Butterworths, London-Boston, 1980.

227

[23J BREBBIA C.A. "The Boundary Element Method in Engineering

Practice". Boundary Element Methods in Engineering, CISM Course, Udine, Sept. 1983.

[24J BREBBIA C.A. "Approximate Methods". Boundary Element Methods in Engineering, CISM Course, Udine, Sept. 1983.

[25] BRUCKENSTEIN S., MILLER B. "An Experimental Study of Non-uniform Current Distribution at Rotating Disk Electrodes". J. Electrochem. Soc.: Vol. 117, pp. 1044-1048, 1970.

[26] BUVET R., GUILLOU M., WARSZAWSKI B. "Repartition du transfert 'lectrochimique dans les 'lectrodes de puissance". Electrochemica Acta, Vol. 6, pp. 113-126, 1962.

[27] CABAN R., CHAPMAN T.W. "Rapid Computation of Current Distribution by Orthogonal Collocation". J. Electrochem. Soc.: Vol. 123, No.7, pp.

1036-1041, 1976.

[28] CABAN R., CHAPMAN T.W. "Statistical Analysis of Electrode Kinetics Measurements-Copper Deposition from CuSO~­H2S0~ Solutions". J. Electrochem. Soc.: Vol. 124, pp. 1371-1379, 1977 •

[29] CANNING W. "The Canning Handbook on Electroplating". E & F.N. Spon Ltd. London, 1977.

228

[30J CLERC C., LANDOLT D. "On the Theory of Anodic Levelling: FEM Simula­

tion of the Influence of Profile Shape and Cell

Geometry" . Electrochemica Acta, Vol. 29, No.6, pp. 787-

795, 1984.

[31J DANSON D.J. "A Boundary Element Analysis System". Proceedings of the 4th Int. Sem. on BEM 1982,

pp. 557-575, Springer-Verlag, 1982.

[32J DAS P. C. "A Disc Based Block Elimination Technique Used

for the Solution of Non-symmetrical Fully Popu­

lated Matrix Systems Encountered in the BEM".

Recent advances in BEM 78, Pentech Press, 1978.

[33J DECONINCK J., MAGGETTO G., VERSYCK P., VEREECKEN J. "The Boundary Element Method (BEM) for the Cal­

culation of Current Distributions in Electroche­

mical Systems".

Extended abstracts of the 34th ISE Meeting, Er­langen BRD, 1983.

[34J DECONINCK J., MAGGETTO G., VEREECKEN J.

"The Boundary Element Method (BEM) for the Si­

mulation of Electrode Shape Change".

Extended abstracts of the 35th ISE Meeting, Ber­

keley USA, 1984.

[35] DECONINCK J., MAGGETTO G., VEREECKEN J.

"Calculation of Current Distribution and ELec­

trode Shape Change by the Boundary Element Me­

thod" •

Paper submitted to the J. Electrochem. Soc. 1984.

[36J DELAHAY, TOBIAS "Advances in Electrochemistry and Electrochemi­

cal Engineering".

Interscience Publishers, 1966.

229

[37] DE MEY G. "Improved HEM for Solving the Laplace Equation

in Two Dimensions". New developments in BEM 1980, pp. 90-100, 1980.

[38] DE WILDE W., VAN OVERMEIRE M., SOL H.

"Eindige Elementen". Cursus Faculteit Toegepaste Wetenschappen,

Vrije Universiteit Brussel, 1981.

[39] DUCOVIC J.

"Tertiary Current Distribution around a Gas

Bubble" • Lecture notes, sept. 1984.

[40J FEDKIW P. "Primary Current Distribution on a Sinusoidal

Profile".

J. Electrochem. Soc.: Vol. 127, pp. 1304-1308,

1980.

[41J FINLAYSON B.A. "The Method of Weighted Residuals and Variatio­

nal Principles". Mathematics in science and engineering, Vol. 87,

Academic Press, New-York and London, 1972.

[42] FLECK R.N., HANSON D.N., TOBIAS C.W. "Numerical Evaluation of Current Distribution

in Electrochemical Systems". Lawrence Radiation Laboratory Berkeley, Califor­

nia, AEC Contract No. W-7405-eng-48, 1964.

[43] FRIED I. "Numerical Solution of Differential Equations".

Academic Press, New-York, San Fransisco, Lon­

don, 1979.

230

[44J FUNCK J.E., THORPE J.F. "Void Fraction and Current Density Distributions

in a Water Electrolysis Cell".

J. Electrochem. Soc.: Vol. 116, pp. 48-54, 1969.

[45J GLARUM S.H. "Variational Approximations to Current Distri­

bution Problems".

J. Electrochem. Soc.: Vol. 124, pp. 518-524,

1977.

[46J GLARUM S. H. "Variational Approximations to Current Distri­

bution Problems".

J. Electrochem. Soc.: Vol. 125, pp. 84-89, 1978.

[46b] HANSEN E.B., HOLM A.M.

"Formulation of Two-Dimensional Annular Electroche­

mical Machining Problems by Integral Equations of the Second Kind".

ZAMH: Vol. 60, pp. 249-251, 1980.

[47J HOAR T.P., AGAR J.N. "Factors in Throwing Power Illustrated by Poten­

tial-Current Diagrams".

Discussions of the Faraday Soc. 1, pp. 162-168,

1947.

[48J HOMSY R.V., NEWMAN J.

"Current Distribution on a Plane Below a Rota­

ting Disk".

J. Electrochem. Soc.: Vol. 121, pp. 1448-1451,

1974.

[49J HUGHES T.J.R., AKIN J.E. "Techniques for Developing "Special" Finite Ele­ment Shape Functions with Particular Reference

to Singularities".

Int. J. Num. Methods Eng., Vol. 15, pp. 733-751,

1980.

231

[50J HUME E.C., DEEN W.M., BROWN R.A. "Mass Transfer Analysis of Electrodeposition Through Polymeric Masks". J. Electrochem. Soc.: Vol. 131, No. ~, pp. 1251-1258, 1984.

[ 51 J IBL N. "Distribution du courant dans les syst~mes ~lec­trochimiques lt •

Techniques de l'ing~nieuD, D 902 pp. 1-78.

[52J IVANOV V.T., NIKOLAEV A.I., REIMOVA O.F. "Calculation of Current Distribution on the Ca­thode with Allowance for the Non-linear Law of Polarization" • Translated from Elektrokhimiya, Vol. 2, No.3, pp. 367-370, 1966.

[53J IVANOV V.T., NIKOLAEV A.I., SIDOROV I.V. "Use of Jacobian Matrices for Calculating Elec­tric Fields in Electrolyzers by the Straight Line Method". Translated from Elektrokhimiya, Vol. 3, No.2,

pp. 246-249, 1967.

[54] IVANOV V.T., KANDRAT'EVA G.A. "Current Distribution at Electrodes with Cur­

ved Cathode". Translated from Elektrokhimiya, Vol. 10. No.9,

pp. 1395-1398, 1974.

[55] JASWON M.A. "Some Theoretical Aspects of Boundary Integral

Equations". Appl. Math. Modelling, Vol. 5, pp. 409-413, 1981.

232

[56J JAWOESKI A.R. "Boundary Elements for Heat Conduction in Com­

posi te Media". Appl. Math. Modelling, Vol. 5, pp. 45-48, 1981.

[57J KADANAR L.1., MIKVABIYA Z.1. "Investigation of the Current Distribution Using

a Network-type Equivalent Circuit to Account for the Linear Polarization and the Potential Drop

within the Electrode".

Sovjet Electrochemistry, Vol. 13, No.4, pp. 491,

1977.

[58J KELLY D.W., MUSTOE G.G.M., ZIENKIEWICZ O.C. "On a Hierarchical Order for Trial Functions in

Numerical Procedures Based on Satisfaction of the Governing Equations".

Recent advances in BEM 1978, Pentech Press, 1978.

[59J KESSLER T., ALKIRE R. "A Model for Copper Electroplating of Multilayer

Printed Wiring Boards".

J. Electrochem. Soc.: Vol. 123, No.7, pp. 990-

999, 1976.

[60J KLINGERT J.A., LYNN S., TOBIAS C.W.

"Evaluation of Current Distribution in Electrode

Systems by High-speed Digital Computers". Electrochemica Acta, Vol. 9, pp. 297-311, 1964.

[ 61 J KREYSA G.

"Theoretical Principles and Practical Concepts

in Cell Design and Optimization".

Extended abstracts 35th ISE Meeting 1984, Berke­

ley, California, 1984.

233

[62J LAMP U.L., SCHLEICHER, STEPHAN E., WENDLAND W. "Theoretical and Experimental Asymptotic Conver­

gence of the BIM for Plane Mixed Boundary Value

Problems".

Proceedings of the 4th Int. Sem. on BEM 1982,

pp. 3-17, Springer-Verlag, 1982.

[63] LANDOLT D. "New Trends and Developments in Plating and Elec­

trochemical Surface Finishing".

Proceedings of Interfinish 1984 (metal finishing

congress), 1984.

[64J LANZI 0., SAVINELL R.F., HORN R.E.

"Some Theoretical Considerations on the Design of a Practical Anode in an Electrochemical Re­

actor". J. Appl. Electrochem. 14, pp. 425-436, 1984.

[65J LOWENHEIM F.

"Modern Electroplating".

John Wiley & Sons, 1974.

[66J MAIER G., NOVATI G., PARREIRA P.

"Boundary Element Analysis of Rotationally Symme­tric Systems under General Boundary Conditions".

Boundary Element Methods in Engineering, CISM

Course, Udine, 1983.

[67J MARATHE V.V.

"Current Distribution on a Rotating Disk Elec­trode".

Lawrence Radiation Laboratory, Berkeley, Califor­

nia, AEC Contract No. W-7405-eng-48, 1968.

[68J MARATHE V.V., NEWMAN J.

"Current Distribution on a Rotating Disk Elec­

trode".

J. Electrochem. Soc.: Vol. 116, pp. 1704-1707,

1969.

234

[69] MARTIN A.D., TURNER J.C.R., WRAGG A.A.

"A Numerical Analysis of the Conduction Process

in a Membrane Cell Model".

Extended abstracts 35th ISE Meeting 1984, Ber­

keley, California, 1984.

[70] Me CAFFERTY E.

"Distribution of Potential and Current in Circu­

lar Corrosion Cells Having Unequal Polarization

Parameters".

J. Electrochem. Soc.: Vol. 124, No. 12, pp. 1869-

1878, 1977.

[71] McGEOUGH J.A.

"Principles of Electrochemical Machining".

Chapman and Hall, London, 1974.

[72] MIKSIS J.J., NEWMAN J.

"Primary Resistances for Ring-disk Electrodes".

J. Electrochem. Soc.: Vol. 123, pp. 1030,1976.

[73] NAVBOVSKII R.A.

"Investigation of the Current Distribution on a

Disk Electrode by Means of an Analog Model".

Sovjet Electrochemistry, Vol. 13, No.2, pp.

217, 1978.

[ 74] NEWMAN J.

"Resistance for Flow of Current to a Disk".

J. Electrochem. Soc.: Vol. 113, pp. 501-504,

1966.

[75] NEWMAN J.

"Current Distribution on a Rotating Disk below

the Limiting Current".

J. Electrochem. Soc.: Vol. 113, pp. 1235-1241,

1966.

235

[76] NEWMAN J. "Electrochemical systems". Prentice Hall, Inc. Englewood Cliffs, N.J., 1973.

[77J NISHIKI Y., AOKI K., TOKUDA K., MATSUDA H. "Primary Current Distribution in a Two-dimensio­nal Model Cell Composed of an Electrode with an Open Part". J. Appl. Electrochem. 14, pp. 653-661, 1984.

[78] ORTEGA J.M., RHEIN BOLDT W.C. "Iterative Solution oft non-linear Equations in Several Variables". Academic Press, New-York & London, 1970.

[79] PARRISH W.R., NEWMAN J. "Current Distribution on a Plane Electrode be­low the Limiting Current". J. Electrochem. Soc.: Vol. 116, pp. 169-172,

1969.

[80J PARRISH W.R., NEWMAN J. "Current Distributions on Plane Parallel Elec­trodes in Channel Flow". J. Electrochem. Soc.: Vol. 117, pp. 43-48,1970.

[81] PATTERSON C., SHEIKH M.A. "Regular Boundary Integral Equations for Stress Analysis" • 3th Int. Sem. on BEM 1981, pp. 85-104, Springer­Verlag, 1981.

[82J PATTERSON C., SHEIKH M.A. "Non-conforming Boundary Elements for Stress Analysis". Proceedings of the 3th Int. Sem. on BEM 1981,

pp. 137-152, Springer-Verlag, 1981.

236

[83J PATTERSON C., ELSEBAI N.A.S.

"A Regular Boundary Method Using Non-conforming

Elements for Potential Problems in 3 U". Proceedings of the 4th Int. Sem. on BEM 1982,

pp. 112-126, Springer-Verlag, 1982.

[84] PAV10VSKII R.A.

"Application of Sectional Models in Investigating

Electric Fields in Electrolytic Solutions".

Sovjet Electrochemistry, Vol. 10, No. 11, pp.

1582, 1974.

[85J PFANHAUSER W. jr.

"Streuung der Stromlinien in Electrolyten".

Zeitschrift fur Electrochemie, No. 65, pp. 895-

897, 1901.

[86J PINA H.L.G., FERNANDES J.L.M., BREBBIA C.A.

"The Effect of Mesh Refinement in the BE Solu­

tion of Laplace's Equation with Singularities".

Proceedings of the 3th Int. Sem. on BEM, pp.

442-456, Springer-Verlag, 1981.

[87J PRENTICE G.A.

"Modeling of Changing Electrode Profiles".

Ph. D. thesis Lawrence Berkeley Laboratory,

Univ. of California, 1980.

[88] PRENTICE G.A., TOBIAS C.W.

"A Survey of Numerical Methods and Solutions

for Current Distribution Problems".

J. Electrochem. Soc.: Vol. 129, No.1, pp. 72-

77, 1982.

[89J PRENTICE G.A., TOBIAS C.W.

"Simulation of Changing Electrode Profile".

J. Electrochem. Soc.: Vol. 129, pp. 78-85, 1982.

237

[90J PRENTICE G.A., TOBIAS C.W. "Deposition and Dissolution on Sinusoidal Elec­

trodes". J. Electrochem. Soc.: Vol. 129, No.2, pp. 316-

324, 1982.

[91] PURCELL E.M. "Electricity and Magnetism". Berkeley Physics Course, Vol. 2, Mc Graw-Hill book company, 1965.

[92] RANACHER R., WENDLAND W.L. "On the Order of Pointwise Convergence of Bome Boundary Element Methods". Boundary Element Methods in Engineering, CISM Course, Udine, 1983.

[93J RIGGS J. B. "Modeling of the Electrochemical Machining Process". Ph. D. thesis Berkeley, California, 1969.

[94] RIGGS J.B., MULLER R.H., TOBIAS C.W. "Predicting of Work Piece Geometry in Electro­

chemical Cavity Sinking". Electrochemica Acta, Vol. 26, pp. 961-969, 1981.

[95J ROBINSON 1.

" A Comparison of Numerical Integration Pro­grams" • J. of Compo and Appl. Math., Vol. 5, No.3, pp. 207-222, 1979.

[96J SAUTEBIN R., FROIDEVAUX H., LANDOLT D. "Theoretical and Experimental Modeling of Sur­face Leveling in ECM under Primary Current Dis­tribution Conditions". J. Electrochem. Soc.: Vol. 127, No.5, pp. 1096-1100, 1980.

238

[97J SAUTEBIN R., LANDOLT D.

"Anodic Leveling under Secondary and Tertiary

Current Distribution Condjtions".

J. Electrochem. Soc.: Vol. 129, No.5, pp. 946-

953,1982.

[ 98] SCHWENK W.

"Current Distribution during Electrochemical

Corrosion Protection of Pipes".

Corrosion Science, Vol. 23, No.8, pp. 871, 1983.

[99J SIDES P.J., TOBIAS C.W.

"Primary Potential and Current Distribution around

a Bubble on an Electrode".

J. Electrochem. Soc.: Vol. 127, pp. 288-291, 1980.

[100] SMYRL W.H., NEWMAN J.

"Current and Potential Distribution in Plating

Corrosion Systems".

J. Electrochem. Soc.: Vol. 123, pp. 1423-1432,

1976.

[101J SPATH H.

"Spline-Algorithmen zur Konstruktion glatter

Kurven und Fl~chen".

R. Oldenbourg Verlag, Munchen-Wien, 1973.

[102J STEINER J.

"Zur Theorie und Vorausberechnung der katho­

dischen Stromverteilung in galvanischen Elek­

trolyten" •

Zeitschrift Physik. Chern. Bd. 200, Heft 1/2,

pp. 53-69, 1951.

[103J STEINER J.

"Einfluss einer Wechselstromkomponente auf die

Stromverteilung in galvanischen Elektrolyten~.

Zeitschrift Physik. Chern. 201, pp. 161-167,

1952.

239

~04] STROUD A.H. "Numerical Quadrature and Solution of Ordinary

Differential Equations".

Applied Mathematical Sciences 10, Springer-Ver­lag, New-York Heidelberg Berlin, 1974.

[105] SYMM G. T. "Treatment of Singularities in the Solution of

Laplace's Equation by an Integral Equation Me­

thod" • NPL Report NAC 31, 1973.

[ 1 0 6] S YM MG. T., PIT F I EL DR. A •

"Solution of Laplace's Equation in Two Dimen­

sions u •

NPL Report NAC 44, 1974.

[107] SYMM G.T. "The Robin Problem for Laplace's Equation".

NPL Report DNACS 32/80, 1980.

[108J SYMM G.T. "The Robin Problem in a Multiply-Connected Domain".

Proceedings of the 4th Int. Sem. on BEM 1982,

pp. 89-100, Springer-Verlag, 1982.

[109] SYHM G.T. "Integral Equation Formulations in Two Dimen­

sions, Three-dimensional and Axisymmetric Pro­

blems" • Boundary Element Methods in E~ineering, CISM

Course, Udine, 1983.

[110] TOBIAS C.W.

"Effect of Gas Evolution on Current Distribu­

tion and Ohmic Resistance in Electrolyzers".

J. Electrochem. Soc.: Vol. 106, pp. 833-838,

1959.

240

[111J TOLLEY M.

"Grands ~l~ments finis singuliers".

Ph. D. Universit~ Libre de Bruxelles, 1976-1977.

[112J TROFIMOV A.N., IVANOV V.T.

"Calculation of the Current Distribution at a

Cathode by the Method of Straight Lines".

Translated from Elektrokhimiya, Vol. 1, No.2,

pp. 224-226, 1965.

~13J TULLBERG 0., BOLTEUS L.

"A Critical Study of Different Boundary Element

Stiffness Matrices".

Proceedings of the 4th Int. Sem. on BEM 1982,

pp. 621-635, Springer-Verlag, 1982.

[114J VEREECKEN J.

"Electrochemie" •

Cursus 4e jaar scheikunde TW, Vrije Universiteit

Brussel, 1981.

~15J VERSYCK P.

"Berekening van veldverdelingen in elektroche­

mische cellen".

Afstudeerwerk Fakulteit Toegepaste Wetenschappen,

Vrije Universiteit Brussel, 1982-1983.

[116J VISWANATHAN K., CHIN D-T.

"Current Distribution on a Continuous Moving

Sheet Electrode".

J. Electrochem. Soc.: Vol. 124, pp. 709-713, 1977.

[117J i'lAGNER C.

"Potential and Current Distribution at Electrodes

with Local Variations of Polarization Parameter".

Electrochem. Acta, Vol. 12, pp. 131-136, 1967.

241

[118] WAGNER C. "Theoretical Analysis of the Current Density Dis­tribution in Electrolytic cells".

J. Electrochem. Soc.: Vol. 98, No.3, pp. 116-

128, 1951.

[119J WAIT R. "The Numerical Solution of Algebraic Equations".

John Wiley & Sons, 1979.

[120J WENDLAND W.L. "On the Asymptotic Convergence of Boundary In­

tegral Methods".

Proceedings of the 3th Int. Sem. on BEM 1981,

Springer-Verlag, pp. 412-430, 1981.

[1 21] WIN SEL A. "Beitr~ge zur Kenntnis der Stromverteilung in

porosen Electroden". Zeitschrift fur Electrochemie, 66, pp. 287-304,

1962.

[122J WOJTOWICZ J., LALIBERTE L., CONWAY B.E. "Current Distribution and Potential Profile at

a Linear Wire Electrode of Significant Ohmic

Resistance".

Electrochemica Acta, Vol. 13, pp. 361-376, 1968.

[123J WROBEL L.C., BREBBIA C.A. "Axisymmetric Potential Problems".

New developments in BEM 1980, pp. 77-89, 1980.

[124] YEAGER E., BOCKRIS J. OM'., CONWAY B.E.,

SARANGAPANI S.

"Comprehensive Treatise of Electrochemistry".

Vol. 6: Transport, Plenum Press, New-York, Lon­

don, 1983.

242

[125J YOSHIKAWA F., TANAKA M. "Boundary Elements in Axisymmetric Potential

Problems".

Proceedings of the 4th Int. Sem. on BEM 1982, pp. 101-111, Springer-Verlag, 1982.

[126] ZIENKIEWICZ O.C.

"The Finite Element Method in Engineering Science".

Mc Graw-Hill, London, 1971.

[127] ZIENKIEWICZ O.C., KELLY D.W., BETTESS P.

"The Coupling of Finite Element Method and Boun­dary Solution Procedures".

Int. J. Num. Method Eng., Vol. 11, pp. 355-375, 1977.

D28] ZIENKIEWICZ O.C., MORGAN K. "Finite Elements and Approximation".

John Wiley & Sons, 1983.

APPENDIX A.1.1

PRIMARY CURRENT DISTRIBUTION ALONG A FREE CATHODE IN PARALLEL WITH AN ANODE AND PER­PENDICULAR TO AN INSULATING BOUNDARY.

The primary current distribution around the cathode

presented in figure 1 is to be calculated.

u V ANODE

g

o V

CATHODE q

- fig. 1 -

It is supposed that the anode, the cathode and the in­

sulator tend to infinity. The insulating boundary is

replaced using the image method (fig. 2).

z-plane

A g g E

_________ B D __ ~ ____________ __

C C

q q

- fig. 2 -

244

The obtained geometry can be transformed into a half­

plane (fig. 3) by means of a Schwartz-Christoffel

transformation.

t-plane

o a b

E' A' B' C' D'

u V o V

- fig. 3 -

Choosing A' the origin and scaling the transformation

such that c = 1, one has

dz S(t - a)(t - b) (1) dt = t(t - 1)2

with z = -q jg for t = a (2a)

z = q jg for t b (2b)

z = _00 jg for t 1 (2c)

z = _00 for t 0 (2d)

z = +00 jg for t +00 (2e)

z = +co for t _co (2f)

Integration of equation (1) yields

S[ab lnt + ( 1 ab)ln(t 1) + (a + b - ab - 1)J z = - - (t 1) -

+ C . 0)

E'

245

The evaluation of the conditions (2a) to (2f) permits

to determine S, a, band C (C is complex) as function

of g and q. One finds:

S = gin (4a)

a.b = 1 (4b)

C -JOg + (a - 1)2 2aIT g,

[ (a-1)(a+1)] In a + 2a - IT -q­

g

and finally the following equation is obtained

= £. [1 n t + (a - 1) 2 + (a - 1) 2 ] Z IT aCt - 1) 2a - jg

in which a is defined by the non-linear equa­

tion:

In a + (a - 1) (a + 1) 2a

IT -q­g

(6)

In the t-plane the field problem is defined as follows.

The potential along the negative part of the real

axis is U volt and zero volt along its positive part.

It is well known that the solution is equal to

w = ¢ + H = 1!.ln t IT (7 )

where ¢ is the streamfunction and W is the potential

function.

As we are interested in the electric field along the

cathode we need [ 15J

or

dw dw dt dz dtOdz

dw Ua(t-1)2 dz = g (t - a)(at - 1)

246

(8 )

by virtue of equation (1), (4b) and the derivative of

equation (7).

Whent takes the values from zero to one all points

of the cathode are obtained with equation (5) and

equation (8) gives the corresponding current density.

247

APPENDIX A.1.2

PRIMARY CURRENT DISTRIBUTION ALONG AN L­SHAPED CATHODE.

The primary current distribution along the cathode

presented in fig. 1 is to be calculated.

U V ANODE

/

/

q /

/

/

P

o V CATHODE

- fig. 1 -

It is supposed that the electrodes tend to infinity

and the insulating boundary is replaced using the ima­

ge method (fig. 2).

z-plane

A C

B D

- fig. 2 -

E

248

This geometry can be transformed into a half-plane

(fig. 3) by means of a Schwarz-Christoffel transfor­

mation.

t-plane

o a c=1 b

E' A' B' C' D' E'

u V o V

- fig. 3 -

Choosing A' the origin and scaling the transformation

such that c = 1, one has

dz S t dt

/(t -

with z -jp

z = -jp

z = 00

z = 00 +

z = _00

z = _00

z = 0

Integration of

- 1

a) (t - b)

for

for

jp for

jp for

jp for

+ jp for

for

equation

t

t = t

t

t

t

t

t

(1)

a

b

+00

+00

0

0

1

yields

(2a)

(2b)

(2c)

(2d)

(2e)

( 2f)

(2g)

249

z = a) (t - b) + 2t - (a + b)] t

~ln[2/ab(t - a)(t - b) + 2ab - (a + b)tJ+ A + Bj • lab t

The conditions (2a) to (2g) permit one to determine S, a,

b, A and B as functions of g and q. One finds:

S = (p + 9) , (4a) 1T

ab = 1 , (4b)

A = -2{p + 9~ln(b - a) , (4c) 1T

B = -q - 2p , (4d)

2/{1 - a){b - 1) t g [ { 9 + 2p) 1T ] (4e) = 2 - (a + b) 2 (p + q)

and finally one has

2(p + 9)ln(b _ a) - (q + 2p)j 1T

in which b = 1/a (6a)

and a is defined by the following non-linear equation:

(6b)

The electric field along the cathode is obtained on

250

the same way as described in appendix A.1.1 and as the

potential in the t-plane is the same, one has (du'e to

equations (1) and (6a)):

dw::: -u I(t - a)(at - 1) dz (p + q) /a(t _ 1)

(7)

When t takes the values from one to infinity, all

points of the cathode are obtained with equation (5)

and equation (7) gives the corresponding current den­

sity.

251

APPENDIX A.1. 3

PRIMARY CURRENT DISTRIBUTION ALONG A CATHO­

DE BEING IN LINE WITH AN INSULATING BOUNDA­

RY.

Using a Schwartz-Christoffel transformation, the pri­

mary current distribution along the cathode presented in fig. 1 is calculated.

U V ANODE

p

o V CATHODE ~-------,I"I"'I""J"Ir"'l""T'T""""""'v.

A B

- fig. 1 -

It is supposed that the anode, the cathode and the boundary AB tend to infinity which is allowed when the vertical insulating boundaries are far (>4p) from the singularity. Using the image method the boundary AB can be replaced as represented in fig. 2.

252

A p z-plane

B

c p

- fig. 2 -

This new geometry can be transformed into a half­

plane (fig. 3).

t-plane

a=-1 o c

DI AI BI C I

o V u V o V

- fig. 3 -

D

DI

Due to symmetry we choose the orlgln of the t-plane

in BI. The scale is defined by taking a = -1 and one

has

dz dt

St (t + n(t c) ,

with z = 0 for

z = +co pj for

z = +co + pj for

z = -co for

z = -co for

z = -co + pj for

z = _co pj for

Integration of equation

S c [In (t + 1) + z = 1 +

253

t 0

t co

t _co

t = -1 ( t> -1 )

t = c (t <c)

t -1 (t <-1 )

t = c (t>c)

(1 ) yields

cln( t - c) ] + A + jB

(2a)

(2b) (2c)

(2d)

(2e) (2f)

(2g)

By means of the conditions (2a) to (2g), the constants

S, c, A and B can be evaluated and one finds:

S 212. 1T

(4a)

A 0 (4b)

c = 1

B = -p (4d)

After substitution of these values equation (3) beco-

mes

z = J2.[ln(t + 1) + In(t - 1)J - jp . 1T

The potential distribution in the t-plane can easily

be found by superposition. The result is

where $ is the streamfunction and W is the potential

function.

The electric field along the cathode is

dw dz

U pt- (7)

When t takes values from -1 to zero, all points of

the cathode are obtained with equation (5) and equa­

tion (7) gives the corresponding current density_

APPENDIX A.2

SOLUTION OF THE POTENTIAL MODEL USING TRIAL

FUNCTIONS SATISFYING THE FIELD EQUATION :

EXAMPLE.

Let the domain and its boundary conditions be as given

in figure 1.

y

b

U=O V U=O V

--+-----------------~-------------.-x a

U=O V

- fig. 1 -

The set of trial functions satisfying all boundary

conditions except those along y = b O~x~a is easily

obtained and a linear combination is

00

~ L Ansin nn~·sinh nn~ n=1 a a

The unknown constants A are calculated by making n

the residual zero along y = b O~x~a

00

L n=1

256

with

= attl ay y=b

= 00

\' X b 7Tn L Ansin n7T--coshn7T--- •

n=1 a a a

The choice of the weight function is free, but using

the same functions as the trial functions namely

sin m7Ti (m = 1,(0), the residual is made orthogonal to

the trial functions (this is called a Galerkin method)

and one has

n=1,2, ••• 00

Unless n1 (-ott') is linear, to find a solution, the

series must be truncated and using only N-terms, an

NxN non-linear system of equations is obtained to

find the An's. When the overpotential function is

linear, say

n - Z J 1 - n -oZ U' ,

the equations are uncoupled and one has

A n

= ....1!z.!i 1 n7T 2 (sinhn7Tb _ oZcoshn7Tb7Tn)

a a a·

n = 1, 2, ••• 00

Since the series is not truncated and complete, an

exact solution is found.

APPENDIX A. 3.1

ANALYTIC INTEGRATION OF INTEGRALS INVOLVED BY THE TWO-DIMENSIONAL BOUNDARY ELEMENT METHOD USING STRAIGHT ELEMENTS.

1. Introduction.

When the boundary of the domain is divided in straight

"segments", using trial functions for the variation

of U and Uf (shape function) in each segment, one ob-

tains the following integrals

t<Pk

2 k aw~~ and k J <Pkw*dr (1) H .. -dr G .. =

lJ an lJ r~ r~

J J

where <Pk are the shape functions for U and UI and w*

is the fundamental solution.

For the Laplace equation in two dimensions

w* = In(1/r)/2n.

r. J

i

t

X,y)

- fig. 1 -

o L/2 1/2

- In two-dimensional problems the most used shape

1 -1 o o

k functions are polynomials and the integrals Hij and

258

k Gij become linear combination of integrals like

and (2)

- Since the elements are straight segments, we have:

- Fig. 2 -

* I:!.X X2 X1

* I:!.Y = Y2 Y1

12 = I:!. X 2 + l:!.y 2

* X X1(1 t) + X2t

* Y = Y1 (1 t) + Y2t (linear shape functions)

* dr = 1dt

* r 1 = (X1 - X) 2 + (Y1 _ Y) 2

259

b 2[(X1-X)~X + (Y1-Y)~YJ/L2

c = 1

* aw* grad w* T an • n

X,y - Y).(~Y/L, -~X/L)·1~

= [(X1 - X)~Y - (Y1 - Y)~XJ._1 2~

a + bt + t 2

Substitution of all this in expressions (2) yields

that all integrals are linear combinations of inte­

grals with the form

H J1 t n dt n = 0 (a + bt + t 2 )

and

with n O,1, •• m.

These integrals will be calculated.

2. Integration of Hn.

To calculate the HI s a difference must be made de­n

pending on the value of the discriminant

260

q = 4a - b 2

= 4r1sin261 ~ 0 •

Depending on the value of the discriminant, the super­

script 0 or t is used. If q can take all values, no

superscript is used.

When q equals zero, the three points (X, Y), (X1, Y1)

and (X2,Y2) are colinear and the integrals of Hare n

not to be evaluated since aw*/an equals zero. How­

ever in order to calculate the GO,s we can make use n

of the HO n

, s.

2.1 • HO q °

0, n = o.

When q 0 b 2 and a + bt + t 2 (t + £.) 2 a = 4 = 2

HO = f~ dt

° (t + £.) 2 2

HO -1 + 2 0, 0 (5) b b q = n ° 1 + 2'

This integral is +00 when b = -2 and 0, this means

when (X,Y) equal s (X2,Y2) or (X1,Y1).

2.2. HO 1 q = 0, n = 1 •

HO f~ tdt 1 (t + £.) 2

2

HO In b + 2 £.Ho or 1 b 2 °

261

q = 0, n 1 (6)

This integral is also +00 when b = a and -2.

2.3. q 0, n = 2, •••

HO = f01 ~t_n~d~t~ __ n (t + .2.)2

2

n = 2, •••

Using twice integration by parts, one finds (a

1 n - 1 ° aH 2 n- q 0, n = 2,3 ••• (7)

Remark: When b = 0, the integrals are finite and

equal to

q = 0, n = 2, ••• ; b = 0(8)

"'Jhen b = -2, the integral s are infinite

n-1 HO = I r + n~ (n 1)Ho (9) - -n r=1 n - r °

n-1 HO I r + 00 = n r=1 n - r

q = 0, n 2, ••• ; b =-2

262

2.4. H+ q > 0, n = o. 0

H+ f~ dt 0 (a + bt + t 2)

H+ 2 [ 2+b atan ~] (10) = rq atan rq -

0 q > 0, n 0

2.5. H+ 1 q > 0, n = 1 •

H+ = f~ tdt 1 a + bt + t 2

H+ 1 a + b + 1 '£H+ q > 0, 1 (11) = 2'ln n 1 a 2 0

2.6. H+ q > 0, n = 2,3 ••• n

H+ J~ t n dt = n a + bt + t 2

H+ 1 bH+ + > 0 ( 12) = 1 aH 2 q n n - n-1 n-n = 2,.3 •••

3. Integration of Gn •

3.1 • GO q = 0, n = 0,1 ••• , b F -2 and O. n

GO J: tnIn(t + ~)2dt + InL = n + 1 i.1

GO 1 1)[ In(a + b + 1) 0 0 + = 2(n + - 2Hn+2 - bH 1 n n+

2InL ] (13 )

263

(integration by parts and a = b 2 /4)

Problems can arise when b = -2 or O.

3.2. GO : q = 0, n n = o , 1 ... , b = O.

if tnlnt 2 dt + lnL 2 0 n + 1

1 1)[ -2 1 + 2lnL ] 2(n + n + 1

q = 0, b F -2

b F 0

n=0,1 ••.

q=O (14)

n = 0,1 •••

b = 0

Provided that H1 is made finite, equation (13) can be

used due to a = b = 0 and equation (8).

3.3. 0, n 0,1,2 ••. , b -2.

1 -2 n+1 1 lnL = 1 ) r~1 + 0 + 2" (n + r n + 1

1 n+1 1 = 2{n + 1 ) [ -2 L + 2lnL ] r=1 r

Using equation (9) and defining H1 = Ho 0 one has:

-2H n+2 - bH n+1 = -2(Hn +2 - Hn +1 )

n+1 n = -2( L r L r

r) r=1 n + 2 - r r=1 n + 1 -

and

with H1 =

3.4. G+ n

a+ n = it 2 0

G+ -![ = n

H = 0

q >

0

n+1 _1 = -2 L

r=1 r

.

264

0, n = 0,1 .••

tnln(a + bt + t 2 )dt +

t n+1 n + 1ln (a + bt + t 2 )

t n+2

(15)

q = 0, n = 0,1 •••

b = -2

lnL n + 1

1 ]

0

b t n+1 2 t dt -

1 f: dt n + 1 0 a + bt + t 2 n + a + bt + t 2

G+ 1 1)[ In(a + b + 1) - + + = 2{n + 2Hn+2 bHn+1 + n

2lnL ] (16 )

q > 0, n 0,1 .••

4. Conclusion.

Equations (5), ( 6), ( 7 ), ( 8 ), ( 9 ), ( 1 0 ), (11), ( 1 2) ,

(13), (14), (15) and (16) can be put together in the following general recurrence relations:

265

H : 0

1 • q 0 b -2 make H = 0 0

make In(a + b + 1) = 0

2. q 0 b = 0 make Ho 0

make In(a) = 0

3. 0 b F 0, -2 H -1 + g q b 0 1 + b '2

4. q > 0 H = L[ atan (2 + b) 0 ;q ;q

~ln(a + b + 1) - ~ln(a)

1 --~~1 - bH 1 - aH 2 n - n- n-

2lnL ]

Once the G 's and H 's are calculated, the integrals n n

Ie k Hij and Gij are easily obtained.

Defining A = -[ (X1 - X)~Y - (Y1 - Y)~X ]/L22~

and B -L/(2~). we have

- for constant elements:

G]. = BG J.J 0

- for linear- and singularity elements with two nodal

266

points:

1 A(H H ) 1 B(G Gn ) H .. - , G .. = -lJ 0 n lJ 0

2 2 AH BGn H .. Gij = 1 ,2 ••• lJ n n

- for quadratic elements:

1 A(2H 2 3H1 + H ) 1 B(2G2 3G1 + G ) H .. G .. lJ 0 lJ 0

2 A(2H2 - H1 ) 2 B(2G2 - G1 ) H .. G ..

lJ lJ

3 = A(-4H2 + 4H1 ) 3 = B (-4G 2 + 4G1 ) H .. G .. lJ lJ

- higher order shape functions can be obtained in the

same way.

Important remark:

When b is large, soon numerical round-off errors are

involved. Therefore a combination o~ analytic and

numerical integration is necessary. This numerical

integration needs only a few Gauss points.

267

APPENDIX A.3.2

EVALUATION OF INTEGRALS INVOLVED BY THE BOUNDARY ELEMENT METHOD USED TO SOLVE AXI­SYMHETRIC POTENTIAL PROBLEMS.

For the sake of completeness and referring to fig. 1, all definitions and equations of three-dimensional axi­symmetric potential problems are repeated:

observation point (r,e,z)=(x,y,z)

I z

(X,O,Z) (R,O,Z) field point

'I'-..>.......---~- x

- fig. 1 -

Let us introduce the following notations in cartesian and cylindrical coordinates (fig. 1)

- (X,O,Z) or (R,O,Z) the coordinates of the field point,

- (x,y,z) or (r,e,z) the coordinates of the observa­tion point,

268

- R the distance between field and observation point,

- x = f(z) or r = f(z) the equation of the meridional

boundary curve.

The problem being three-dimensional, one has for an

isotropic medium:

w* 1 - = 41TR

with 1R2 (X_X)2 + (y)2 + (Z_Z)2

or 1R2 r2 + R2 -2rRcose + (Z_Z)2

Vw* -=1-[(x-X)T + yT + (z-z)T ] 41T1R 3 x Y z

or

= -=1-[(r-Rcose)T - RsineTe + (z-z)T ] 41T1R 3 r z

(T - f' (z)T )_;=::::1===== r z A + f'(Z)2

aw* = Vw*.T - ~ n - Rcose f' (z) (z_Z)]-;:=::1=====

A + f'(Z)2

Substitution of these expressions in the direct inte­

gral equation (2.20) gives:

c.u. = f f21T au f(z);; + f'(Z)2 dedz + l l f(z) 0 an 41TR

f f21T u[f(z) - Rcose - f'(z)(z-z)] f(z)dedz • f(z) 0 41TR 3

269

The meridional boundary curve f(z) is divided into M straight elements. Linear shape functions are in­

troduced to approximate the potential and the normal

electric field in each element. With the notation of

fig. 2, it follows that:

- ~ 2r L

f(z) is in parameter form related to the coordinates

of the nodal points:

R2 - R1~ + R1 + R2 r = 2 2

Z2 - Z1~ + Z1 + Z2 z = 2 2

hence f I (z) R2 - R1 11 + fl(Z)2 L Z2 - Z1 , Z2 - Z1

and dz = {Z2 - Z1 ~ d~ 2 .

dr

(R1 ,Z1)

- fig. 2 -

270

Substitution of these equations in equation (1) yields:

with

[H~ . l.J

GLJ {Uj1} l.J U'

j2

-f t1T [(Z2-Z1) (r-Rcose)-(R2-R1) (z-Z)] (1+~)rd8d~ 2041TR3 2 -1 0

(2)

(3)

1. Analytical integration with respect to ~.

1et us define 2a R2 R1

2b R2 + R1

2c = Z2 Z1

2d = Z2 + Z1

Then we can write:

- r a~ + b

- z = c~ + d

- f' (z) = a/c ,

- 12 = 4(a 2 + c 2) ,

- R = /C~2 + B~ + A = Ii ,

with C = a 2 + c 2 = 1 2 /4,

B = 2ab + 2c(d-Z) - 2aRcos8 ,

271

A = b 2 + R2 + (d_Z)2 - 2bRcosS ~

- r - RcosS - f'(z)(z-Z) = (bc - Rc cosS - ad + aZ)/c ,

- 2c:; - 1 = -1 I n r

Equation (2) becomes:

1,2 -1J21T Hij = ~ 0 (bc - Rc cosS - ad + aZ)n'(cosS)dS

with

fi'(cose) = taJ1 ~2d~ + (a + b)J1 ~ + bJ1 ~ -1 xIX -1 xIX -1 xIX

or (after some calculus)

fi'(cosS) = [+a«2B2-4AC)~+2AB)-(atb)2C(B~+2A)+2C(2C~+B)b] cQIX .

+ ~[ln(21GX + 2Cs + B)] 1 • C IC -1

In a similar way equation (3) becomes:

1,2 ICJ21T Gij = 87T 0 g(cosS)dS

with

g(cosS) = tJ1 a~ + (a t b)J1 ~ + bJ1 ~ -1 IX -1 IX -1 IX

or

g(cosS) = [ta(~2C - 3B )IX + (a t b)lX] 1 4C 2 C -1

272

_1 [+a(3B2-4AC)+(a+b)B_b}[ln(21CX+2C~+B)] 1 • /G 8C 2 2C

-1

A further evaluation of the functions g(cos8) and

fi'(cos8) is troublesome, therefore they were coded in

the given form.

Finally we have

1 , 2

H .. lJ

1J21f = 81f 0 fi(cos8)d8 1 J1f 41f 0 fi(cos8)d8

with

fi(cos8)

and

1 , 2

G .• lJ

(bc - Rc cos8 - ad + aZ)fi'(cos8)

/GJ21f A /GJ1f - g(cos8)d8 = - g(cos8)d8 81f 0 41f 0

With the change of the variable of integration x =

cos8, the integrals (4) and (5) transform respective­

ly into

1 , 2 -1 t fi(x)dx H .. 41f -1 lJ ;; _ x 2

(6)

and

1 , 2 let g(x)dt G .. = lJ 41f -1 ;; _ x 2

(7)

which can be integrated numerical with a Gauss-Cheby­

shev quadrature [ 1J:

1,2 -1 n Hl· J· -4 L w.fi(x.)

1f i=1 l l

273

and

1 , 2 IC n G .. 4 L wi~Hxi) lJ i=1

where w. 1!. and x. 1 n 1

( (2i - 1)1r) cos 2n .

These weights wi and abscissas xi are easily generated.

Remarks:

- [In (2/CX + 2CI; + B) l~ should not be evaluated when

a = b = 0, c = d = 0, (R,Z) = (0,0) and

(R1,Z1) or (R2,Z2) = (0,0).

hThen (R,Z) = (0,0), the distance IR. is constant and

two Gauss-points suffice.

2. Analytical integration with respect to 8.

Let us write equation (3) as

1>2 _ 1J1 (1 + l;)rd8d~ Gij - 2 -1 wA 2 ~

with

w* A LJ27T 1

-d8 47T a R

(8)

wA is the fundamental solution for axisymmetric pro­

blems. The distance IR. between the field point (R,Z)

and an observation point (r,z) can be written as (see

fig. 1)

or

274

R2 (r+R)2 - 4rRCOs2~ + (Z_Z)2

with

4rR (r+R)2 + (Z_Z)2

Substitution of equation (9) in (8) yields

or

w* A

w* A

1T

1T[(r+R)2 + (Z_Z)2]1/2°J; (1_k 2::n28)172

(10)

The complete elliptic integral of the first kind K(k)

is recognized with the result

w* A K(k) ( 11)

Differentiating eq. (11) with respect to rand z gives

Clw* Clw* Vw* = _A_r + _A_r

A Clr r Clz z (12 )

with

-k [1 r 2 _R 2 _(Z_Z)2] 2rK(k) + E(k)

(r-R)2 + (Z_Z)2

(13)

and

275

-k [ (z-Z) E(k)]

(r_R)2 + (Z_Z)2 (.14)

where E(k) is the complete elliptic integral of the

second kind.

Equations (11) and (12) can be introduced in (3) and (2) respectively and using the notation as we did for the integration with respect to ~, one obtains:

1,2 H ••

l.J

and

(15)

aw1 (~) ( c -ar

awA* (~) 1-an a)( ~ ~)(a~ + b)d~ •

(16)

These integrals are evaluated numerically with a Gauss­

Legendre quadrature.

The functions K(k) and E(k) are calculated with their

polynomial approximations [ 1].

K(k) = 1.3862944 + 0.1119723x + 0.0725296x2 +

(0.5 + 0.1213478x + 0.0288729x2)ln(1/x)

and

E(k) = (1 + 0.463015x + 0.1077812x 2) +

(0.2452727x + 0.0412496x 2)ln(1/x) ,

with x = 1 - k 2 •

APPENDIX A.4

THE GLOBAL NEWTON CONVERGENCE OF THE PO­

TENTIAL PROBLEM WITH NON-LINEAR BOUNDARY CONDITIONS.

In general, for an irreducible NxN non-linear system

of equations

{$(X)} = [K(X)]{X} - (F(X)} = 0

with tangential matrix

the global Newton convergence is assured [119], [ 78] when

[KT(X)], the tangential or Jacobian matrix is non-

singular, (1)

- [KT(X)]-1 ~ 0, V XERN component by component, (2)

- {$(l3) - $(X)} ~ (or ~) [KT(X)] {B - X}, V X,B£1EtN

component by component. (3)

In the case considered, after reordering the system of equations in such a way that all unknowns are passed

to the right-hand side, one obtains a system of equa­tions of the form (equation (2.24»

[G*] {X} = [H*] (F(X)) • (4)

As the Laplace equation with mixed boundary conditions

has a unique solution, the role of unknowns and knowns can be inverted and hence the matrices G* and H*,

which depend only on the geometry, are non-singular.

277

Equation (4) can be written as

or

[K]{X} - {F(X)} = 0 ,

with

This matrix is independent on the vector X.

The non-linear part of equation (5) can be written as

follows (equation (2.24)):

(6)

It is observed that F. is a function of only the i-th 1

component X. of the vector X (i=1, ••• ,N). With the 1

terminology used by Ortega and Rheinboldt [ 78J, this

means that Y(X) is diagonal and because the matrix

[KJ is also constant, one says that the system of

equations is "almost linear".

In reality many overpotential relations satisfy over

a wide range the following properties:

* they are continuously differentiable (true on phy­

sical grounds);

* they are isotone: for all J1 ~ J 2 , n(J1 ) ~ n(JZ)

278

with J = -oX ;

* they are convex.

More explicitly, under these conditions the functions

Fi(Xi ) take on anode and cathode respectively the form

of figures 1 and 2.

F. J.

v

F. (b) J.

Fi (.)(b-.) I Fi(a)

o

I I -----y--------------------------------I I I

o b

on anode: Fi = V - n1 ~ 0

aF Fi = ax. ~ 0

J.

- fig. 1 -

a

279

---- ---------------------- F. (b) 1

F. (a) 1

o ------------~--------------~----~~ __ x. o 1 b

on cathode: Fi ~ 0

F! ~ 0 1

a

F! (a) (b-a) 1

F.(b) - F.(a) ~ F!(a)(b - a) 111

- fig. 2 -

Remarks: - The overvoltages can never become larger than the

driving potential V, implying that Fi (i=1,N) is non­

negative.

_ Overvoltages on electrodes where passivation may

occur, do not correspond with the third condition.

With these properties of [KJ and F, the tangential

matrix becomes

280

* This tangential matrix is non-singular (condition (1 ) ) •

Indeed, the matrix [K] is non-singular and has only real and positive eigenvalues (discretization of a

well-posed Laplace problem). This property holds al­so when the diagonal of [K] is incremented with only positive constants (Fi ~ 0).

* Inequality (3) can be written as follows:

[KJ {B} -{F(13)} - [K] {A} +{F(A)} ~ ~

{ -F (B) + F (A) } ~

~

{F(13) -F(A)} ~

~

or component by component

~ F1.!(a)(b - a) • ~

[K-F! (A) o .. ]{ B-A} 1. ]. J

-F! (A) o .. {B-A} 1. 1.J

Fi(A)oij{B-A}

This proves that, when the overvoltages are continuous­

ly differentiable isotone and convex, inequality (3)

holds also for the system of equations.

* We still have to prove that each component of

[KTJ-1 is non-negative.

This holds when the tangential matrix is an M-matrix

(section 13.3.8 [78]). A matrix B is an M-matrix if

B is invertible, B-1~0 and bij~O for all i,j=1, ••• N,

iFj. This definition is not very useful but there exist more practical characterizations.

281

Because the sum of an M-matrix and a positive diagonal

matrix is also an M-matrix, "it is sufficient" to

prove that only the system matrix [K] is an M-matrix.

This was attempted in vain. Probably, in this case,

M-matrices are a too restrictive subclass of matri­

ces with non-negative inverse.

Thus, this part of the theorem remains un-solved.

In practice however, at least after the first itera­

tion, a monotonic convergence up to the resolution

of the computer, is always observed when condition

(3) is fulfilled.

Lecture Notes in Engineering

Edited by C.A. Brebbia and S.A. Orszag

Vol. 59: K. P. Herrmann, Z. S. Olesiak (Eds.) Thermal Effects in Fracture of Multiphase Materials Proceedings of the Euromech Colloquium 255 October 31 - November 2, 1989, Paderborn, FRG VII, 247 pages. 1990

Vol. 60: U. Schumann (Ed.) Air Traffic and the Environment -Background, Tendencies and Potentia, Global Atmospheric Effects Proceedings of a DLR International Colloquium Bonn, Germany, November 15/16, 1990 VI, 170 pages. 1990

Vol. 61: A. Der Kiureghian, P. Thoft-Christensen (Eds.) Reliability and Optimization of Structural Systems '90 Proceedings of the 3rd IFIP WG 7.5 Conference Berkeley, California, USA, March 26-28, 1990 VIII, 405 pages. 1991

Vol. 62: Z. Zhao Shape Design Sensitivity Analysis and Optimization Using the Boundary Element Method VIII, 192 pages. 1991

Vol. 63: H. A. Eschenauer, C. Mattheck, N. Olhoff (Eds.) Engineering Optimization in Design Processes Proceedings of the International Conference Karlsruhe Nuclear Research Center, Germany September 3-4, 1990 XIV, 355 pages. 1991

Vol. 64: A. Elzein Plate Stability by Boundary Element Method VII, 205 pages. 1991

Vol. 65: J. Holnicki-Szulc Virtual Distortion Method VIII , 176 pages. 1991

Vol. 66: M. A. Jabri An Artificial Intelligence Approach to Integrated Circuit Floorplanning XIII, 149 pages. 1991

Vol. 67: S. Takahashi Elastic Contact Analysis by Boundary Elements VI, 217 pages. 1991

Vol. 68: T. G. B. DeFigueiredo A New Boundary Element Formulation in Engineering IX, 198 pages. 1991

Vol. 69: T. K. S. Murthy, C. A. Brebbia Eds.) Advances in Computer Technology and Applications in Japan IV, 158 pages. 1991

Vol. 70: E. K. Bruch The Boundary Element Method for Groundwater Flow II, 120 pages. 1991

Vol. 71: C. M. Lemos Wave Breaking A Numerical Study VIII, 196 pages. 1992

Vol. 72: A. Poceski Mixed Finite Element Method VIII, 345 pages. 1992

Vol. 73: K. Hayami A Projection Transformation Method for Nearly Singular Surface Boundary Element Integrals X, 456 pages. 1992

Vol. 74: C. V. Camp, G. S. Gipson Boundary Element Analysis of Nonhomogeneous Biharmonic Phenomena XII, 246 pages. 1992

Vol. 75: J. Deconinck Current Distributions and Electrode Shape Changes in Electrochemical Systems XV, 281 pages. 1992