recursive bayesian estimation using gaussian sums

Upload: khanzia

Post on 02-Jun-2018

241 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    1/15

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    2/15

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    3/15

    R e c u r s i v e B a y e s i a n e s t i m a t i o n u s i n g g a u s s i a n s u m s 4 6 7

    s u g g e s t e d b r i e f l y b y A O K t [ 1 1 ] . M o r e r e c e n t l y ,

    CAMERON [12] and Lo [13] have as sum ed t ha t th e

    a p r i o r i

    d e n s i t y f u n c t i o n f o r t h e i n i t i a l s t a t e o f

    l i n e a r s y s t e m s w i t h g a u s s i a n n o i s e s e q u e n c e s h a s

    t h e f o r m o f a g a u s s ia n s u m .

    2 .1 . T h e o r e t ic a l f o u n d a t i o n s o f t h e a p p r o x i m a t D n

    C o n s i d e r a p r o b a b i l i t y d e n s i t y f u n c t i o n p w h i c h

    i s a s s u m e d t o h a v e t h e f o l l o w i n g p r o p e r ti e s .

    1 . p i s de f ined and cont inuous a t a l l bu t a f in i t e

    n u m b e r o f l o ca t io n s

    2. Ioop x ) d x = 1

    3. p x)>_ 0 for a l l x

    I t is c o n v e n i e n t a l t h o u g h n o t n e c e s s a r y t o c o n s i d e r

    o n l y sc a l a r r a n d o m v a r i a b l es . T h e g e n e r a l i z a t i o n

    t o t h e v e c t o r c a s e i s n o t d i f f i c u lt b u t c o m p l i c a t e s th e

    p r e s e n t a t i o n a n d , i t i s f e l t , u n n e c e s s a r i l y d e t r a c t s

    f r o m t h e b a s i c i d e a s.

    T h e p r o b l e m o f a p p r o x i m a t i n g p c a n b e c o n -

    v e n i e n t l y c o n s i d e r e d w i t h i n t h e c o n t e x t o f d e l t a

    fami l i e s of pos i t ive type [14] . Bas ica l ly , t hese a re

    f a m i l ie s o f f u n c t i o n s w h i c h c o n v e r g e t o a d e l t a , o r

    i m p u l s e , f u n c t i o n a s a p a r a m e t e r c h a r a c t e r i z i n g t h e

    f a m i l y c o n v e r g e s t o a l i m i t v a l u e . M o r e p r e c is e ly ,

    l e t { 6 4} b e a f a m i l y o f f u n c t i o n s o n ( - o % o o) w h i c h

    are in t egrab le over every in te rva l . Th i s is ca l l ed a

    d e l t a f a m i l y o f p o s i ti v e t y p e i f t h e f o l l o w i n g c o n -

    di t ions a re s a t i s f i ed .

    (i)

    a a

    6 ~ x ) d x t e n d s t o o n e a s 2 t e n d s t o s o m e

    l imi t va lue ; to for some a .

    ( i i ) F o r e v e r y c o n s t a n t y > _ 0 , n o m a t t e r h o w

    s m a l l, 6 x t e n d s t o z e r o u n i f o r m l y f o r

    7 < [ x [ < ~ a s 2 t e n ds t o 2 0.

    (iii) 6 z x ) > 0 for a l l x and 2 .

    U s i n g t h e d e l t a f a m i l ie s , th e f o l l o w i n g r e s u l t c a n

    b e u s e d f o r t h e a p p r o x i m a t i o n o f a d e n s i ty f u n c t io n

    p .

    T h e o r e m 2.1 . Th e sequence p x x ) w h i c h i s f o r m e d

    b y t h e c o n v o l u t i o n o f 6 z a n d p

    p a x ) = f ~ oo c S a x - u ) p u ) d u

    (7)

    c o n v e rg e s u n i f o r m l y t o p x ) o n e v e r y i n t e r i o r s u b -

    i n t e r v a l o f ( - ~ , o o) .

    Fo r a p ro of of th i s re su l t , s ee KOREVAAR [14] .

    W h e n p h a s a f i n i t e n u m b e r o f d i s c o n t i n u i t i e s , t h e

    t h e o r e m i s s t i l l v a l i d e x c e p t a t t h e p o i n t s o f d i s -

    c o n t i n u i t y . I t s h o u l d b e n o t e d t h a t e s s e n t ia l l y t h e

    sam e resu l t i s g iven by T heo rem 2 .1 in FELLER[15].

    I f { 6a } i s r e q u i r e d t o s a t i sf y t h e c o n d i t i o n t h a t

    i t fo l l o w s f r o m e q u a t i o n ( 7 ) t h a t P a is a p r o b a b i l i t y

    d e n s i t y f u n c t i o n f o r a l l 2.

    I t i s b a s i c a ll y t h e p r e s e n c e o f t h e g a u s s i a n w e i g h t -

    i n g f u n c t i o n t h a t h a s m a d e t h e E d g e w o r t h e x p a n -

    s i o n a t t r a c t i v e f o r u s e i n t h e B a y e s i a n r e c u r s i o n

    r e l a ti o n s . T h e o p e r a t i o n s d e f i n e d b y e q u a t i o n s

    ( 3 - 6 ) a r e s i m p l if i e d w h e n t h e

    a p r i o r i

    dens i t i e s a re

    g a u s s i a n o r c l o s e ly r e l a t e d t o t h e g a u s s ia n . B e a r i n g

    t h i s in m i n d , t h e f o l l o w i n g d e l ta f a m i l y i s a n a t u r a l

    c h o i c e f o r d e n s i ty a p p r o x i m a t i o n s . L e t

    ,L x) A_U~ x)

    = (2rc22) x p [ - x 2 / i2 ] .

    ( 8 )

    I t i s s h o w n w i t h o u t d i f f ic u l ty t h a t N a x ) f o r m s a

    d e l t a f a m i l y o f p o s it i v e ty p e a s ; t ~ 0 . T h a t i s , a s t h e

    v a r i a n c e t e n d s t o z e r o , t h e g a u s s i a n d e n s i t y t e n d s

    t o t h e d e l t a f u n c t i o n .

    U s i n g e q u a t i o n s ( 7 ) a n d ( 8) , t h e d e n s i t y a p p r o x i -

    m a t i o n p ~ is w r i t t e n a s

    oo

    P z x ) = p u ) N z x - u ) d u .

    (9)

    00

    I t i s t h i s f o r m t h a t p r o v i d e s t h e b a s i s f o r t h e

    g a u s s ia n s u m a p p r o x i m a t i o n t h a t i s t h e s u b j e ct o f

    th i s d i scuss ion .

    W h i l e e q u a t i o n ( 9 ) i s a n i n t e r e s ti n g r e s u lt , i t d o e s

    n o t i m m e d i a t e l y p r o v i d e t h e a p p r o x i m a t i o n t h a t

    c a n b e u s e d f o r s p e c if ic a p p l i c a t i o n . H o w e v e r , i t is

    c l e a r t h a t p u ) N x x - u ) i s i n t egrable on ( - o% oo)

    a n d i s a t l e a s t p i e c ew i s e c o n t i n u o u s . T h u s , ( 9) c a n

    i t s e lf b e a p p r o x i m a t e d o n a n y f i n i t e i n t e r v a l b y a

    R i e m a n n s u m . I n p a r t ic u l a r , co n s i d e r a n a p p r o x i -

    m a t i o n o f P z o v e r s o m e b o u n d e d i n t er v a l ( a, b )

    g i v e n b y

    /1

    p .. /x ) = ~ ~__Ep(x~)N~(x- x,)[ ~,- 4 ,- i ] (i0)

    w h e r e t h e i n t e r v a l ( a , b ) i s d i v i d e d i n t o n s u b -

    in te rva l s by se lec t ing poin t s ~ , such th a t

    a = ~ o < ~ l < . . . ~ , = b .

    I n e a c h s u b i n t e r v a l, c h o o s e t h e p o i n t x ~ s u c h t h a t

    f

    ~

    P X , ) [ ~ i - 4 , - 1 ] = p x ) d x

    ~ I

    w h i c h i s p o s s i b le b y t h e m e a n - v a l u e th e o r e m . T h e

    c o n s t a n t k i s a n o r m a l i z i n g c o n s t a n t e q u a l t o

    f

    ~ o 6 z ( x ) d x = l

    k > x , d x

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    4/15

    4 6 8 H .W . SOREN SO N an d D . L . A LSPA CH

    a n d i n s u r e s t h a t p . , x i s a d e n s i t y f u n c t i o n . C l e a r l y ,

    f o r ( b - a ) s u f fi c i e n tl y l a r g e , k c a n b e m a d e a r b i -

    t r a r il y d o s e t o 1. N o t e t h a t i t f o l lo w s t h a t

    T h u s , o n e c a n a t t e m p t t o c h o o s e

    ~ i , # i a i ( i= 1 , 2 . . . . , n )

    n

    k , '= p ( x i ) [ { , - 4 , - a] = 1

    (1 1 )

    s o t h a t p . , a e s s e n t i a l ly i s a c o n v e x c o m b i n a t i o n o f

    g a u s s i a n d e n s i t y f t m c t i o n s N a . I t i s b a s i c a l l y t h i s

    f o r m t h a t w i l l b e u s e d i n a l l f u t u r e d i s c u s s i o n a n d

    w h i c h i s r e f e r r e d t o h e r e a f t e r a s t h e gauss ian sum

    approximation.

    I t i s i m p o r t a n t t o r e c o g n i z e t h e

    p . , a t h a t a r e f o r m e d i n t hi s m a n n e r a r e v a li d p r o b a -

    b i l i t y d e n s i t y f u n c t i o n s f o r a l l n , 2 .

    2 .2 . Implem enta t ion o f the gaussian sum approxima-

    tion

    T h e p r e c e d i n g d i s c u s s i o n h a s i n d i c a t e d t h a t a

    p r o b a b i l i t y d e n s i t y f u n c t i o n p t h a t h a s a f in i t e

    n u m b e r o f d i s c o n ti n u i ti e s c a n b e a p p r o x i m a t e d

    a r b i t r a r i l y c l o s e l y o u t s i d e o f a r e g i o n o f a r b i t r a r i l y

    s m a l l m e a s u r e a r o u n d e a c h p o i n t o f d i s c o n t in u i t y

    b y t h e g a u s s i a n s u m p , . a a s d e f i n e d i n e q u a t i o n ( 1 0 ) .

    T h e s e a s y m p t o t i c p r o p e r t i e s a r e c e r t a i n l y n e c e s s a ry

    f o r t h e c o n t i n u e d i n v e s t i g a t i o n o f t h e g a u s s i a n s u m .

    H o w e v e r , f o r p r a c t i c a l p u r p o s e s , i t i s d e s i r a b l e , i n

    f a c t i m p e r a ti v e , t h a t p c a n b e a p p r o x i m a t e d t o

    w i t h i n a n a c c e p t a b l e a c c u r a c y b y a r e l a t i v e l y s m a l l

    n u m b e r o f t e r m s o f th e s e ri es . T h i s r e q u i r e m e n t

    f u r n i s h e s a n a d d i t i o n a l f a c e t t o t h e p r o b l e m t h a t i s

    c o n s i d e r e d i n t h i s s e c t i o n .

    F o r t h e s u b s e q u e n t d i s c u s s i o n , i t i s c o n v e n i e n t t o

    w r i t e t h e g a u s si a n s u m a p p r o x i m a t i o n a s

    w h e r e

    p . ( x ) = ~ ~ l N . , ( x - p t ) ( 12 )

    i =1

    ~ = 1 ; ~ > 0 f o r a l l i .

    i =1

    T h e r e l a t i o n o f e q u a t i o n ( 1 2) t o e q u a t i o n ( 1 0) i s

    o b v i o u s b y i n sp e c t i on . U n l i k e e q u a t i o n ( 1 0 ) i n

    w h i c h t h e v a r i a n c e 2 2 i s c o m m o n t o e v e r y t e r m o f

    t h e g a u s s i a n s u m , i t h a s b e e n a s s u m e d t h a t t h e

    v a r i a n c e a i 2 c a n v a r y f r o m o n e t e r m t o a n o t h e r .

    T h i s h a s b e e n d o n e t o o b t a i n g r e a t e r f l e x i bi l i ty f o r

    a p p r o x i m a t i o n s u s i n g a f i n i te n u m b e r o f t er m s .

    C e r t a i n l y , a s t h e n u m b e r o f t e r m s i n c r e a s e , i t i s

    n e c e s s a r y t o r e q u i r e t h a t t h e a i t e n d t o b e c o m e

    e q u a l a n d v a n i s h .

    T h e p r o b l e m o f c h o o s i n g t h e p a r a m e t e r s ~ , / ~ i , a~

    t o o b t a i n th e " b e s t " a p p r o x i m a t i o n p , t o s o m e

    d e n s i t y f u n c t i o n p c a n b e c o n s i d e r e d . T o d e f i n e t h i s

    m o r e p r e c i s e l y , c o n s i d e r t h e L k n o r m . T h e d i s ta n c e

    b e t w e e n p a n d p , c a n b e d e f i n e d a s

    oO

    p _ p , k = p ( x ) -

    s o t h a t t h e d i st a n c e I I P - P ,[ [ i s m i n i m i z e d . A s t h e

    n u m b e r o f t e r m s n i n c re a s e s a n d a s t h e v a r i a n c e

    d e c r e a s e s t o z e r o , t h e d i s t a n c e m u s t v a n i s h . H o w -

    e v e r , f o r f in i t e n a n d n o n z e r o v a r i a n c e , i t i s re a s o n -

    a b l e t o a t t e m p t t o m i n i m i z e t h e d is t a n ce i n a m a n n e r

    s u c h a s th i s . I n d o i n g t h i s , t h e s t o c h a s t i c e s t i m a t i o n

    p r o b l e m h a s b e e n r e c a s t a t t h i s p o i n t a s a d e t e r -

    m i n i s t i c c u r v e f i t t i n g p r o b l e m .

    T h e r e a r e o t h e r n o r m s a n d p r o b l e m f o r m u l a t i o n s

    t h a t c o u l d b e c on s i d e re d . I n m a n y p r o b l e m s , i t

    m a y b e d e s i r a b l e t o c a u s e t h e a p p r o x i m a t i o n t o

    m a t c h s o m e o f t h e m o m e n t s , f o r e x a m p l e , t h e m e a n

    a n d v a r i a n c e , o f t h e t r u e d e n s i t y e x a c t ly . I f t h i s

    w e r e a r e q u i r e m e n t , t h e n o n e c o u l d c o n s i d e r t h e

    m o m e n t s a s c o n s t r a i n t s o n t h e m i n i m i z a t i o n

    p r o b l e m a n d p r o c e e d a p p r o p ri a t e l y . F o r e x a m p le ,

    i f t h e m e a n a s s o c i a t e d w i t h p i s p , t h e n t h e c o n -

    s t r a in t t h a t p , h a v e m e a n v a l u e p w o u l d b e

    U ~ n ~ i al -- i

    = ~ ai l t l. (1 4 )

    i =1

    T h u s , e q u a t i o n ( 14 ) w o u l d b e c o n s i d e r e d i n a d d i t io n

    t o t h e c o n s t r a i n t s o n t h e o q s t a t e d a f t e r e q u a t i o n

    (12).

    S t u d ie s r e l a te d t o t h e p r o b l e m o f a p p r o x i m a t i n g

    p w i t h a s m a l l n u m b e r o f te r m s h a v e b e e n c o n d u c t e d

    f o r a la r g e n u m b e r o f d e n s i t y f u n c t i o n s . T h e s e i n -

    v e s t i g a t i o n s h a v e i n d i c a t e d , n o t s u r p r i s i n g l y , t h a t

    d e n s i t i e s w h i c h h a v e d i s c o n t i n u i t i e s g e n e r a l l y a r e

    m o r e d i ff ic u l t t o a p p r o x i m a t e t h a n a r e c o n t i n u o u s

    f u n c t i o n s . T h e r e s u l t s f o r t w o d e n s i t y f u n c t i o n s , t h e

    u n i f o r m a n d t h e g a m m a , a r e d is c u s se d b e l o w . T h e

    u n i f o r m d e n s i t y is d i s c o n t i n u o u s a n d i s o f i n t e r e s t

    f r o m t h a t p o i n t o f v ie w . T h e g a m m a f u n c t i o n i s

    n o n z e r o o n l y f o r p o s i t i v e v a l u e s o f x s o i s a n

    e x a m p l e o f a n o n s y m m e t r i c d e n s i t y t h a t e x t e n d s

    o v er a semi- in f in i te r an g e .

    C o n s i d e r t h e f o l l o w i n g u n i f o r m d e n s it y f u n c t i o n

    J' f o r - 2 < x _ 2

    p ( x ) = ~ 0 e l s e w h e r e

    1 5 )

    T h i s d i s t ri b u t i o n h a s a m e a n v a l u e o f z e r o a n d

    v a r i a n c e o f 1 .3 3 3 .

    T w o d i f fe r e n t m e t h o d s o f f i tt i ng e q u a t i o n ( 1 5)

    h a v e b e e n c o n s i d e r e d . F i r s t , c o n s i d e r a n a p p r o x i -

    m a t i o n t h a t i s s u g g e s te d d i r e c t l y b y ( 1 0 ) a n d r e f e r r e d

    t o s u b s e q u e n t l y a s a Theorem Fi t . T h e p a r a m e t e rs

    o f t h e a p p r o x i m a t i o n a r e c h o s e n i n t h e f o l lo w i n g

    g e n e r a l m a n n e r .

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    5/15

    R e c u r s i v e B a y e s i a n e s t i m a t i o n u s i n g g a u s s i a n s u m s 4 6 9

    ( 1) S e l e c t t h e m e a n v a l u e p~ o f e a c h g a u s s i a n

    s o t h a t t h e d e n s i t i e s a r e e q u a l l y s p a c e d o n

    ( - 2 , 2 ) . B y a n a p p r o p r i a t e lo c a t i o n o f t h e

    d e n s i t i e s t h e m e a n v a l u e c o n s t r a i n t ( 1 4 ) c a n

    b e s a t is f ie d i m m e d i a t e l y .

    (2 ) The we ight ing fac tors 0q a re s e t equa l to

    i / n s o

    ~ t = l

    t = l

    ( 3) T h e v a r i a n c e 12 o f e a c h g a u s s i a n i s th e s a m e

    a n d i s s el e c te d s o t h a t t h e L 1 d i s t a n c e b e t w e e n

    p a n d p , i s m i n i m i z e d .

    T h i s a p p r o x i m a t i o n p r o c e d u r e r e q u i re s o n l y a o n e -

    d i m e n s i o n a l s e a r c h t o d e t e r m i n e 2 .

    T o i n v e s t i g a t e t h e a c c u r a c y a n d t h e c o n v e r g e n c e

    o f t h e a p p r o x i m a t i o n , t h e n u m b e r o f t e r m s i n th e

    s u m w a s v a r i e d . F i g u r e l ( a ) s h o w s t h e a p p r o x i m a -

    t i o n w h e n 6 , 1 0 , 2 0 a n d 4 9 t e r m s w e r e i n c l u d e d . I t

    i s i n t e r e s t i n g t o o b s e r v e t h a t t h e a p p r o x i m a t i o n

    r e t ai n s t h e g e n e r a l c h a r a c te r o f t h e u n i f o r m d e n s i t y

    e v e n f o r t h e s i x -t e r m ca s e . A s s h o u l d b e e x p e c t e d ,

    t h e l a r g e s t e r r o r s a p p e a r i n t h e v i c i n i t y o f t h e d i s -

    c o n t i n u i t i e s a t + 2 . T h e s e a p p r o x i m a t i o n s e x h i b i t

    a n a p p a r e n t o s c i l l a t i o n a b o u t t h e t r u e v a l u e t h a t i s

    n o t v i s u a l l y s a t is f y in g . T h i s o s c i l l a t io n c a n b e

    e l i m i n a t e d b y u s i n g a s l i g h t l y l a r g e r v a l u e f o r t h e

    v a r i a n c e o f t h e g a u s s i a n t e r m s a s i s d e p i c t e d i n

    F ig . l (b ) .

    T h e s e c o n d a n d f o u r t h m o m e n t s a n d t h e L 1 e r r o r

    a r e l i s te d i n T a b l e 1 f o r t h e s e t w o s e ts o f a p p r o x i m a -

    t i o n . T h e i n d i v i d u a l t e r m s w e r e l o c a t e d s y m -

    m e t r i ca l ly a b o u t z e r o s o t h a t t h e m e a n v a l u e o f t h e

    g a u s s i an s u m a g r ee s w i t h t h a t o f t h e u n i f o r m d e n -

    s i ty i n a ll c as e s. N o t e t h a t f o r t h e b e s t f it t h e e r r o r

    i n t h e v a r i a n c e i s o n l y 1 . 25 p e r c e n t w h e n 2 0 t e r m s

    a r e u s e d . A s s h o u l d b e e x p e c t ed , h i g h e r o r d e r

    [a.

    t~

    13.

    O . S -

    o )

    0 . 4

    0 . 3

    0 . 2

    o I /

    3 2 . 1

    0 . 5 -

    (c)

    0 . 4

    0 . 3

    0.2

    '-,.b ' 6

    X

    0 . 5 -

    b )

    0 . 4

    0 . 3

    0 . 2 -

    ' I -~ 0 2 0 3 0 - 3 - 0 - 2 - 0

    i , , i i f i t i ,

    - I ' 0 0 I ' 0 2 ' 0 3 ' 0

    0.1 { '

    r , i i , i , 1 , i

    - 3 ' 0 - 2 0 - I 0 0 | ' 0

    X

    Fzo . 1 . Gau ss ian

    [ ~ s e o r c h f i t

    . . . . . I 0 t e r m b e s t t h e o r e m f i t

    . .. .. .. .. I 0 t e r m s m o o t h e d t h e o r e m f i t

    k

    \

    2 . 0 3 . 0

    s u m a p p r o x i m a t i o n s o f u n i f or m

    d en s i ty fu n c t io n .

    ( a ) B e s t t h e o r e m f i t - - 6 , 1 0, 2 0 a n d 4 9 t e r m a p p r o x i -

    m a t i o n s .

    ( b ) S m o o t h e d t h e o r e m f i t - - 6 , 1 0 , 2 0 a n d 4 9 t e r m

    a p p r o x i m a t i o n s .

    (C) L 2 Search fit com parison,

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    6/15

    4 7 0 H . W . S OR EN SO N a n d D . L . A L SP A CH

    m o m e n t s c o n v e r g e m o r e s l ow l y si n ce e r ro r s f a r t h e s t

    a w a y f r o m th e m e a n a s su m e m o r e i m p o r t an c e . F o r

    e x a m p l e , t h e f o u r t h c e n t r a l m o m e n t h a s a n e r r o r o f

    5 p e r c en t f o r t h e 2 0 -t e r m a p p r o x i m a t i o n . T h e

    e r r o r s i n t h e m o m e n t s o f t h e s m o o t h e d f it a r e

    a g g r a v a t e d o n l y s l i gh t l y a l t h o u g h t h e L I e r r o r

    i n c r e a s e s i n a n o n t r i v i a l m a n n e r .

    TABLE 1. UNIFORM DENSITY APPROXIMATION

    Fourth

    central L 1

    Variance mome nt error

    rue values 1 333 3.200 - -

    o f t h e n u m b e r o f t e r m s i n v o l v e d , o b t a i n i n g a s e ar c h

    f i t i s s i g n i f i c a n t l y m o r e d i f f i c u l t t h a n o b t a i n i n g a

    t h e o r e m f it f o r th e s a m e n u m b e r o f t e rm s . T h u s , t h e

    t h e o r e m f it m a y b e m o r e d e s i r a b l e f r o m a p r a c t i c a l

    s t a n d p o in t . T h e m o m e n t s a n d L 1 e r r o r f o r t h e

    s e a r c h f i t i s a l s o i n c l u d e d i n T a b l e 1 . T h e s e v a l u e s

    a r e s l i g h tl y b e t t e r t h a n t h e t h e o r e m f it in v o l v i n g t e n

    t e r m s . I t i s i n t e r e s t i n g i n F i g . l ( c ) t o n o t e t h e

    " s p i k e s " t h a t h a v e a p p e a r e d a t t h e p o i n t s o f d is -

    c o n t i n u i t ie s . T h i s a p p e a r s t o b e a n a l o g o u s t o th e

    G i b b s p h e n o m e n o n o f F o u r i e r s er ie s.

    T h e s e c o n d e x a m p l e t h a t i s d i s c u s s e d h e r e i s t h e

    g a m m a d e n s i t y f u n c t i o n . I t is d e f i n e d a s

    B e s t t h e o re m f i t

    6 term s 1.581 5-320 0.2199

    10 terms 1.417 3.884 0.1271

    20 term s 1.354 3.363 0.0623

    49 terms 1.336 3.226 0.0272

    f

    0 f o r x < 0

    p ( x ) =

    x 3 e X f o r x > 0 .

    6

    ( 1 6 )

    S m o o t h e d t h e o re m f i t

    6 term s 1 "690 6.387 0.2444

    10 terms 1.456 4.224 0.1426

    20 terms 1.363 3"442 0.0701

    49 terms 1.338 3.238 0.0280

    L 2 search fi t

    6 terms 1.419 3.626 0.0968

    A s a n a l t e r n a t i v e a p p r o a c h , t h e p a r a m e t e r s ~ i

    # t, tr2 w e r e c h o s e n t o m i n i m i z e t h e L 2 d i s ta n c e

    w h i c h i s h e r e a f t e r r e f e r r e d t o a s a n L 2 s e a r c h f i t.

    T h e s e r e s u l ts a r e s u m m a r i z e d i n F i g . 1 c ) f o r n = 6 .

    I n c l u d e d f o r c o m p a r i s o n i n t h i s fi g u r e a r e t h e 1 0 -

    t e r m t h e o r e m f it s f r o m F i g s. l ( a ) a n d l ( b ) . B e c a u s e

    T h e d i s t r i b u t i o n h a s a m e a n v a l u e o f 4 a n d s e c o n d ,

    t h i rd , a n d f o u r t h c e n t r al m o m e n t s o f 4 , 8 a n d 7 2

    r e s p e c t i v e l y .

    F i r s t , c o n s i d e r a t h e o r e m f it o f t h i s d e n s i t y in

    w h i c h t h e m e a n v a l ue s a r e d i st r i b u te d u n i f o r m l y o n

    ( 0 , 10 ). F o r t h e u n i f o r m d e n s i t y , t h e u n i f o r m p l a c e -

    m e n t w a s n a t u r a l ; f o r t he g a m m a d e n s i t y i t i s n o t

    a s a p p r o p r i a t e . F o r e x a m p l e , f o r n = 6 o r 1 0 , i t i s

    s e e n i n F i g . 2 (a ) t h a t t h e a p p r o x i m a t i n g d e n s i t y i s

    n o t a s g o o d , a t l e a s t v i s u a l l y , a s o n e m i g h t h o p e .

    T h e f i r s t f o u r c e n t r a l m o m e n t s a r e l is t ed i n T a b l e 2 .

    C l e a r l y , t h e h i g h e r o r d e r m o m e n t s c o n t a i n l a r g e

    e r r o r s a n d e v e n t h e m e a n v a l u e i s i n c o r r e c t i n

    c o n t r a s t w i t h t h e u n i f o r m d e n s i t y .

    TABLE 2. GAMM A DENSITY

    APPROXIMATION

    T h i rd F o u r th

    c e n t r a l

    central L1

    Mean Variance mom ent mom ent Error

    True values

    4 4 8 72

    T h e o r em f i t

    6 terms in (0, 10) 3"94 4"345 5"496 60.78 0"119

    10 terms in (0, 10) 3.94 3.861 4-941 47.84 0.053

    20 terms in (0, 10) 3.93 3.611 4-653 41.23 0.023

    20 terms in (0, 12) 4.00 4.206 7-477 71.41 0.042

    L2 search f i t

    1 terms in (0, 10) 3'51 3"510 0 10.53 0"203

    2 terms in (0, 10) 3"82 3"427 3.04 34"96 0"078

    3 terms in (0, 10) 3.91 3.632 4"711 43-39 0"036

    4 term s in (0, 10) 3"95 3-744 5"682 49-57 0"018

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    7/15

    R e c u r s i v e B a y e s i a , e s t i m a t i o n u s i n g g a u s s ia n s u m s 4 7 1

    Lt.

    (L

    O - Z

    0 ' 2

    0 .1

    0 .1

    0 , 0

    0 . 0

    - 2 . 0

    /J

    0 0

    a)

    1 0 - t e r m

    . . . . . . . . . . . . 0 . Z

    6 - t e r m . . . . . . . .

    o . 2

    0 . 1

    LL

    Q

    0 -

    0 1

    ;X

    ~ *k O 0

    2 0

    4 0 6 0 8 ' 0

    I 0 0 1 2 ' 0

    x

    : - ' 0 .0 ' - : ~

    1 4 " 0 - 2 0

    0 0

    ( b )

    i n t e r v a l s

    0 ,10 ) . . . . . . .

    ( 0 , 1 2 ) . . . . . . . . . .

    2 . 0 4 . 0 6 . 0 8 . 0 I 0 . 0 1 2 - 0 1 4 . 0

    X

    0 . 2

    0 ' 2

    o.,

    rt

    0 ' 1

    I 0 ' 0 t

    0 0 t x

    - 2 - 0 0 . 0 2 - 0 4 . 0 6 . 0

    X

    F I O 2 G a u s s i a n s u m a p p r o x i m a t io n s o f g a m m a d e n s i ty

    function.

    (a) Best theorem fit- -6 an d 10 term approximations.

    (b) Tw enty term approximations over different inter-

    vals.

    (c) L2 search fit: 3 and 4 term approximations.

    c )

    3 - t e r m . . . . . .

    4 - t e r m . . . . . . . . . . .

    8 ' 0 1 0 ' 0 1 2 " 0 1 4 " 0

    T w o d i f f e r e n t 2 0 - t e r m a p p r o x i m a t i o n s a r e d e -

    p i c t e d i n F i g. 2 ( b ) . I n o n e t h e m e a n v a l u e s o f t h e

    g a u s s i a n t e r m s a r e s e l e c t e d i n t h e i n t e r v a l ( 0 , 1 0 ) ,

    w h e r e a s t h e s e c o n d a p p r o x i m a t i o n i s d i st r ib u t e d i n

    ( 0 , 1 2 ) . N o t e i n t h e fi r st c a s e t h e g a u s s i a n s u m t e n d s

    t o z e r o m u c h m o r e r a p i d ly t h a n t h e g a m m a f u n c t i o n

    f o r x > 1 0. T h u s , t o i m p r o v e t h e a p p r o x i m a t i o n a n d

    t h e m o m e n t s i t i s n e c e s s a r y t o i n c r e a s e t h e i n t e r v a l

    o v e r w h i c h t e r m s a r e p l a c e d a n d t h e s e c o n d c u r v e

    i n d i c a t e s t h e i n fl u e n c e o f t h i s c h a n g e . T h e r e s u l t s

    o f t h e s e t w o c a s e s a r e i n c l u d e d i n F i g . 2 a n d i n d i c a t e

    t h a t i n c r e a s i n g t h e i n t e r v a l o v e r w h i c h t h e a p p r o x i -

    m a t i o n i s v a l i d h a s s i g n i f i c a n t l y i m p r o v e d t h e

    m o m e n t s .

    T h e t h e o r e m f i t p r o v i d e s a v e r y s im p l e m e t h o d

    f o r ob t a i n i n g a n a p p r o x i m a t i o n . H o w e v e r , i t i s

    c l e a r th a t b e t t e r r e s u l t s c o u l d b e o b t a i n e d b y c h o o s -

    i n g a t le a s t t h e m e a n v a l u e s o f t h e i n d i v i d u a l

    g a u s s ia n t e r m s m o r e c a r e fu l ly . C o n s i d e r n o w s o m e

    L 2 se a r c h f i t s . In F ig . 2 ( c ) , th e s e a r c h f i t s f o r th r e e

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    8/15

    472 H.W. SORENSON and D. L. ALSPACH

    and four terms are depicted and the moments are

    listed in Table 2. Clearly, values of the mean and

    variance appear to be converging to the true values

    of 4. Note also that the 4-term approximation is

    considerably better than the 10-term theorem fit.

    Thus, the search technique, while more difficult to

    obtain, points out the desirability of judicious

    placement of the gauss,an terms in order to obtain

    the most suitable approximation.

    3. LINEAR SYSTEMS WITH NONGAUSSIAN

    NOISE

    It is envisioned that the gauss,an sum approxima-

    tion will be very useful in dealing with non-linear

    stochastic systems. However, many of the

    properties and concomitant difficulties of the

    approximation are exhibited by considering linear

    systems which are influenced by nongaussian noise.

    As is well-known, the a p o s t e r i o r , density p ( X k / Z k )

    is gauss,an for all k when the system is linear and

    the initial state and plant and measurement noise

    sequences are gauss,an. The mean and variance of

    the conditional density are described by the Kalman

    filter equations. When nongaussian distributions

    are ascribed to the initial state and/or noise se-

    quences,

    p ( X k / Z k )

    is no longer gauss,an and it is

    generally impossible to determine p ( X k / Z k ) in a

    closed form. Furthermore, in the linear, gauss,an

    problem, the conditional mean, i.e. the minimum

    variance estimate, is a linear function of the

    measurement data and the conditional variance is

    independent of the measurement data. These

    characteristics are generally not true for a system

    which is either non-linear or nongaussian.

    For the following discussion, consider a scalar

    system whose state evolves according to

    X k = ~ k , k - l X k - 1 + W k - 1

    (17)

    and whose behavior is observed through measure-

    ment data z k described by

    z k = H k x ~ + V K. (18)

    Suppose that the density function describing the

    initial state has the form

    lo

    p(xo)= ~ ~ , o N t r ' i ( X o - , ; o ) . (19)

    i = l

    Assume that the plant and measurement noise

    sequences (i.e.

    { W k }

    and {Vk} are mutually inde-

    pendent, white noise sequences with density func-

    tions represented by

    ~k

    p(w~)= Y t~,~Nqk,(w~--o),~) (20)

    i = 1

    m

    P @ k ) : E ] ' i k N r , k ( O k - - V i k ) ( 2 1 )

    i = 1

    There are a variety of ways in which the gauss,an

    sum approximation could be introduced. For

    example, it is natural to proceed in the manner tha t

    is to be discussed here in which the a p r i o r i distribu-

    tions are represented by gauss,an sums as in equa-

    tions (19), (20) and (21). This approach has the

    advantage that the approximation can be deter-

    mined off-line and then used directly in the Bayesian

    recurs,on relations. An alternative approach

    would be to perform the approximation in more of

    an on-line procedure. Instead of approximating the

    a p r i o r i

    densities, one could deal with

    p ( X J Z k )

    in

    equation (3) and the integrand in (4) and derive

    approximations at each stage. This would be more

    direct but has the disadvantage that considerable

    computation may be required during the processing

    of data. Discussion of the implementat ion of this

    approach will not be attempted in this paper.

    3 . 1. D e t e r m i n a t i o n o f t h e a posterior, d i s t r i b u t i o n s

    Suppose that the

    a p r i o r i

    density functions are

    given by equations (19, 20 and 21). In using these

    representations in the Bayesian recurs,on relations,

    it is useful to note the following properties of

    gauss,an density functions

    S e h o l i u m 3.1: For a4:0,

    N . ( x - a y ) = 1 N . l . ( y - x / a ) .

    (22)

    a

    S c h o l i u m 3.2:

    where

    N ~ , ( x - , i ) N , j ( x - , j )

    2

    - - 2 2 1 ~

    - N t . , , + ~ j ( . , - . s ) N ~ , s ( x - . , j )

    . , 4 . J 4

    2 2

    _ 2 _ _ i f , 7 j

    O s

    a ? + a ~ .

    (23)

    The proofs of (22) and (23) are omitted.

    Armed with these two results it is a simple matter

    to prove that the following descriptions of the

    filtering and prediction densities are true.

    T h e o r e m

    3.1. Suppose that

    P ( X k / Z k - O

    is

    described by

    It ,

    p ( X k / Z k - 1 ) = E a * k N , ; k ( X k -- ; k ) (24)

    i = 1

    Then,

    p ( X k / Z k )

    is given by

    l k m k

    p(~dz~)= E Z , j N . , ~ x ~ - ~ , j ) (25)

    i = 1 j = I

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    9/15

    R e c u r s i v e B a y e s i a n e s t i m a t i o n u s i n g g a u s s i a n s u m s 4 73

    w h e r e

    e~ , , .~ N ~(z~ - P~ ,. )

    C i j = O t l k T j k N x ( z k P i j m ~ = 1

    y ' 2 _ _ 1 t . /' 2 _ . '2 - - _ 2

    - - ~ k O t k 1- r j k

    , a l ~ H ~ r z

    eq = I~ik4 ~ ,2 ~-- 7-Y 7, 2 L k - - V~k-- Hk tk]

    ~ t k - r l k t r j k

    2 , '2 , '4 2 , '2 2 2

    t ru = ~ i~ - t rt k H k / (a i~ H ~ + r ~ ) .

    I t i s o b v i o u s t h a t t h e c u > 0 a n d t h a t

    l k rak

    2 Z c,~=~.

    T h u s , e q u a t i o n ( 2 5 ) i s a g a u s s i a n s u m a n d f o r c o n -

    v e n i e n e e o n e c a n r e w r i t e i t a s

    I lk

    p(x k /Z k ) = ~ . a t kN ~ , ~ (X k- - I~i k) (26)

    t = 1

    w h e r e n k = ( l k ) ( m k ) a n d t h e a ik , P i k a n d / q k a r e

    f o r m e d i n a n o b v i o u s f a s h i o n f r o m t h e c u , tr u a n d

    e U

    T h e p r o o f o f t h e t h e o r e m i s s t r a i g h t f o r w a r d .

    F r o m t h e d e f i n i ti o n o f th e m e a s u r e m e n t r e l a t i o n

    ( 18 ) a n d t h e m e a s u r e m e n t n o i s e d e n s i t y ( 21 ), o n e

    sees tha t

    m k

    P(Zk/Xk) = ~ . , ~ k N , , k ( Z k - - H k x k - - V tk ) .

    U s i n g t h i s a n d ( 2 4) i n (3 ) a n d a p p l y i n g t h e t w o

    s c h o l i u m s , o n e o b t a i n s ( 25 ).

    T h e p r e d i c t i o n d e n s i t y i s d e t e r m i n e d f r o m ( 4) a n d

    l e a d s t o t h e f o l l o w i n g r e su l t .

    T h e o r e m

    3 .2 . A s s u m e t h a t

    p ( x k / Z k )

    i s g iven by

    ( 26 ). T h e n f o r t h e l i n e a r s y s te m (1 7 ) a n d p l a n t

    n o i s e ( 20 ) t h e p r e d i c t i o n d e n s i t y

    p ( X k + 1 / Z k )

    is

    n k $ k

    p(x~+l/z~)= Y, 2 a ~j J /x~ + l

    i = j= l

    - Ck + 1, kl~ik - 09jk) (27)

    w h e r e

    2 2 2 2

    2 u = ~ + l , k P lk + q yk

    I t i s c o n v e n i e n t t o r e d e f i n e te r m s s o t h a t ( 27 ) c a n

    b e w r i t t e n a s

    l k + l

    p x ~ +

    ~ l Z ~ ) = ~ ~ ( ~ + ~ ) N ~ ( ~ + , ) ( x k + ~ - ~ i ( ~ + ~)).

    2 8 )

    C l e a r l y , t h e d e f i n i t i o n o f p ( X o ) h a s t h e f o r m ( 2 8 )

    a s d o e s t h e p ( x k / Z k - 1 ) a s s u m e d i n T h e o r e m 3 . 1 .

    T h u s , i t f o l l o w s t h a t t h e g a u s s i a n s u m s r e p e a t

    t h e m s e l v e s f r o m o n e s t a g e t o t h e n e x t a n d t h a t ( 2 6 )

    a n d ( 2 8 ) c a n b e r e g a r d e d a s t h e g e n e r a l f o r m s t o r

    a n a r b i t r a r y s t ag e . T h u s , t h e g a u s s i a n s u m c a n

    a l m o s t b e r e g a r d e d a s a r e p r o d u c i n g d e n s i t y [ 1 6 ] .

    I t i s i m p o r t a n t , h o w e v e r , t o n o t e t h a t t h e n u m b e r

    o f t e r m s i n t h e g a u s s i a n s u m i n c r e as e s a t e a c h s t a g e

    s o t h a t t h e d e n s i t y is n o t d e s c r i b e d b y a f i x e d

    n u m b e r o f p a r am e t e r s . T h e d e n s i t y w o u l d b e t r u ly

    r e p r o d u c i n g i f o n l y t h e i n i t i a l s t a t e w e r e n o n -

    gauss ian , for exam ple , s ee Ref . [12]. I t i s c l ea r in

    t h i s c a s e t h a t t h e n u m b e r o f te r m s i n t h e g a u s s i a n

    s u m r e m a i n s e q u a l t o t h e n u m b e r u s e d t o d e f i n e

    p ( x o ) so t h a t p ( X k / Z k ) i s d e s c r i b e d b y a f i x e d n u m b e r

    o f p a r a m e t e r s .

    T h e r e a r e s e v e r a l a s p e c t s t h a t r e q u i r e c o m m e n t

    a t t h i s p o i n t . F i r s t , i f t h e g a u s s i a n s u m s f o r t h e a

    p r i o r i

    d e n s i t y a ll c o n t a i n o n l y o n e t e r m , t h a t i s , t h e y

    a r e g a u s s i a n , t h e K a l m a n f i l t e r e q u a t i o n s a n d t h e

    g a u s s i a n

    a p o s t e r i o r i

    d e n s i t y a r e o b t a i n e d . I n f a c t

    t h e e u a n d a . . 2 i n (2 5) a n d t h e m e a n s a n d v a r i a n c e s

    ~J

    21k2 in ( 2 7) e a c h r e p r e s e n t t h e K a l m a n f i l t e r e q u a -

    t i o n s f o r t h e i j t h d e n s i t y c o m b i n a t i o n . T h u s , t h e

    g a u s s i a n s u m i n a m a n n e r o 1 s p e a k i n g d e s c r i b e s a

    c o m b i n a t i o n o f K a l m a n f i lt er s o p e r a ti n g i n c o n c e r t .

    T o e x a m i n e t h i s t u r t h e r , c o n s i d e r t h e f i r s t a n d

    s e c o n d m o m e n t s a s s o c i a t ed w i t h t h e p r e d i c t i o n a n d

    f i l t e r ing d ens i t i e s .

    T h e o r e m 3.3

    l k m k

    1 = 1 j = l

    e E ( x ~ - ~ / ~ ) ~ l z d A _ p ~ / ~

    l k m k

    Y __ ., Y . , c i j [ o , j 2 + ~ k / , , - ~ t j) 2 ] 3 0 )

    i = 1 j = l

    E [ x k + ~ l Z d A e ~ + x / ~ = O k + ~ , k e ~ /k + E [ w d (31)

    E [ x ~ + 1 - ~ + ~ ~ ) 2[

    Z d = p k

    + ~ / k

    2

    = ~ k+ l , k2pk / k2 + E { [w k- -E (o gk ) ] 2} (32)

    w h e r e

    ~k

    t-----1

    ~k

    E { E W k - - ~ ( ( D k ) ] 2 } = ~ ~ i k q i k 2 d l- ( .Oik 2) - - E 2 W k ) .

    i - - - I

    I n e q u a t i o n ( 2 9 ) , t h e m e a n v a l u e ~ k / k i s f o r m e d

    a s t h e c o n v e x c o m b i n a t i o n o f th e m e a n v a l u e s 8 q

    o f t h e i n d i v i d u a l t e r m s , o r K a l m a n f i l t e r s , o f t h e

    g a u s s i a n su m . I t is

    i m p o r t a n t t o r e c o g n i z e

    t h a t t h e

    c q , a s i s a p p a r e n t f r o m e q u a t i o n ( 25 ), d e p e n d u p o n

    t h e m e a s u r e m e n t d a t a . T h u s , t h e c o n d i t i o n a l m e a n

    is a n o n - l i n e a r f u n c t i o n o f t h e c u r r e n t m e a s u r e m e n t

    d a t a .

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    10/15

    4 7 4 H .W . SOREN SO N an d D . L . A LSPA CH

    T h e c o n d i t i o n a l variance p k / k 2 d e s c r i b e d b y ( 3 0 )

    i s m o r e t h a n a c o n v e x c o m b i n a t i o n o f t he v a r i a n c es

    o f t h e i n d iv i d u a l t e r m s b e c a u s e o f t h e p r e s e n c e o f

    t h e t e r m ( ~ k / k - - e i j) z - T i f fs s h o w s t h a t t h e v a r i a n c e

    i s i n c r e a se d b y t h e p r e s e n c e o f t e rm s w h o s e m e a n

    v a l u e s d i f f e r s i g n i fi c a n t l y f r o m t h e c o n d i t i o n a l m e a n

    ~ k / k. T h e i n f l u e n c e o f th e s e t e r m s i s t e m p e r e d b y

    t h e w e i g h t i n g f a c t o r c ~ j . N o t e a l s o t h a t t h e c o n -

    d i t i o n al v a r i a n c e ( i n c o n t r a s t t o t h e l i n e a r K a l m a n

    f i lt e r ) i s a f u n c t i o n o f t h e m e a s u r e m e n t d a t a b e c a u s e

    o f th e c i j an d th e (~k /k - - e i j ) .

    T h e m e a n a n d v a r i a n c e o f t h e p r e d i c t io n d e n -

    s i t y a r e d e s c r i b e d in a n o b v i o u s m a n n e r . I f t h e

    g a u s s ia n s u m i s a n a p p r o x i m a t i o n t o t h e t r u e

    n o i s e d e n s i t y , t h e s e r e l a t i o n s s u g g e s t t h e d e s i r a b i l i t y

    o f m a t c h i n g t h e fi rs t t w o m o m e n t s e x a c t ly i n o r d e r

    t o o b t a i n a n a c c u r a t e d e s c r i p t io n o f t h e c o n d i t i o n a l

    m e a n ~ k+ l /k a n d v a r i a n c e P k + l /~ .

    A s d i s c u s s e d e a r l i e r, i t is c o n v e n i e n t t o a s s i g n t h e

    s a m e v a r i a n c e t o a l l t e r m s o f t h e g a u s s i a n s u m .

    T h u s , i f t h e i n i ti a l s t a t e a n d t h e m e a s u r e m e n t a n d

    n o i s e s e q u e n c e s a r e i d e n t i c a l l y d i s t r i b u t e d , i t i s

    r e a s o n a b l e t o c o n s i d e r t h e v a r i a n c e s f o r a l l t e r m s t o

    b e i d e n t i c a l a n d t o d e t e r m i n e t h e c o n s e q u e n c e s o f

    t h is a s s um p t i o n . N o t e f r o m S c h o l i u m 3 . 2 t h a t i f

    t h e n

    0"i2 = O ' j 2 m o - 2

    rU 2 = a 2 /2 f o r a l l i , j .

    T h u s , t h e v a r i a n c e r e m a i n s t h e s a m e f o r a l l t e r m s

    i n t h e g a u s s i a n s u m

    w h e n p x k / Z k )

    i s f o r m e d a n d t h e

    c o n c e n t r a t i o n s a s d e s c r i b e d b y t h e v a r i a n c e b e c o m e s

    g r e a t er . F u r t h e r m o r e , f r o m S c h o l i u m 3 .2 it f o l lo w s

    t h a t t h e m e a n v a l u e i s gi v e n b y

    i j - - ~ i 3 7 / ~ j

    2

    s o t h e n e w m e a n v a l u e i s th e a v e r a g e o f t h e p r e v i o u s

    m e a n s . T h i s s u g g es t s t h e p o s s i b i l i t y t h a t t h e m e a n

    v a l u e s o f s o m e t e r m s , s i n c e t h e y a r e t h e a v e r a g e o f

    t w o o t h e r t e r m s , m a y b e c o m e e q u a l , o r a l m o s t

    e q u a l. I f t w o t e r m s o f t he s u m h a v e e q u a l m e a n s

    a n d v a r i a n c e s , t h e y c o u l d b e c o m b i n e d b y a d d i n g

    t h e i r r e s p e c t iv e w e i g h t i n g f a c t o r s . T h i s w o u l d

    r e d u c e t h e t o t a l n u m b e r o f te r m s i n t h e g a u s s ia n

    s u m .

    T h e

    ~j

    i n ( 2 5 ) a r e e s s e n t i a l l y d e t e r m i n e d b y a

    g a u s s i a n d e n s it y . T h u s , i f

    Zk - -p ~ j

    b e c o m e s v e r y

    l a r g e , t h e n t h e c i j m a y b e c o m e s u f f i c i e n t l y s m a l l

    t h a t t h e e n t i r e t e r m i s n e g l ig i b l e. I f t e r m s c o u l d b e

    n e g l e ct e d , th e n t h e t o t a l n u m b e r o f t e r m s i n t h e

    g a u s s i a n s u m c o u l d b e r e d u c e d .

    T h e p r e d i c t i o n a n d f i l t e r i n g d e n s i t i e s a r e r e p r e -

    s e n t e d a t e a c h s t a g e b y a g a u s s i a n s um . H o w e v e r ,

    i t h a s b e e n s e e n t h a t t h e s u m s h a v e t h e c h a r a c t e r i s t i c

    t h a t t h e n u m b e r o f t e r m s i n c r e a s e s a t e a c h s t a g e a s

    t h e p r o d u c t o f th e n u m b e r o f te r m s i n t he t w o c o n -

    s t i t u e n t s u m s f r o m w h i c h t h e d e n s i t i e s a r e f o r m e d .

    T h i s f a c t c o u l d s e r i o u s l y r e d u c e t h e p r a c t i c a l i t y o

    t h i s a p p r o x i m a t i o n i f t h e r e w e r e n o a l l e v i a t i n g

    c i r c u m s t a n c e s . T h e d i s c u s si o n a b o v e r e g a r d i n g t h e

    d i m i n i s h i n g o f t h e w e i g h t i n g f a c t o r s a n d t h e c o m -

    b i n i ng o f t e r m s w i t h n e a r l y e q u a l m o m e n t s h a s

    i n t r o d u c e d t h e m e c h a n i s m s w h i c h s i g n i f i c a n t l y

    r e d u c e t h e a p p a r e n t i ll e f fe c t s c a u s e d b y t h e i n c r e a se

    i n t h e n u m b e r o f t e r m s i n th e s u m . I t is a n o b s e r v e d

    f a c t t h a t t h e m e c h a n i s m s w h e r e b y t e r m s c a n b e

    n e g l e ct e d o r c o m b i n e d a r e i n d e e d o p e r a t i v e a n d i n

    f a c t c a n s o m e t i m e s p e r m i t t h e n u m b e r o f t e r m s i n

    t h e s e r ie s t o b e r e d u c e d b y a s u b s t a n t i a l a m o u n t .

    S i n c e w e i g h t i n g f a c t o r s f o r i n d i v i d u a l t e r m s d o

    n o t v a n i s h i d e n t i ca l l y n o r d o t h e m e a n a n d v a r i a n c e

    o f m o r e g a u s s i a n d e n s i t i e s b e c o m e i d e n t i c a l, i t is

    n e c e s s a r y t o e s t a b l i s h c r i t e r i a b y w h i c h o n e c a n

    d e t e r m i n e w h e n t e r m s a r e n e g l ig i b l e o r a r e a p p r o x i -

    m a t e l y t h e sa m e . T h i s is a c c o m p l i s h e d b y d e fi n i n g

    n u m e r i c a l t h r e s h o l d s w h i c h a r e p r e s c r i b e d t o m a i n -

    r a i n t h e n u m e r i c a l e r r o r le s s t h a n a c c e p t a b l e l i m i t s.

    C o n s i d e r t h e e f f e c t s o n t h e L ~ e r r o r o f n e g l e c t i n g

    t e r m s w i t h s m a l l w e i g h t i n g f a c t o r s . S u p p o s e t h a t

    t h e d e n s i t y i s

    p ( x ) = ~ o q N a x - a i ) (3 3 )

    i = 1

    a n d s u c h t h a t a l , a 2 . . . . , ~ , , - l ( m < n ) a r e l es s t h a n

    s o m e p o s i ti v e n u m b e r 6 ~ . N o t e t h a t t h e v a r ia n c e

    h a s b e e n a s s u m e d t o b e t h e s a m e f o r e a c h t e r m .

    C o n s i d e r r e p l a c i n g p b y P a w h e r e

    pA(X) = 1 ~

    o~iN, , x - -a i ) .

    (3 4 )

    ~ , O ~i i = m

    i = m

    T h e t o l l o w i n g

    d i f f icu l ty .

    T h e o r e m

    3.4.

    b o u n d i s

    d e t e r m i n e d w i t h o u t

    f

    ~ m - - 1

    Ip(x)-p (x)ldx 2 E ( 3 5 )

    1 = 1

    < 2(m - 1 )61 . (36)

    T h e L ~ e r r o r c a u s e d b y n e g l ec t i ng ( m - 1) t e r m s

    each o f w h ich a r e l e s s th an f i~ i s s een in (3 5 ) to b e

    l e s s t h a n t w i c e t h e s u m o f t h e n e g l e c t e d t e r m s .

    T h u s , t h e t h r e s h o l d fi~ c a n b e s e l e c t e d b y u s i n g ( 3 6 )

    o r ( 3 5 ) t o k e e p t h e i n c r e a s e d L 1 e r r o r w i t h i n

    a c c e p t a b l e l i m i ts .

    C o n s i d e r t h e s i t u a t i o n i n w h i c h t h e a b s o l u t e

    v a l u e o f t h e d i f f e r e n c e o f t h e m e a n v a l u e s o f t w o

    t e r m s i s sm a l l . I n p a r t i c u l a r , s u p p o s e t h a t a 1 a n d a 2

    a r e a p p r o x i m a t e l y t h e s a m e a n d c o n s i d e r t h e L 1

    e r r o r t h a t r e s u l t s i f t h e

    p x )

    g iv en in (3 3 ) i s r ep lac ed

    b y

    p a ( x ) = ~

    o q N , x - a i ) + o q + o t z ) N ~ x - ~ )

    (3 7 )

    i = 3

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    11/15

    R e c u r s i v e B a y e s i a n e s t i m a t i o n u s i n g g a u s s i a n s u m s 4 7 5

    w h e r e

    U s i n g ( 3 7 ) , o n e c a n p r o v e t h e f o l l o w i n g b o u n d .

    F o r a d e t a i l e d p r o o f o f th i s a n d o t h e r r e s u l t s , se e

    Ref. [17].

    Theorem 3.5.

    f ~ _ o l P x ) - p A X ) l d x < _ 4 ~ 2 M l a 2 - a l I+ ~

    (3 8 )

    T h u s t e r m s c a n b e c o m b i n e d i f t h e r i g h t - h a n d s i d e

    o f ( 3 8 ) i s l e s s t h a n s o m e p o s i t i v e n u m b e r 6 2 w h i c h

    r e p r e s e n t s t h e a l l o w a b l e L ~ e r r o r . T h e M i n ( 3 8) i s

    t h e m a x i m u m v a l u e o f N , a n d i s gi v e n b y

    1

    M =

    O b s e r v e t h a t a s t h e v a r i a n c e t r d e c r e a s e s , t h e

    d i s t a n c e b e t w e e n t w o t e r m s t o b e c o m b i n e d m u s t

    a l s o d e c r e a s e i n o r d e r t o r e t a i n t h e s a m e e r r o r

    b o u n d .

    3.2. A numerical example

    I n t h i s s e c t i o n t h e r e s u l t s p r e s e n t e d i n s e c t i o n 3 .1

    a r e a p p l i e d t o a s p e c i fi c e x a m p l e . T o m a k e ( 1 7 )

    a n d ( 1 8 ) m o r e s p e c i f ic , s u p p o s e t h a t t h e s y s t e m i s

    X k ~ - - X k - I ~ Wk- 1

    (3 9 )

    Zk = Xk + vk

    (4 0 )

    w h e r e t h e xo, Wk, Vk k= O , 1 . . . ) a r e a s s u m e d t o

    b e u n i f o r m l y d is t r i b u te d o n ( - 2 , 2 ) as d e fi n e d b y

    (15).

    T h e p r o b l e m t h a t i s c o n s i d e r e d re p r e s e nt s s o m e -

    t h i n g o f a w o r s t c a s e f o r t h e a p p r o x i m a t i o n b e c a u s e

    t h e i n i ti a l s t a t e a n d t h e n o i s e s e q u e n c e s a r e a s s u m e d

    t o b e u n i f o r m l y d i s t r i b u t e d w i t h t h e d e n s i t y d i s -

    c u s s e d i n s e c t i o n 2 .2 . A s d i s c u s s e d t h e r e , t h e d i s -

    c o n t i n u i t i e s a t + 2 m a k e i t d i i f ic u l t t o f i t t h i s d e n s i t y

    a n d n e c e s si t at e s th e u s e o f m a n y t e r m s i n t h e

    g a u s s i a n s u m . T h e s p e c if i c a p p r o x i m a t i o n u s e d

    h e r e c o n t a i n s 1 0 t e r m s a n d i s s h o w n i n F i g . l ( b ) .

    I t i s a p p a r e n t t h a t t h i s a p p r o x i m a t i o n h a s n o n -

    t r i v i a l e r r o r s i n t h e n e i g h b o r h o o d o f t h e d is -

    c o n t i n u i t i e s b u t n o n e t h e l e s s r e t a i n s t h e b a s i c

    c h a r a c t e r o f t h e u n i f o r m d i s t ri b u t io n .

    T h e p e r f o r m a n c e o f th e g a u s si a n s u m a p p r o x i m a -

    t i o n f o r t h i s e x a m p l e i s d e s c r i b e d b e l o w b y c o m -

    p a r i n g t h e c o n d i t io n a l m e a n a n d v a r i a n c e p r o v i d e d

    b y t h e a p p r o x i m a t i o n w i t h t h a t p r e d i c t e d b y t h e

    K a l m a n f i l t e r a n d w i t h t h e s t a ti s t ic s o b t a i n e d b y

    c o n s i d e r in g t h e t r u e u n i f o r m d i s t ri b u t i on . T h e

    l a t t e r h a v e b e e n d e t e r m i n e d f o r t h is e x a m p l e a f t e r a

    n o n t r i v ia l a m o u n t o f n u m e r i c a l c o m p u t a t i o n . I n

    a d d i t i o n t h e t r u e a posteriori d e n s i t y p Xk/Zk) h a s

    b e e n c o m p u t e d a n d i s c o m p a r e d w i t h t h a t o b t a i n e d

    u s i n g t h e a p p r o x i m a t i o n .

    T h e K a l m a n e r r o r v a r i a n c e is i n d e p e n d e n t o f t h e

    m e a s u r e m e n t s e q u e n c e a n d c a n c a u s e m i s l e a d i n g

    f i l te r r e s p o n s e . F o r e x a m p l e , f o r s o m e m e a s u r e -

    m e n t s e q u e n c e s p e r f e c t k n o w l e d g e o f t h e s t a t e i s

    p o s s i b l e , t h a t i s t h e v a r i a n c e i s z e r o , b u t t h e K a l m a n

    v a r i a n c e s t il l p r e d i c t s a l a r g e u n c e r t a i n t y . F o r

    e x a m p l e , s u p p o s e t h a t t h e m e a s u r e m e n t s a t e a c h

    s t a g e a r e e q u a l t o

    Z k = 2 k + 4 , k = 0 , 1 . . .

    T h e n , t h e m i n i m u m m e a n - s q u a r e e s t i m a t e f o r t h e

    s t a t e b a s e d o n t h e u n i f o r m d i s t r i b u t i o n i s

    . k / k = 2 k + 2 , k = O , 1 . . .

    a n d t h e v a r i a n c e o f t h i s e s t i m a t e i s

    Pk/k2=O f o r a l l k .

    T h u s , f o r t h i s m e a s u r e m e n t r e a l i z a t i o n t h e m i n i -

    m u m m e a n - s q u a r e e s t i m a t e is e r r o r - f r e e . S i n c e t h e

    K a l m a n v a r i a n c e is in d e p e n d e n t o f t h e m e a s u r e -

    m e n t s , i t is n e c e s s a ri l y a p o o r a p p r o x i m a t i o n o f t h e

    a c t u a l c o n d i t i o n a l v a r i an c e . T h e s q u a r e r o o t o f t h e

    K a l m a n v a r i a n c e 7KAL a n d t h e e r r o r i n t h e b e s t

    l i n e a r e s ti m a t e t o g e t h e r w i t h t h e s q u a r e r o o t o f th e

    v a r i a n c e a~s a n d e r r o r i n t h e e s t i m a t e o f t h e s t a te

    f o r t h e t e n t e r m g a u s s ia n s u m f o r t hi s m e a s u r e m e n t

    r e a l i z a t i o n is s h o w n i n F i g . 3 (a ) . T h i s s h o w s t h a t a

    c o n s i d e r a b l e i m p r o v e m e n t i n b o t h t h e m e a n a n d

    v a r i a n c e i s p r o v i d e d b y t h e g a u s s i a n s u m w h e n

    c o m p a r e d w i t h t h e r e su l ts p r o v i d e d b y th e K a l m a n

    f i l ter .

    (a)

    o ' i o

    0 8

    0-7

    0.6

    0 5

    0 4

    0-5

    0.2

    0 1

    %

    I 0

    0-9

    0.8

    0.7

    0.6

    0.5

    0-4-

    0 .3

    0.2

    0.1

    0 0

    + f . t r - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + C T K A

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ K A L

    . . . . '

    f

    /

    ( .

    : 1 - ~ . . . . . . . . . X C S

    - / .

    v I 1 I I I I I I 1 I I I I 1 I I I I I

    I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20

    K

    b )

    I / /

    I , , ' / V , x o o ,

    ~ . a r R u z

    - 5 ', "~'.-'.,:'-~c.-~'

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    12/15

    476 H .W . SORENSON and D. L. ALSPACH

    The measurement seq uence d escr ibed above i s

    highly imp robab le. A more representat ive case is

    d ep ic t ed in F ig . 3 (b ) in w h ich t he p lant and measure-

    ment noise s eq uences were chosen us ing a rand om

    number generat or for t he un i form d is t r ibut ion

    prescr ibed above . Th is f igure again show s t hat t he

    gauss ian sum approx imat ion t o t he t rue var iance i s

    cons id erab ly improved over t he Kalman es t imat e

    and, in fact , agrees very closely with the true

    s t and ard d eviat ion a T RU ~ of t he

    p o s t e r i o r i

    density.

    However , t he Kalman var iance i s represent at ive

    enough t hat t he error in t he es t imat e of t he mean i s

    not part icularly d if ferent than that provided by the

    gaussian sum.

    T h e p o s t e r i o r i density funct ion for the third and

    fourteenth stages is shown in Figs . 4 (a) and 4(b) .

    In these f igures , the actual density, the gaussian

    approx imat ion provid ed by t he Kalman f i l t er and

    t he gauss ian sum approx imat ion are a l l inc lud ed .

    At stage 3 , the true variance is smal ler than the

    Kalman var iance and t he Kalman mean has a

    s ignif icant error whereas at s tage 14 the true

    variance is larger than that predicted by the Ka lman

    fi lter . No te that the error in the

    p r i o r i

    density

    approximat ion at the d iscont inuit ies is s t i l l evident

    in the

    p o s t e r i o r i

    approx imat ion but t hat t he

    general character of the density is reproduced by

    the gaussian sum.

    b .

    ( : 3

    13.

    0 , 7 5

    0 . 5 0

    0 2 5

    a )

    T r u e p r o b a b i l i t y d e n s i t y

    . . . . . . . K a l m a n a p p r o x i m a t io n

    . . . . G a u s s i a n s u m a p p r o x i m a t io n

    / \

    l /

    + . . \

    . 7 .

    . : . ' '. + . \

    . f'/ / .

    . . . i + . . ' \

    \

    ' '#

    + ~ . X

    , , , / / 't..

    \

    i i

    0 5 I ' 0 1 ' 5 2 0 2 ' 5 S ' O

    x

    0 . 5

    0 . 4

    ~ 0 . 3

    a

    ( 3 -

    0 2

    O i

    I 0

    b )

    . . . . ,

    , . . \

    . . L

    ' ,

    j .:.:,',,,

    / ," ". \

    / ' .. \

    . : . .. \ \

    / . : ' . \

    / . . ' ' ,

    / . . ' ' .

    1 , 0 2 ' 0 3 - 0 . 4 - 0

    x

    ~ 3

    5 0

    0 ' 5 0

    r ~

    Q .

    0 ' 2 5

    ( c )

    o .7 5 T r u e p r o b a b i l i t y d e n s i t y

    . . . . . 8 ~ = 0 . 0 0 1 = 8

    . , . ' , ~

    ; ' ~

    ~ I I I

    0 - 0 0 . 5

    0 . 4 -

    0 3

    Q

    n O . 2

    %

    I I 0

    I ' 0 I - 5 2 0 2 ' 5 S ' O 0

    x

    d )

    . .. .. .. .. .. 8 , = 0 . 0 O I , 8 = 0 . 0 0 . 5

    . . . . . 8 1= 0 0 0 5 , 8 2 = 0 . 0 O I

    . ~ . ~ :+ -h +

    Y

    ;W

    ~ ..

    / . ' - I : \

    ~ - 1 , , , , , , ,

    1 . 0 2 0 3 0 4 . 0

    x

    FIO. 4. Influence of 61, &z on p o s t e r i o r l density.

    (a) Third stal~l---82------0 001.

    Co) Fourteenth stag~---Sl =8 2 =0 .00 1.

    ( c) T hir d s t a l l = 0 0 0 1 , 6 2 = 0 . 0 0 5 . a n d 5 t = 0 0 0 5 , 6 1 = 0 0 0 1 .

    (d) Fourteenth staile---alffi04)05, &z=0 001. and 51 =0 .00 1, 8 z= 0.0 05 .

    \

    5 ' 0

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    13/15

    Recursive Bayesian estimation using gaussian sums 477

    In Figs. 4(a) and 4(b) the approximations at each

    stage are based on terms being eliminated when

    their weighting functions are less than St=0.001

    and combined when the difference in mean values

    cause the L ~ error to be less than 52=0.001. The

    effect of changing these parameters, that is, 5~ and

    52, can be seen in Figs. 4(c ) and 4(d). In these

    figures, the effect of changing 5t and c52 is shown.

    In one case tS~ is increased from 0.001 to 0.005 while

    keeping 52 equal to 0.001. Alternatively, 52 is in-

    creased to 0.005 while the value of 5~ is maintained

    equal to 0.001. It is apparent in this example tha t

    52 has a larger effect on the density approximation.

    The increase in this parameter can be seen to

    introduce a ripple into the density function and

    indicates that the individual terms have become too

    widely separated to provide a smooth approxima-

    tion. It is interesting tha t the effect appears to be

    cumulative as the ripple is not apparent after three

    stages but is quite marked a t the 14th stage.

    The effect of improving the accuracy of the

    density approximation by including more terms in

    the

    a p r i o r i

    representations and by retaining more

    terms for the

    a p o s t e r i o r i

    representation can be seen

    in Fig. 5. Twenty terms are included in the

    a p r i o r i

    densities and 5~ and 52 are reduced to 0.0001. The

    figure presents the actual

    a p o s t e r i o r i

    density, the

    gaussian sum approximation, and the gaussian

    approximation provided by the Kalman filter

    equations. Comparison of the results for stages 3

    and 14 with Fig. 4 indicates the improvements in

    the approximation that have occurred.

    - - T r u e pr o b a bi l it y d e n si ty

    . . . . . Kalma n approximation

    G a u s s i a n s u m ap p r ox i ma t i on

    4 . C O N C L U S I O N S

    The approximation of density functions by a

    sum of gaussian densities has been discussed as a

    reasonable framework within which estimation

    policies for non-linear and/or nongaussian stochastic

    systems can be established. It has been shown that

    a probability density function can be approximated

    arbitrarily closely except at discontinuities by such

    a gaussian sum. In contrast with the Edgeworth or

    Gram-Charlier expansions that have been in-

    vestigated earlier, this approximation has the

    advantage of converging to a broader class of

    density functions. Furthermore, any finite sum of

    these terms is itself a valid density function.

    The gaussian sum approximation is a departure

    from more classical approximation techniques

    because the sum is restricted to be positive for all

    possible values of the independent variable. As a

    result, the series is not orthogonalizable so tha t the

    manner in which parameters appearing in the sum

    are chosen is not obvious. Two numerical pro-

    cedures are discussed in which certain parameters

    are chosen to satisfy constraints or are somewhat

    arbitrarily selected and others are chosen to mini-

    mize the

    k

    error.

    It is anticipated that the gaussian sum approxima-

    tion will find its greatest application in developing

    estimation policies for non-linear stochastic systems.

    However, many of the characteristics exhibited by

    non-linear systems and some of the difficulties in

    using the gaussian sum in these cases are exhibited

    by treating linear systems with nongaussian noise

    0 5 0 F . . 2 O F 0 . 7 5 I - 0 ' 5 0 I -

    L l b . . l . . . . .

    . . . . u _ - - - ' '

    02 5 ~ . - - '~ - "m-- -~- I o I0 c -, . . a .- 0 25

    / . . . . . . . . . . . . . . . . . .

    _

    o , : . , o l . . . . . ; i o o - i o [ . ' ' ,

    -~

    - 2 - 5 0 0 2 5 0 2 0 1 .5 0 5 ' 0 0 0 2 . 5 0 5 . 0 0

    x X X X

    0 . 5 0 F . . . . I 0 - 0 - 5 O f - 0 5 0 [ - . ' . .

    . . . . . t - b - , , t -

    0 .~ :5 . .' ~ _ , ~ l 1 . ~ % 2 5 t - . .7 . t ~ c ~ t - I ,' . . ' ' - '- ' ~ , , ,

    o , . . . , J , ' l _ , o l . . . . . . . . . : / , , I % o 1 . ; ' 1 , ,

    - I 0 0 i 5 0 - 2 5 0 ' , 0 0 5 0 0 0 2 . 5 0 5 0 0 1 .5 0 4 - 0 0 6 - 5 0

    X X X X

    0 . 5 0[ 0 5 0 [ 0 5 0 l I 0 [

    1 ' 50 4 ' 0 0 6 ' 5 0 0 2 5 0 0 0 1 .5 0 4 0 0 2 0 4 0 6 0

    X X X X

    5 r l - . . --~-'~m-q/ k 5 r 5 1 - I f ~

    o L , ~ f 1 I I I f ' . , o l , . d " ~ I

    r

    r - . , , o L. ,L " ~ I I I t z ' ~ oi ~ i i t i" L'~---.t

    0 2 5 0 5 0 0 0 2 5 0 5 . 0 0 C ,'~ O 2 . 0 0 4 - 5 0 i O 4 0 5 . 0. 6 0

    X X X X

    Fie 5 A p o s te r io r i d e n s i t y f o r s i x t e e n s t a g e s .

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    14/15

    478 H . W. SORENSON an d D. L. ALSPACH

    sources. Of course, whe n the noise is entirely

    gaussian the problem degenerates and the familiar

    Kalman filter equations are obtained as the exact

    solut ion of the problem.

    The l inear, nongauss ian est imation problem is

    discussed and it is shown that, if the

    a priori

    density

    functions are represented as gaussian sums, then

    the number of terms required to describe the a

    posteriori

    density is equal to the product of the

    number of terms of the

    a priori

    densities used to

    form it. The appar ent disa dvanta ge is seen to cause

    little difficulty however, b ecause the m omen ts of

    many individual terms converge to com mon values

    which allows them to be combi ned. Furth er, the

    weighting factors associated with man y other terms

    become very small and permit those terms to be

    neglected without introducing significant error to

    the approximation.

    Numerical results for a specific system are

    presented which provide a demonstrat ion of some

    of the effects discussed in the text. These results

    confirm dramatical ly that the gaussian sum approxi-

    mation can provide considerable insight into

    problems that hi therto have been intractable to

    analysis.

    REFERENCES

    [1] A. H. JAZWINSKI: Stochastic Processes and Filtering

    Theory.

    Academic Press, New York (1970).

    [2] R. E. KALMAN: A new approach to l inear filtering and

    prediction problems.

    J. bas. Engng

    82D, 35--45 (1960).

    [3] H. W. SORENSON

    Advances in Control Systems

    Vol. 3,

    Ch. 5. Academic Press, New York (1966).

    [4] R. COSAERT and E. GOTTZEIN: A decoupled shifting

    memory filter method for radio tracking of space

    vehicles. 18th International Astronautical Congress,

    Belgrade, Yugoslavia (1967).

    [5] A. JAZWINSKI: Adaptive filtering. Automatica 5 475-

    485 (1969).

    [6] Y. C. Ho and R. C. K. LEE: A Bayesian approach to

    problems in stochastic estimation and control.

    IEEE

    Trans. Aut. Control

    9, 333-339 (1964).

    [71 H. J. KUSHNER: On the differential equations satisfied

    by conditional probability densities of Markov pro-

    cesses.

    SIAMJ. Control

    2, 106-119 (1964).

    [8] J. R. FmrlER and E. B. STEAR: Optimal non- linear

    filtering for independent increment processes, Parts I

    and II.

    IEEE Trans. Inform. Theory

    3, 558-578 (1967).

    [9] M. AOKI:

    Optimization of Stochastic Systems Topics

    in Discrete-Time Systems.

    Academic Press, New York

    (1967).

    [10] H. W. SORENSON and A. R. STOBBERUD: Nonlinear

    filtering by approximation of the

    a posteriori

    density.

    Int. J. Control 18, 33-51 (1968).

    [11] M. AOKI: Optimal Bayesian and rain-max control of a

    class of stochastic and adaptive dynamic systems.

    Pro-

    ceedings IFA C Symposium on Systems Engineering for

    Control System Design

    Tokyo, pp. 77-84 (1965).

    [12] A. V. CAMERON: Control and estimation of linear

    systems with nongaussian

    a priori

    distributions.

    Pro-

    ceedings of the Third Annual Conference on Circuit and

    System Science

    (1969).

    [13] J. T. Lo: Finite dimensional sensor orbits and optimal

    nonl inear filtering. University of Southern California.

    Report USCAE 114, August 1969.

    [14] J. KOREYAAR: Mathematical Methods Vol. 1, pp. 330-

    333. Academic Press, New York (1968).

    [l 5] W. FELLER: An Introduction to Probability Theory and

    Its Applications

    Vol. lI, p. 249. John Wiley, New York

    (1966).

    [16] J. D. SI'RAOINS: Reproducing distributions lbr machine

    learning. Standard Electronics Laboratories, Technical

    Report No. 6103-7 (November 1963).

    [17] D. L. ALST'ACH: A Bayesian approximation technique

    for estimation and control of time-discrete stochastic

    systems. Ph.D. Dissertation, University of Cahfornia,

    San Diego (1970).

    R6sum~--Les relations recurrentes bayesiennes qui decrivent

    le comportement de la fonction de densit6 de probabilit6

    a posteriori de l'6 tat d'un syst6me al6atoire, discret dans le

    temps, en se basant sur les donn6es des mesures disponibles,

    ne peuvent ~tre g6n6ralement resolues sous une forme fermee

    lorsque le syst6me est soit non-lin6aire, soit non-gaussien.

    ke present article introduit et propose une approximation de

    densit6, mettant en jeu des combinaisons convexes de fonc-

    tions de densit6 gaussiennes, ~t titre de m6thode efficace pour

    6viter les difficultes rencontr6es dans l'6valuat ion de ces

    relations et dans l'utilisation des densit6s en r6sultant pour

    determiner des strat6gies d'6valuation particuli6res. II est

    montr6 que, lorsque le nombre de termes de la somme

    gaussienne augmente sans limites, l'approximation converge

    uniformement vers une fonction de densit6 quelconque dans

    une cat6gorie 6tendue. De plus, toute somme finie est elle-

    m6me une fonetion de densit6 valable, d'une mani6re

    diff6rente des nombreuses autres approximations 6tudi6es

    dans le pass6.

    Le probl6me de la determination des estimations de la

    densit6 a posteriori et de la variance minimale pour des

    syst~mes lin~aires avee bruit non-gaussien est trait6 en

    utilisant l'approximation des sommes gaussiennes. Ce

    probl6me est 6tudi6 parce qu 'il peut ~tre trait6 d'une mani~re

    relativement simple en utilisant l'approximation mais

    cont ient encore la plupart des difficult~.s rencontr6es en

    consid6rant des syst+mes non-lin6aires, puisque la densit6

    a posteriori est non-gaussienne. Apr6s la discussion du

    probl6me g6n6ral du po int de vue de l'applicationdes sommes

    gaussiennes, l'article pr6sente un exemple num6rique dans

    lequel les statistiques r6611es de la densit6

    a posteriori

    sont

    compar6es avec les valeurs pr6dites par les approximations

    des sommes gaussiennes et du filtre de Kalman.

    Zusammenfassung--Die Bayes'schen Rekursionsbezie-

    hungen, die das Verhalten der a priori-Wahrscheinlichkeits-

    dichtefunktion des Zustandes eines zeitdiskreten stochasti-

    schen Systems beschrieben, k6nnen nicht allgemein in

    geschlossener Form gel6st werden, wenn das System ent-

    weder nichtlinear oder nicht-gaussisch ist. In dieser Arbeit

    wird eine Dichteapproximation, die konvexe Kombina-

    tionen von Gauss'schen Dichtefunktionen enth~ilt, eingefiihrt

    und als bedeutungsvoUer Weg zur Umgehung der Schwierig-

    keiten vorgeschlagen, die sich bei der Auswertung dieser

    Beziehungen und bei der Benutzung der resultierenden

    Dichten ergeben, um die spezifische Schiitzstrategie zu

    bestimmen. Ersichtlich konvergiert, da die Zahl der Terme

    in der Gauss'schen Summe unbegrenzt w~ichst, die Approxi-

    mation gleichm~il~igzu einer Dichtefunktion in einer um-

    fassenden Klasse. Weiter ist eine endliche Summe selbst eine

    gfiltige Dichtefunktion, anders als viele andere schon

    untersuchte Approximationen.

    Das Problem der Bestimmung der Sch~ttzungen der a

    posteriori-Dichte und des Varianzminimums ftir lineare

    Systeme mit nichtgauss'schem Ger~iusch wird unter Behand-

    lung der Gauss'schen Summenapproximation behandelt.

    Dieses Problem wird betrachtet, well es in einer relativ

    geraden Art unter Benutzung der Approximation behandelt

    werden kann, abet immer noch die meisten der Schwierig-

    keiten enth~ilt, denen man bei der Betrachtung nichtlinearer

    Systeme begegnet, da die a posteriori-Dichte nichtgaussisch

    ist. Nach der Diskussion des allgemeinen Problems vom

    Gesichtspunkt der Anwendung Gauss'scher Summen, wird

    ein Zahlenbeispiel gebracht, in dem die aktuellen Statistiken

    der a posteriori-Dichte mit den Werten verglichen werde,

    die durch die Gauss'sche Summe und durch die Kalman-

    Filter-Approximationenvorhergesagt wurden.

  • 8/11/2019 Recursive Bayesian Estimation Using Gaussian Sums

    15/15

    Recursive Bayesian estimation using gaussian sums 479

    Pe~IOMe---PeKypcHBHMe

    6a~eco m : r ~e

    BMpa~eHH~ OnHCM-

    aalottlne nOBelIeHHe anocTepHopHoi~ ~ymmH nnOTHOCTH

    BepO~ITHOCTH COCTOIIHH~Icay~aI~o~ CHCTeMbI, ]IHCI{peTHO~

    n o

    SpeMetlrl, OCHOSl,magcl, Ha ~ocTynm~Ix pe3ynbTaTax

    H3MepeHgl~, He M O F y T 6MTI, O61,DIHO peii ieHl , B 3aMKHyTOI~

    dpOpMe Kor ea CHCTeMa HH60 HCHHHe]~Ha, dIH6 0-~e He

    ssnaerc~ raycco~croit HaCTOSi~a~

    CTaTb~ BBO~HT H

    npemmraer

    npH6HH~KeHHe ILrlOTHOCTH,

    npa6craromcc

    K

    COqeTallI~lM

    ayccoBCKHX dpyHKl1Hlt HHOTHOCTH, B Ka~ICCTBe

    3Op~eKTHBHOFO MeTo~Ia ~n a H3~KaHHfl 3aTpy~HeHHl~

    BCTpeqaeMblX B OI~eHKe 3THX Bblpa~KeHH~ H B HCHO.rlb3OBaHHH

    B],~TeKaIOILmX H3 HHX HJIOTHOCTeI'~ ~II~1 onpe~eHH~ ~aHHblX

    CTaTerH.fi OReHKH. I'IoKa3MBaeTC~ qTO, KOFRa ~IHCHO

    ~IeHOB raycco~croit CyMMbI 6ecnpe~eH~HO Bo3pacTaeT,

    rlpH6nH~KeHHe paBHOMepHo CTpeMrlTC~I K n/o6 o~ t (I~yHKI~HH

    ILrIOTHOCTH B IIIHpOKOM KJlaCC~. CB ep x ~TOFO, BCaKa~I

    KOHeqHall CyMMa caM a ~IBJl~leTCfl rlpHeMneMOl'~ ~yHKHHeI~

    IIHOTHOCTH~ B OTJIPIqI4H OT MHOFO~4~HCHeHH]bIX ~Ip yr tl x

    npH6Jm~cermll H3y~aBmHXC~ S np omn oM.

    I-[po6J1eMa oHpo~eJ1erm~ OHOHOK anOCTOpHOpHOfl rmO-

    THOCTII H MHHHMaYlbHO~ BapHaHTHOCTH ~flH HHHCflHbIX

    CHCTeM C IIo-rayccoBCIOIM IIIyMOM pemaeTcf l c n oMo tI~r O

    npH6nrmcon~ rayccoBcrdax CyMM. ~Ta npo6fleMa n3y-

    tlaeTCfl IIOTOMy qTO OHa MO)KeT 6bITb peI iie Ha cpaBHll Te-

    JlbHO npOCTO Hcno.rtl,3y~ n pH fm , xcerme HO co~lep~crlT e me

    60JIBIIIHHCTBO 3aTpy~IHeHni~ BCTpeqaeMI, IX pacCMaTpHBa~

    HeaaHeianbie CHCTeMbI, H60 ario crepa opria a nn or ao cr b

    aa ~e wc s He-raycc oBczoit Hoc ne o6cy:~cjXeHaa o6IUeR

    npo6H eMb l C TOqKH 3peHHll HpHMeHeHH~I rayCCOBCKHX

    CyMM~ CTaTl~fl ~laeT qHCJIOBOI~ rlpltMep B KOTOpOM ~el~CTBHTe-

    IlbHble CTaTHCTHKH anO cTepr lopHo lt ILrlOTHOCTH cpaBHHBalO-

    TCfl C 3HaLIeHH~VIH Hpe~cKa3at-IHblMrl HpH6HH)KeHri~Mri

    rayc coac Kax CyMM H ~HHbTpa KanMana.