recent sz observations and prospects for cluster surveys · 2005. 11. 15. · recent sz...

23
Recent SZ observations and prospects for cluster surveys Rüdiger Kneissl UC Berkeley (Astronomy & Physics) Distant cluster workshop, Schloss Ringberg, 27 October 2005 1

Upload: others

Post on 31-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Recent SZ observations and prospects for cluster surveys

    Rüdiger Kneissl

    UC Berkeley (Astronomy & Physics)

    Distant cluster workshop, Schloss Ringberg, 27 October 2005

    1

  • • Examples of recent SZ cluster observations

    – Baryon fraction and M-T relation from the VSA sample

    – High sensitivity SZ observations (first AMI targets)

    • Cluster searches

    – Interferometer technique: AMI

    – Multi-bolometer arrays: APEX-SZ

    – Satellite by-product: Planck

    • Outlook

    2

  • The VSA cluster sample: Coma, A1795, A399+A401, A478, A2142, A2244CONT: COMA C IPOL 33841.019 MHZ COMA-S test.ICL001.2PLot file version 1 created 28-MAY-2004 13:45:03

    Cont peak flux = -2.4479E-01 JY/BEAM Levs = 3.021E-02 * (-10, -9, -8, -7, -6, -5, -4,-3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

    DECLINATION (B1950)

    RIGHT ASCENSION (B1950)13 02 01 00 12 59 58 57 56 55 54 53

    29 00

    28 30

    00

    27 30

    CONT: A1795 IPOL 34096.665 MHZ A1795-6 T.08.ICL001.2PLot file version 3 created 20-MAY-2004 13:33:23

    Cont peak flux = -2.0493E-01 JY/BEAM Levs = 3.500E-02 * (-10, -9, -8, -7, -6, -5, -4,-3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

    DECLINATION (B1950)

    RIGHT ASCENSION (B1950)13 51 50 49 48 47 46 45 44 43 42

    27 30

    00

    26 30

    00

    CONT: A401 IPOL 33837.746 MHZ A401-6 T.075.ICL001.4PLot file version 3 created 20-MAY-2004 13:40:47

    Cont peak flux = 1.5093E-01 JY/BEAM Levs = 4.000E-02 * (-10, -9, -8, -7, -6, -5, -4,-3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

    DECLINATION (B1950)

    RIGHT ASCENSION (B1950)03 00 02 59 58 57 56 55 54 53 52

    14 00

    13 30

    00

    12 30

    A399

    A401

    CONT: A478 IPOL 32999.999 MHZ A478-4 T.16.ICL001.1PLot file version 3 created 20-MAY-2004 13:47:11

    Cont peak flux = -1.3904E-01 JY/BEAM Levs = 3.200E-02 * (-10, -9, -8, -7, -6, -5, -4,-3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

    DECLINATION (B1950)

    RIGHT ASCENSION (B1950)04 15 14 13 12 11 10 09 08 07

    11 00

    10 30

    00

    09 30

    CONT: A2142 IPOL 34068.122 MHZ A2142-7 T.1.ICL001.2PLot file version 4 created 20-MAY-2004 13:49:41

    Cont peak flux = -1.7375E-01 JY/BEAM Levs = 3.800E-02 * (-10, -9, -8, -7, -6, -5, -4,-3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

    DECLINATION (B1950)

    RIGHT ASCENSION (B1950)16 01 00 15 59 58 57 56 55 54 53 52

    28 00

    27 30

    00

    26 30

    CONT: A2244 IPOL 33834.418 MHZ A2244-5 T.19.ICL001.1PLot file version 4 created 20-MAY-2004 13:59:34

    Cont peak flux = 6.6234E-02 JY/BEAM Levs = 2.600E-02 * (-10, -9, -8, -7, -6, -5, -4,-3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

    DECLINATION (B1950)

    RIGHT ASCENSION (B1950)17 06 04 02 00 16 58 56

    35 00

    34 30

    00

    33 30

    Gas fraction measurement

    Combined constraint:fg = 0.08

    +0.06−0.04h

    −1 (Lancaster et al.,astro-ph/0405582)

    A mass - temperature relation

    Agrees with X-ray determinations

    Understanding LSZ - M relation, ie. M-T and fg, will be essential for the SZ surveys.

    3

  • Analysis

    Cluster model: assume gas density King-profile with HSE giving total mass, eg. M200,

    Mr =3βr3

    r2c + r2

    kT

    µG

    and gas mass Mg = 4πρg(0)r3c∫ r/rc0 (1 + x

    2)−3β/2xdx, x = r/rc. Therefore

    fg =Mg

    Mrand also A = MrT

    −3/2 =3βr3

    r2c + r2

    kT−1/2

    µG

    Radio sources: 41 radio source (400 > Sν > 20mJy; ∼ 3σ) simultaneously observedand subtracted from the data; preselecting all NVSS and GB6 sources with predictedfluxes > 50mJy within 2◦ radius and raster-scanning one square-degree with the Ryletelescope to S15GHz > 20mJy.

    Bayesian Inference: P (Θ|data, H) = P (data|Θ, H)P (Θ|H)/P (data|H);characterisation of posterior PDF with Monte-Carlo approach; typically 10 Markovchains running in parallel using BAYESYS, evaluation in visibility (Fourier) space; weakpriors on rc, β, Mg, strong prior on Te.

    4

  • The Arcminute Micro-Kelvin Imager

    10 3.7m (200 λ ∼ 3’) & 8 13m antennae, 12-18 GHz, Tsys = 25K

    AMI Collaboration: R. Barker, P. Biddulph, D. Bly, R. Boysen, A. Brown, C. Clementson, M. Crofts, T.

    Culverhouse, J. Czeres, R. Dace, R. D’Alessandro, P. Doherty, P. Duffett-Smith, K. Duggan, J. Ely, M.

    Felvus, W. Flynn, J. Geisbuesch, K. Grainge, W. Grainger, D. Hammet, R. Hills, M. Hobson, C. Holler, R.

    Jilley, M. Jones, T. Kaneko, R. Kneissl, K. Lancaster, A. Lasenby, P. Marshall, F. Newton, O. Norris, I.

    Northrop, G. Pooley, V. Quy, R. Saunders, A. Scaife, J. Schofield, P. Scott, C. Shaw, A. Taylor, D.

    Titterington, M. Velic, E. Waldram, S. West, B. Wood, G. Yassin, J. Zwart

    5

  • IF system: downconverters, amplifiers, filters, path compensator, gain control units for6–12 GHz.

    Correlator:

    • 16-lag analogue correlator → 8 complex frequency channels

    • detect phase-switched power with Schottky diodes

    6

  • First AMI cluster detections - high sensitivity SZ observations

    13.0 14.0 15.0 16.0 17.0 18.0Channel Centre Frequency (GHz)

    2.0

    3.0

    4.0

    5.0

    6.0

    Inte

    grat

    ed S

    Z flu

    x (−

    mJy

    )

    Spectrum of SZ effect in A1914

    A1914 (astro-ph/0509215; Accepted A773 (6h observation)for publication in MNRAS Letters)S = -8.6 mJy, noise = 0.2 mJy/beam

    9

  • Cluster survey in the presence of primordial CMB

    Grayscale image: Virgo cluster positions with scaled β model clusters, plus CMBContour overlay: 6 months survey, 2 arcmin resolution. Sources subtracted!

    9

  • Sensitivity and CMB Confusion

    Thermal flux sensitivity (6 × 8-hours; within a 21 arcmin aperture) of the compact array3.7-m and large array 13-m dishes compared to primordial CMB and 4 clusters withmasses of M = 2 / 5 ×1014M� and at redshifts z = 0.15/0.8.

    10

  • SZ selection function

    Melin, Bartlett, Delabrouille2005, A&A 429, 417

    Culverhouse(Moriond 2004)

    11

  • Cluster masses and redshifts

    RK et al. 2001

    12

  • Imaging cluster substructureConstruction phase 3: Compactifying the Ryle telescope

    current wideEast-Westalignment

    Hydrosimulation:5× 1014 M� mergingcluster at z = 0.155.

    morecompact

    array withimproved

    North-South

    resolution

    high declination (45 deg)

    low declination (-5 deg)

    13

  • Pointed high redshift cluster observations

    Cluster merger at redshift 1.5 of totalmass 2 × 1014 M� from a hydrody-namical simulation (G. Tormen); iny-units of 10−6.

    Simulated 14 × 8−h observation withcompact array and Ryle mosaic; in µJybeam−1.

    14

  • The SZ receiver for the APEX telescopeMPIfR Bonn & UC Berkeley

    15

  • People:

    Max Planck Institute for Radioastronomy:

    K. Basu, F. Bertoldi (U Bonn), R. Güsten, E. Kreysa, K. Menten, D. Muders, P. Schilke

    MPE: H. Böhringer

    University of California, Berkeley

    Physics Department: H.-M. Cho, N. W. Halverson (U Colorado), W. L. Holzapfel, R.Kneissl, T. M. Lanting, A. T. Lee, M. Lueker, J. Mehl, T. Plagge, P. L. Richards, D.Schwan, M. White

    LBNL: M. Dobbs (U McGill), H. Spieler

  • • 12 m Atacama Pathfinder Experiment telescope, on-axis Cassegrain

    • 0.75 m secondary, tertiary optics, 0.4 degree field-of-view

    • Spiderweb Transition-Edge Sensor bolometer array with 330 elements

    • SQUID readout, frequency multiplexing for SPT

    • dry (τ = 0.061 at 225 GHz), high elevation (5000 m) site, 23◦S latitude

    • observing frequencies (90) 150 (217) GHz

    • 100-200 deg2, several months integration, 10 µK, 60” FWHM ( 150 GHz) resolution

  • Observing strategy

    Optimise scanning speed, cross-linking, field size, geometry, etc.

  • Science goals / cluster yield with APEX-SZ

    • Evolution of cluster mass function• Cluster correlation function• Evolution of gas fraction and M-T re-

    lation• Dark matter density and distribution• Dark energy equation of state• Population of inverted spectrum radio

    sources• High redshift star forming galaxies• Density-velocity field correlations• Lensing of the cosmic microwave

    background

    SZ / X-ray cluster selection

  • Planck all-sky CMB (and cluster) component separation(Stolyarov et al. 2002)

    Input component maps Recovered power spectra

    16

  • Towards a complete and pure Planck cluster sample

    Geisbüsch, RK, Hobson, 2005, MNRAS 360, 41

    • Virgo HVLC catalogues (Sphere, Octants, ’Evrard mass function’)

    • ΛCDM and τCDM cosmologies

    • rescaling of cluster catalogue with σ8

    • M − T relation with different normalisation (virial + ’X-ray’)

    • analytic isothermal gas profile truncated at rv (90 % unresolved clusters)

    • assume constant gas fraction fg

    • assume NFW profile to rescale dark matter mass definitions

    • fix total cluster flux, ’adjust’ central density and rc/rv

    17

  • Recovered cluster fluxes

    ΛCDM: σ8 = 1 (virial) ΛCDM: σ8 = 0.7 (virial) ΛCDM: σ8 = 0.7 (xnorm)

    Scatter, completeness and purity for a variety of cosmological SZ realisations.

    18

  • Mass function and completeness in redshift bins

    19

  • Outlook

    • First generation (testing) SZ survey instruments (interferometers) beginning to takedata: SZA, AMI (known clusters until spring 2006, surveys from summer), limitedby radio source confusion until large telescopes, e.g. Ryle array, become available.

    • Second generation (fast surveying), large bolometer arrays on single telescope,starting soon, e.g. APEX-SZ engineering run this year, full commissioning spring2006.

    • High sensitivity SZ cluster data are very interesting to explore gas physics

    • SZ will provide high-z clusters to study evolution and large samples to constraincosmology, hopefully with advantageous selection

    • Multi-wavelength (optical,IR,X-ray,radio,sub-mm) (pre-)follow-up important

    • Third generation (digesting) SZ instruments (high resolution imaging, SZspectroscopy)

    20