reaktor fixed bed x

47
1 REAKTOR Tugas = Mereaksikan Toluene dengan udara dengan kecepatann umpan masuk sebesar 16749,61871 kg/jam Tipe Alat : Reaktor Fix Bed Multitulbular Kondisi operasi : T = 500 o C P = 5 atm NERACA MASSA 1. Umpan Masuk : C7H8 = 13,238 kmol/ jam = 1217,918 kg/jam C6H6 = 0,142 kmol/jam = 11,085 kg/jam C6H5CHO = 0,0115 kmol/jam = 1,2169 kg/jam

Upload: redno-elakadesci

Post on 11-Sep-2015

306 views

Category:

Documents


8 download

DESCRIPTION

panduan perhitungan fixed bed

TRANSCRIPT

REAKTOR FIXED BED

PAGE 27

REAKTOR

Tugas =Mereaksikan Toluene dengan udara dengan kecepatann umpan masuk sebesar 16749,61871 kg/jam

Tipe Alat : Reaktor Fix Bed Multitulbular Kondisi operasi : T = 500 oC

P = 5 atm

NERACA MASSA

1. Umpan Masuk : C7H8

= 13,238 kmol/ jam = 1217,918 kg/jam

C6H6 = 0,142 kmol/jam = 11,085 kg/jam

C6H5CHO = 0,0115kmol/jam = 1,2169 kg/jam

O2

= 113,01 kmol/jam = 3616,171 kg/jam

N2 = 425,12kmol/jam = 11903,23 kg/jam +Total = 551,5125kmol/jam = 16749,61871 kg/jam

Reaksi : I. C7H8 + O2 ----------> C6H5CHO + H2O S1 = 0,5

II. C7H8 + 6 O2 ---------> C4H2O3 + 3H2O + 3 CO2 S2 = 0,5

III. C6H6 + 7,5 O2 ---------> 6 CO2 + 3 H2O

Katalis : molybdenum oxide dan uranium oxideKonversi : 0,9 (90 %) terhadap C7H8Reaksi bisa ditulis :

I. A + B -------> C + D

II. A + 6 B------->

E + 3 D + 3 F

III. A + 7,5 B ------->

6 F + 3 DMaka pada saat konversi =

REAKSI 1 :

( C7H8 ) =nAo (1 - XA)

(O2)= nBo - nAo X* (S1 + 6 S2) - 7,5 nGo

(C6H5CHO)= nCo + nAo X S1

(H2O) = nDo + nAo X ( S1 + 3 S2)

(C4H2O3)= nEo + nAo X S2

(CO2)= nFo + nAo X 3 S2REAKSI 3 :

(CO2)= nF + 6 nGo

(H2O) = nD + 3 nGo

Maka pada korversi = 0,9Maka diperoleh hasil reaksi :

C7H8

= 1,324 kmol/ jam = 121,792kg/jam

C6H5CHO= 5,969kmol/jam = 632,681kg/jam

O2

= 70,239kmol/jam = 2247,648kg/jam

N2

= 425,115kmol/jam = 11903,228kg/jam

H2O

= 24,255kmol/jam = 436,593kg/jam CO2

= 18,724kmol/jam = 823,871kg/jam

C4H2O3

= 5,957kmol/jam = 583,806kg/jam

Total

= 551,584kmol/jam = 16749,619kg/jamPENENTUAN KONSTANTA KECEPATAN REAKSI

Reaksi: I. C7H8 + O2 ----------> C6H5CHO + H2O

S1 = 0,5 II. C7H8 + 6 O2 ---------> C4H2O3 + 3H2O + 3 CO2 S2 = 0,5

III. C6H6 + 7,5 O2 ---------> 6 CO2 + 3 H2O

Reaksi diatas dapat disederhanakan menjadi:

I. A + B -------> C + D

II. A + 6 B------->

E + 3 D + 3 F

III. G + 7,5 B ------->

F + 3 D

Persamaan kece patan reaksinya dapat ditulis sebagai berikut:

Kinetika ReaksiReaksi pembentukan Benzene berdasarkan reaksi :

C7H8

+O2(C6H5CHO+H2O

Dari Patent diperoleh data sebagai berikut :

1. Waktu reaksi

=5 dtk

2. Suhu operasi

=500oC

3. Perbandingan mol reaktan C7H8 : O2= 1 : 9.473373

4. Konversi yang dapat dicapai

=0.2

Neraca massa

C7H8

+O2(C6H5CHO+H2O

A

B( C

+ D

Mula-mula: 100 947.3374

Reaksi

: 100 . A 100 . XA 100 . XA 100 . XAHasil

: 100 (1-XA) 947.3374 100 XA 100 . XA 100 . XA

Komposisi awal :

A=100

gmol

B=947.3374gmol

1047.3374

Tekanan=5atm

Suhu

=500oC

Untuk reactor RAP :

dXA

=0.02XA1/Yl

0.0000.2000010.200

0.0200.2049040.820

0.0400.2100120.420

0.0600.2153540.861

0.0800.2209320.442

0.1000.2267640.907

0.1200.2328620.466

0.1400.2392640.957

0.1600.2459720.492

0.1800.2530141.012

0.2000.2604210.260

6.837

Hasil integrasi

= 0.045580391Konsentrasi Awal A (S2)Cao

=

nAo

Pt

nT R T

=

100

5

1047.3374 (82.06 . 773)

=7.52614E-06

gmol/cm3Perbandingan reaktan :

M

=

nBo

nAo

= 9.473374Konversi :

XA

=

0.9

k

=

1

0.045580391

7.52614E-06 5

k

=1211.255209 cm3/gmol.dt

0

Setiap kenaikan suhu 10oC maka kecepatan reaksi menjadi 2 kali lipatnya :

T1=773 oK

(k1 =1211.255209(cm3/gmol)/dt

T2=783 oK

(k2 = 1514.1(cm3/gmol)/dt

Persamaan empiris Arhenius :

Atau

ln1211.255209

=ln A+

B

773

ln1211.255209

=ln A+

B

783

-0.223143551

=

-0.223143551

=B1.65219E-05

B

=-13505.96427

ln1211.255209

=ln A

+-13505.96427

773

7.099412463

=ln A

+-17.47214007

ln A

=24.57155253

A

=46912618686

A=46912618686

B=-13505.96427

kR1=46912618686

exp (-13505.96427 /T)(cm3/gmol) / dtPENYUSUNAN MODEL MATEMATIS PADA ELEMEN VOLUME

1. NERACA MASSA PADA ELEMEN VOLUME

FA z Z Z

FA z+z ZMasuk keluar = akumulasi

FA Z [ FA Z +Z+(-rA) dv ] =Acc

dV = A.Z

dimana A =

Neraca massa elemen volume juga meninjau ruang kosong diantara tumpukan katalis sehingga porositas () berpengaruh. Porositas () didapat dari Brown, fig.219 & 220.

Maka :

dV =

FA Z FA Z +Z-(-rA)

Z = 0

FA Z FA Z +Z

dimana FA = F A0(1-XA)

(FA = -FA0. (XA

(-rA) = kecepatan reaksi = k. CA. CB

CA

=

CB

=

Maka :

...(1)

Dimana :

Perubahan konversi persatuan panjang

Di = Diameter dalam

= porositas tumpukan katalis

F= Kecepatan molar A mula-mula 2. NERACA PANAS PADA ELEMEN VOLUME

T

z z

Qp

z

Masuk keluar = akumulasi

m.cp (Tz -To ) (m.cp (T Z+Z - To) + QR + QP ) = 0

QR= HR.nAO.XA

QP= U.A.T

= U..DO.z.(Ts - T)

m.cp ( T z -T Z+Z) - HR..nAO.XA - U..DO..z. (Ts - T) = 0

m.cp ( T Z - TZ+Z ) = HR..nAO..XA + U..DO. z. (Ts - T)

HR nAO XA +UDO (TS- T )

T Z T Z+Z =

m.Cp

Lim ( z ( 0

.... 2dimana :

dT/dZ = perubahan suhu persatuan panjang katalis

( HR

= panas reaksi

U = over all heat transfer coefficient

Do = diameter luar

T = suhu gas

Ts = suhu penelitian

(m.Cp = kapasitas panas

3. NERACA PANAS UNTUK PENDINGIN PADA ELEMEN VOLUME

Tinjauan : elemen panas

Masuk keluar = akumulasi

mp.Cpp. ( Ts Z+Z - To ) + Qp mp.Cpp. (( Ts Z - To ) = 0

Qp = U.A. T ; dimana : A = .Do.z. dan T = (T Ts)

Sehingga Qp = U.. Do.z. (T Ts)

mp. Cpp. (Ts Z+Z - Ts Z ) = - U.. Do.z. (T Ts)

: mp. Cpp. z

Ts Z+Z - Ts Z U.. Do. (T Ts)

= -

z m. Cpp

PENURUNAN TEKANAN ( PRESSURE DROP )

Penurunan tekanan dalam pipa yang berisi katalisator (fixed bed) menggunakan rumus 11.6 (Chapter 11, Rase) hal 492, Chemical Reactor Design for Process Plants.

fk= faktor friksi

gc= konstanta gravitasi

G= kecepatan aliran massa gas dalam pipa, g/cm3f= densitas gas, g/cm3Dp= diameter partikel katalisator, cm

= porositas tumpukan katalisator

= viskositas gas, g/cm.jam

Sehingga diperoleh 4 persamaan differensial simultan sebagai berikut :

1)

2)

3)

4)

Selanjutnya persamaan differensial simultan tersebut diatas diselesaikan dengan program computer dengan Metode Numeris Runge Kutta.OVERALL HEAT TRANSFER

1. Koefisien transfer panas pipa (hio)

Dari pers. 6-2, Kern diperoleh :

hio =

.(5)

Persamaan diatas berlaku untuk organic liquid, larutan aqueous, dan gas pada Re > 10.000

dimana :

Dp= diameter partikel katalis

Di = diameter dalam pipa

k = konduktivitas thermal

= viskositas gas

Cp= panas jenis gas

Gt= kecepatan massa per satuan luas

hi = koefisien transfer panas pipa dalam

hio = hi.

2. Koefisien transfer panas dinding pipa dalam shell ( ho)

Dari persamaan , Kern :

ho = .(6)

Persamaan diatas berlaku untuk Re antara 2000 1.000.000

dimana :

ho= koefisien transfer panas

De = diameter equivalent

Gp = kecepatan massa pendingin per satuan luas

(p = viskositas pendingin

kp = konduktivitas thermal pendingin

Cpp= panas spesifik pendingin

3. Overall heat transfer coefisient

Ud = overall transfer coefisient pada saat kotor

Uc = overall transfer coefisient pada saat bersih

Rd = faktor tahanan panas pengotor

Maka :

LAY OUT PIPA DALAM REAKTOR ( Kern, 1983, P. 139 )Pipa dalam reaktor disusun secara square pitch, dimana luas penampang 1 pipa menempati luasan sebesar Pt2.

1 pipa menempati luasan = Pt2maka luas total penampang reaktor ( over design 10%)

As = 1,1. Nt.Pt2dimana :

As = Luas penampang shell

Nt = jumlah pipa

Pt = pitch

Alasan penyusunan pipa secara square pitch :

1. mudah pembersihannya.

2. pressure drop kecil.

FLOW AREA DALAM SHELL

As = .(7)

dimana :

B = Jarak buffle, in

C = Clearance, in

Pt = Pitch, in

IDs = Diameter dalam shell, in

As = Flow area shell, in2Diameter EQUIVALEN (De)

Diameter equivalen dapat dipahami sebagai diameter dari area dalam shell, bila dipandang sebagai pipa ( Kern, 1983) p.139

De = =

De = .(8)

DIAMETER SHELL

Diameter shell yang dipakai untuk Nt pipa

Luas shell = As = 1,1.Nt.Pt2 =

Diameter shell :

IDs = ....(9)

KATALISATOR ( Rase, 1977 )

Katalisator yang digunakan berupa molybdenum oxide dan uranium oxide dengan :

Bentuk = pellet

Ukuran

D = 0,3175 cm

H = 0,3175 cm

Bulk density = 1106,13 kg/m3 Formula = PbO2 Mg

(SA, Miller Ernest, 1965)

DIAMETER PARTIKEL ( Dp )

Yaitu diameter partikel katalis yang ekuivalen dengan diameter bola dengan volume yang sama dengan volume katalis ( Rase, 1977, p.493 )

V kat =

=

= 0,025125 cm3V bola= V kat

V Bola =

Maka :

Dp =

=

= 0,36345 cm

PEMILIHAN PIPA

Dalam pemilihan pipa harus diperhatikan faktor perpindahan panas. Pengaruh bahan isian di dalam pipa terhadap koefisien transfer panas konveksi didelik oleh Colburn ( Smith,JM., p.571) dan diperoleh hubungan pengaruh rasio (Dp/Dt) atau perbandingan diameter katalis dengan diameter pipa dengan koefisien transfer panas pipa berisi katalis disbanding transfer panas konveksi pada pipa kosong.

Dp/Dt0.050.010.150.120.25

Hio/h5.5777.57.0

Dimana :

(Dp/Dt)=rasio diameter katalis per diameter pipa

(hio/h)= rasio koefisien transfer panas pipa berisi katalis disbanding koefisien transfer panas pada pipa kosong.

Dari data diatas diperoleh (hio/h)max terjadi pada 7,8 pada (Dp/Dt) = 0,15

= 2,42298 cmDipilih pipa dengan ukuran standar (Kern, table 11) :

NPs = 1 in

OD= 1,32 in

ID= 1,049 in

Sch= 40

JUMLAH PIPA ( Brown, 1950 )

Jumlah pipa ditentukan berdasarkan turbulensi gas dalam pipa berkatalis. Dalam suatu reaksi khusus terjadi tumbukan molekul yang optimum ( well mixed). Keadaan di atas terjadi bila pada keadaan turbulen yaitu bilangan Reynold diatas 3100.

Spherecity (( )=

Luas area bola= (. Dp2= 3,14. 0,36345

= 0,4148 cm2

Luas area katalis

= 0,4748 cm2maka ( =

Dari fig. 223 Brown diperoleh ( = 0,35

KECEPATAN MASSA MASUK REAKTOR

KomponenKgmol/jamKg/jam

O213.14431209.2717

C7H8124.52053984.6553

N2468.434213116.1572

C6H5CHO0.01231.2990

C6H60.139910.9158

Total606.251118322.2988

Kecepatan massa= 18322.2988 Kg/j

= 5089.5278 g/dt

BM rata-rata

= 30.22

Suhu Umpan (T)= 773 oK

Tekanan Umpan (P)= 2 atm

Densitas gas(rho)= 0.000953 g/cm3

Viskositas gas= 0.000973 g/cm dt

Digunakan pipa Standard

ID pipa = 1.049 in = 2.664 cm

OD pipa = 1.320 in = 3.353 cm

BWG = 16 in

A. Jumlah pipa maximum :

1. Menghitung Gt :

= 18866.13 Gt

Gt = 0.217321 g/cm2 dt

2. Menghitung Luas penampang pipa :

= 2.0063 cm2

3. Menghitung Luas penampang total :

= 23419.4434 cm2

Menghitung Jumlah pipa maximum :

= 11673.0938 pipa

B. Jumlah pipa minimum :

1. Menghitung Kecepatan maximum :

= 771.5457 cm/dt2. Menghitung Kecepatan Volume Umpan :

= 5341104.5000 cm3/dt

3. Menghitung Luas penampang total :

= 6922.6025 cm2 Menghitung Jumlah pipa minimum :

= 3450.4744 pipa

C. Jumlah pipa :

1. Menghitung Gt :

diambil bilangan Reynold (Re) = 7000

= 18866.13 Gt

Gt

= 7000 / 18866.13 g/cm2 dt

= 0.371035 g/cm2 dt

2. Menghitung Luas penampang pipa :

= 2.0063 cm2

3. Menghitung Luas penampang total :

= 13717.1025 cm2

Menghitung Jumlah pipa :

= 6837 pipa

SIFAT FISIS

a) Spesifik Heat

Cp = A + BT + CT2 +DT

KomponenCp ( joule/mol.K )

ABCD

O26,7130,879.10-64,170.10-6-2,544.10-9

N27,4400,324.10-26.400.10-6-2,790.10-9

CO24,7281,754.10-2-1,338.10-54,097.10-9

H2O7,7014,595.10-42,521.10-6-0,859.10-9

C4H2O3-3,1238,32.10-2-5,22.10-51,16.10-8

C7H8-5,8171,22.10-1-6,61.10-51,17.10-8

C6H6-8,1071,13.10-1-7,21.10-51,70.10-8

C6H5CHO-2,91,19.10-1-6,79.10-51,23.10-8

Cp = Cpi . yi

b) Viskositas

= A + BT + CT2

Komponen ( micropoise.K )

TcPc

O2154,649,8

N2126,233,5

CO2304,272,8

H2O647,3217,6

C4H2O3--

C7H8591,7406

C6H6562,1483

C6H5CHO69546

*Sumber: Robert C. Reid Sifat gas dan zat cair Gramedia Pustaka 1991

c) Konduktivitas Thermal

k = ((14,54 . T/Tc ) 5,14 )2/3 . Cp/i . 106

KomponenTcPc

O2154,649,8

N2126,233,5

CO2304,272,8

H2O647,3217,6

C4H2O3--

C7H8591,7406

C6H6562,1483

C6H5CHO69546

d) Sifat Pendingin

Cp = 0,509 Btu/lboK

= 0,40 micropoise.K

k = 0,68 Btu/jam.ft.oK

PANAS REAKSI

T

HT To

H298HT = H298 + Cp dT

KomponenHf

O20

N20

CO2-94,05

H2O-68,315

C4H2O3-112,08

C7H811,95

C6H619,82

C6H5CHO-8,79

*sumber: Dimana :

H298= Hfp HfR

= -205,02 -103,6

= -101,42 kjoule/mol

= -24239,38 kkal/kmol

Cp = + T + T2 = AP AR = BP BR

= CP CR

KomponenCp ( joule/mol.K )

ABCD

O26,7130,879.10-64,170.10-6-2,544.10-9

N27,4400,324.10-26.400.10-6-2,790.10-9

CO24,7281,754.10-2-1,338.10-54,097.10-9

H2O7,7014,595.10-42,521.10-6-0,859.10-9

C4H2O3-3,1238,32.10-2-5,22.10-51,16.10-8

C7H8-5,8171,22.10-1-6,61.10-51,17.10-8

C6H6-8,1071,13.10-1-7,21.10-51,70.10-8

C6H5CHO-2,91,19.10-1-6,79.10-51,23.10-8

= 64,374 ( 11,591 + 45,780 )

= 7,003 joule/mol.K

= 6,4776.10-2 ( 3,2301.10-1 + 2,1034.10-2 )

= 2,2286.10-2 joule/mol.K

= 3,5143.10-4 (-1,3067.10-4 + 1,2484.10-4 )

= 3,5726.10-4 joule/mol.K

Sehingga :

= = = -101,42 kjoule/mol + 7,003 ( 298 - 513 ) + + joule/molPenyelesaian persamaan defferensial secara numeris dengan metode Runge Kutta :

CLS

N = 6837 'jml pipa

MS = 15

Ptek = 2

'massa pendingin

C = 500 'suhu operasi

TC1 = C

TcC = C

D = 490 'suhu keluar

td0 = D

DOU = 1.32 * 2.54 'diameter luar pipa

DI = 1.049 * 2.54 'diameter dalam pipa

Pt = 1.25 * DOU 'pitch

CL = Pt - DOU 'clearence

DE = (4 * (Pt ^ 2 - (3.14 * DOU ^ 2 / 4))) / (3.14 * DOU) 'diameter aquivalen

Ass = N * Pt ^ 2 * 1.15 'luas penampang shell

ID = (4 * Ass / 3.14) ^ .5 'diameter dalam shell

BS = ID / 5 'jarak buffle

AT = 3.14 / 4 * DI ^ 2: 'luas penampang pipa

ASi = ID * CL * BS / Pt 'flow area dlm shell

PRINT

PRINT " "

PRINT " R E A K T O R F I X E D B E D M U L T I T U B E "

PRINT " "

PRINT

PRINT USING " Jumlah pipa = #### pipa"; N

PRINT USING " Diameter luar pipa = #.### cm"; DOU

PRINT USING " Diameter dalam pipa = #.### cm"; DI

PRINT USING " Pitch = #.### cm"; Pt

PRINT USING " Diameter Shell = #.### m"; ID / 100

PRINT USING " Jumlah pendingin = ######.### Kg/j"; MS * N * 3.6

PRINT 'MS * N * .373 * (536.6 - 504.8)

PRINT : PRINT : PRINT

Dp = .5723

BMB = 32 'O2

BMA = 92 'C7H8

BMC = 28 'N2

BMD = 18 'H20

BME = 106 'C6H5CHO

BMF = 78 'C6H6

BMG = 98 'C4H2O3

BMH = 44 'CO2

'KECEPATAN MASUK MASING-MASING GAS (KGMOL/JAM)

FAIO = 1209.2717# / BMA 'C7H8

FBIO = 3984.6553# / BMB 'O2

FCIO = 13116.1569# / BMC 'N2

FDIO = 0 / BMD 'H2O

FEIO = 1.299 / BME 'C6H5CHO

FFIO = 10.9158 / BMF 'C6H6

FGIO = 0 / BMG 'C4H2O3

FHIO = 0 / BMH 'CO2

FAo = FAIO / 3.6:

FBo = FBIO / 3.6:

FCo = FCIO / 3.6:

FDo = FDIO / 3.6:

FEo = FEIO / 3.6:

FFo = FFIO / 3.6:

FGo = FGIO / 3.6:

FHo = FHIO / 3.6:

FTO = FAo + FBo + FCo + FDo + FEo + FFo + FGo + FHo

bmrt = (FAo / FTO) * BMA + (FBo / FTO) * BMB + (FCo / FTO) * BMC + (FDo / FTO) * BMD + (FEo / FTO) * BME + (FFo / FTO) * BMF + (FGo / FTO) * BMG + (FHo / FTO) * BMH

GT = FTO * bmrt / AT: GS = MS * N / ASi

PRINT " KECEPATAN MASSA MASUK REAKTOR"

PRINT

PRINT " "

PRINT " Komponen Kgmol /jam Kg / jam "

PRINT " "

PRINT USING " O2 #####.#### ######.#### "; FBIO; FBIO * BMB

PRINT USING " C7H8 #####.#### ######.#### "; FAIO; FAIO * BMA

PRINT USING " N2 #####.#### ######.#### "; FCIO; FCIO * BMC

PRINT USING " H2O #####.#### ######.#### "; FDIO; FDIO * BMD

PRINT USING " C6H5CHO #####.#### ######.#### "; FEIO; FEIO * BME

PRINT USING " C6H6 #####.#### ######.#### "; FFIO; FFIO * BMF

PRINT USING " C4H203 #####.#### ######.#### "; FGIO; FGIO * BMG

PRINT USING " CO2 #####.#### ######.#### "; FHIO; FHIO * BMH

PRINT " "

PRINT USING " Total #####.#### ######.#### "; FTO * 3.6; FTO * bmrt * 3.6

INPUT "", A$

PRINT

PRINT " KECEPATAN MASSA GAS KELUAR REAKTOR"

PRINT

XA = .9

XA1 = 1 / .9 * XA

S1 = .5

S2 = .5

FA = FAo * (1 - XA) 'C7H8

FB = FBo - FAo * XA * (S1 + 6 * S2) - 7.5 * FFo * XA1 'O2

FC = FCo 'N2

FD = FDo + FAo * XA * (S1 + 3 * S2) + 3 * FFo * XA1 'H2O

FE = FEo + FAo * XA * S1 'C6H5CHO

FF = FFo - FFo * XA1 'C6H6

FG = FGo + FAo * XA * S2 'C4H2O3

FH = FHo + 3 * FAo * XA * S2 + 6 * FFo * XA1 'CO2

FT = FA + FB + FC + FD + FE + FF + FG + FH + FI

YA = FA / FT: YB = FB / FT: YC = FC / FT: YD = FD / FT: YE = FE / FT:

YF = FF / FT: YG = FG / FT: YH = FH / FT: YI = FI / FT

m = BMA * YA + BMB * YB + BMC * YC + BMD * YD + BME * YE + BMF * YF + BMG * YG + BMH * YH + BMI * YI

PRINT " "

PRINT " Komponen Kgmol /jam Kg / jam "

PRINT " "

PRINT USING " O2 #####.#### ######.#### "; FB * 3.6; FB * 3.6 * BMB

PRINT USING " C7H8 #####.#### ######.#### "; FA * 3.6; FA * 3.6 * BMA

PRINT USING " N2 #####.#### ######.#### "; FC * 3.6; FC * 3.6 * BMC

PRINT USING " H2O #####.#### ######.#### "; FD * 3.6; FD * 3.6 * BMD

PRINT USING " C6H5CHO #####.#### ######.#### "; FE * 3.6; FE * 3.6 * BME

PRINT USING " C6H6 #####.#### ######.#### "; FF * 3.6; FF * 3.6 * BMF

PRINT USING " C4H2O3 #####.#### ######.#### "; FG * 3.6; FG * 3.6 * BMG

PRINT USING " CO2 #####.#### ######.#### "; FH * 3.6; FH * 3.6 * BMH

PRINT " "

PRINT USING " Total #######.#### ######.#### "; FT * 3.6; FT * 3.6 * m

INPUT "", A$

PRINT

PRINT " Enthalpi Umpan Masuk Reaktor :"

m = bmrt

FA = FAo

FB = FBo

FC = FCo

FD = FDo

FE = FEo

FF = FFo

FG = FGo

FH = FHo

GOSUB 7000

Qo1 = QTOT

INPUT "", P$

PRINT " Reaksi yang terjadi :"

PRINT

PRINT " C7H8 + O2 -----------> C6H5CHO + H2O"

PRINT

PRINT " C7H8 + 6 O2 -----------> C4H2O3 + 3 H2O + 3 CO2 "

PRINT

PRINT " C6H6 + 7.5 O2 -----------> 6 CO2 + 3 H2O"

PRINT

INPUT "", A$

PRINT : PRINT " KONDISI AWAL"

A = 0: B = 0: E = Ptek: F = 1

E1 = E

PRINT " "

PRINT USING " Suhu gas masuk = ###.# C "; C

PRINT USING " Suhu pendingin keluar = ###.# C "; D

PRINT USING " Tekanan awal = ##.# atm "; E

PRINT USING " Increment tebal katalis = #.## cm "; F

PRINT " "

PRINT : INPUT "", P$

' Perhitungan RUNGA KUTTA

PRINT " "

PRINT " L(cm) Xa T(c) Td (c) P(atm) "

PRINT " "

PRINT USING " #### #.#### ###.## ###.# ##.### "; A; B; C; D; E

NO = 0

620 GA = A: GB = B: GC = C: GD = D: GE = E: GF = F: GG = G: GH = H

GOSUB 910

K1 = DX * F

L1 = T * F

EM1 = S * F

N1 = P * F

GB = B + K1

GC = C + L1

GD = D + EM1

GE = E + N1

GOSUB 910

K2 = DX * F

L2 = T * F

EM2 = S * F

N2 = P * F

GB = B + (K2 / 2)

GC = C + (L2 / 2)

GD = D + (EM2 / 2)

GE = E + (N2 / 2)

GOSUB 910

K3 = DX * F

L3 = T * F

EM3 = S * F

N3 = P * F

GB = B + (K3 / 2)

GC = C + (L3 / 2)

GD = D + (EM3 / 2)

GE = E + (N3 / 2)

GOSUB 910

K4 = DX * F

L4 = T * F

EM4 = S * F

N4 = P * F

GB2 = B + 1 / 6 * (K1 + 2 * K2 + 2 * K3 + K4)

GC2 = C + 1 / 6 * (L1 + 2 * L2 + 2 * L3 + L4)

GD2 = D + 1 / 6 * (EM1 + 2 * EM2 + 2 * EM3 + EM4)

GE2 = E + 1 / 6 * (N1 + 2 * N2 + 2 * N3 + N4)

710 A = A + F

C = GC2

B = GB2

D = GD2

E = GE2

NO = NO + 1

Qre = Q1 * F * N + Qre

Ql = Q2 * F * N + Ql

790 IF B >= .9 THEN 870

IF NO = 10 THEN 800

GOTO 620

800 PRINT USING " #### #.#### ###.## ###.# ##.### "; A; B; C; D; E: NO = 0

860 GOTO 620

870 PRINT USING " #### #.#### ###.## ###.# ##.### "; A; B; C; D; E

PRINT " "

PRINT

PRINT " KECEPATAN MASSA GAS KELUAR REAKTOR"

PRINT

XA = .9

XA1 = 1 / .9 * XA

S1 = .5

S2 = .5

FA = FAo * (1 - XA) 'C7H8

FB = FBo - FAo * XA * (S1 + 6 * S2) - 7.5 * FFo * XA1 'O2

FC = FCo 'N2

FD = FDo + FAo * XA * (S1 + 3 * S2) + 3 * FFo * XA1 'H2O

FE = FEo + FAo * XA * S1 'C6H5CHO

FF = FFo - FFo * XA1 'C6H6

FG = FGo + FAo * XA * S2 'C4H2O3

FH = FHo + 3 * FAo * XA * S2 + 6 * FFo * XA1 'CO2

FT = FA + FB + FC + FD + FE + FF + FG + FH + FI

YA = FA / FT: YB = FB / FT: YC = FC / FT: YD = FD / FT: YE = FE / FT:

YF = FF / FT: YG = FG / FT: YH = FH / FT: YI = FI / FT

m = BMA * YA + BMB * YB + BMC * YC + BMD * YD + BME * YE + BMF * YF + BMG * YG + BMH * YH + BMI * YI

PRINT " "

PRINT " Komponen Kgmol /jam Kg / jam "

PRINT " "

PRINT USING " O2 #####.#### ######.#### "; FB * 3.6; FB * 3.6 * BMB

PRINT USING " C7H8 #####.#### ######.#### "; FA * 3.6; FA * 3.6 * BMA

PRINT USING " N2 #####.#### ######.#### "; FC * 3.6; FC * 3.6 * BMC

PRINT USING " H2O #####.#### ######.#### "; FD * 3.6; FD * 3.6 * BMD

PRINT USING " C6H5CHO #####.#### ######.#### "; FE * 3.6; FE * 3.6 * BME

PRINT USING " C6H6 #####.#### ######.#### "; FF * 3.6; FF * 3.6 * BMF

PRINT USING " C4H2O3 #####.#### ######.#### "; FG * 3.6; FG * 3.6 * BMG

PRINT USING " CO2 #####.#### ######.#### "; FH * 3.6; FH * 3.6 * BMH

PRINT " "

PRINT USING " Total #######.#### ######.#### "; FT * 3.6; FT * 3.6 * m

INPUT "", A$

PRINT

PRINT " Enthalpi Hasil reaksi :"

PRINT

GOSUB 7000

Qo2 = QTOT

INPUT "", A$

PRINT

PRINT

PRINT " NERACA PANAS :"

PRINT

PRINT " MASUK : KELUAR : "

PRINT

PRINT " 1. Enthalpi Umpan Masuk Reaktor 1. Enthalpi hasil reaksi:"

PRINT USING " Qs1 = #########.#### Kcal/jam Qs2 = #########.#### Kcal/jam"; Qo1; Qo2

Qll = Qo1 + (Qre * 3.6) - Qo2

Qp = MS * N * 3.6 * .373 * (td0 - D)

Qloss = Qll - Qp

PRINT " 2. Panas Reaksi 2. Panas dibawa pendingin"

PRINT USING " Qr = #########.#### Kcal/jam Qp = #########.#### Kcal/jam"; Qre * 3.6; Qp

PRINT " 3. Panas Hilang"

PRINT USING " Qloss = #########.#### Kcal/jam"; Qloss

tpIN = td0 - (Ql - Qloss) / (MS * 3.6 * N * .373)

PRINT " -------------------------------- --------------------------------- "

PRINT USING " #########.#### Kcal/jam #########.#### Kcal/jam"; Qo1 + Qre * 3.6; (Qo2 + Qp + Qloss)

PRINT

PRINT

INPUT "", A$

PRINT " Dari hasil perhitungan Reaktor diperoleh :"

PRINT

PRINT USING " Jumlah pipa = #### pipa"; N

PRINT USING " Diameter Shell = #.### m"; ID / 100

PRINT USING " Jumlah pendingin = ###### Kg/j"; MS * N * 3.6

PRINT USING " Panjang terhitung = ###.# m"; A / 100

PRINT USING " = ###.# ft"; A / 100 / .3048

HH = 40

PRINT USING " Panjang Pipa = ###.# m"; HH * .3048

PRINT USING " = ###.# ft"; HH

PRINT

PRINT USING " Tinggi Head reaktor = #.### m"; ID / 100 / 2

PRINT

PRINT USING " Tinggi reaktor = ##.### + 2 . #.### m"; HH * .3048; ID / 100 / 2

PRINT USING " = ###.# m"; HH * .3048 + ID / 100 / 2

PRINT

CLOSE

900 END

910 'KOMPOSISI GAS (GMOL/JAM)

XA = GB

XA1 = 1 / .2 * XA

S1 = .5

S2 = .5

FA = FAo * (1 - XA) 'C7H8

FB = FBo - FAo * XA * (S1 + 6 * S2) - 7.5 * FFo * XA1 'O2

FC = FCo 'N2

FD = FDo + FAo * XA * (S1 + 3 * S2) + 3 * FFo * XA1 'H2O

FE = FEo + FAo * XA * S1 'C6H5CHO

FF = FFo - FFo * XA1 'C6H6

FG = FGo + FAo * XA * S2 'C4H2O3

FH = FHo + 3 * FAo * XA * S2 + 6 * FFo * XA1 'CO2

FT = FA + FB + FC + FD + FE + FF + FG + FH + FI

YA = FA / FT: YB = FB / FT: YC = FC / FT: YD = FD / FT: YE = FE / FT:

YF = FF / FT: YG = FG / FT: YH = FH / FT: YI = FI / FT

m = BMA * YA + BMB * YB + BMC * YC + BMD * YD + BME * YE + BMF * YF + BMG * YG + BMH * YH + BMI * YI

'KAPASITAS PANAS GAS (CAL/GMOL.K) (Reid,1979)

CPA = 6.713 + -8.79E-07 * (GC + 273) + 4.17E-06 * (GC + 273) ^ 2 + -2.54E-09 * (GC + 273) ^ 3

CPB = -5.817 + .122 * (GC + 273) + -.0000661 * (GC + 273) ^ 2 + 1.17E-08 * (GC + 273) ^ 3

CPC = 7.44 + -.00324 * (GC + 273) + .0000064 * (GC + 273) ^ 2 + -2.79E-09 * (GC + 273) ^ 3

CPD = 7.701 + .00046 * (GC + 273) + 2.52E-06 * (GC + 273) ^ 2 + -8.59E-10 * (GC + 273) ^ 3

CPE = 2.9 + .119 * (GC + 273) + -.0000679 * (GC + 273) ^ 2 + 1.23E-08 * (GC + 273) ^ 3

CPF = 8.107 + .113 * (GC + 273) + -.0000721 * (GC + 273) ^ 2 + 1.7E-08 * (GC + 273) ^ 3

CPG = -3.123 + .0832 * (GC + 273) + -.0000522 * (GC + 273) ^ 2 + 1.16E-08 * (GC + 273) ^ 3

CPH = 4.728 + .0175 * (GC + 273) + -.0000134 * (GC + 273) ^ 2 + 4.1E-09 * (GC + 273) ^ 3

CPM = (YA * CPA + YB * CPB + YC * CPC + YD * CPD + YE * CPE + YF * CPF + YG * CPG + YH * CPH + YI * CPI) / m

'KAPASITAS pendingin (CAL/GMOL.K)

CPP = .373

'RAPAT MASSA CAMPURAN GAS

RM = E * m / (GC + 273) / 82.06

'VISKOSITAS GAS (gr/dt.cm)

TcA = 154.6: PcA = 49.8

TcB = 591.7: PcB = 40.6

TcC = 126.2: PcC = 33.5

TcD = 647.3: PcD = 217.6

TcE = 695: PcE = 46

TcF = 562.1: PcF = 483

TcG = 500: PcG = 20

TcH = 304.2: PcH = 72.8

VA = (.00036 * (4.61 * ((GC + 273) / TcA) ^ .618 - 2.04 * EXP(-.449 * ((GC + 273) / TcA)) + 1.94 * EXP(-4.058 * ((GC + 273) / TcA)) + .1) / (TcA ^ (1 / 6) * BMA ^ (-.5) * PcA ^ (-2 / 3))) / 100

VB = (.00036 * (4.61 * ((GC + 273) / TcB) ^ .618 - 2.04 * EXP(-.449 * ((GC + 273) / TcB)) + 1.94 * EXP(-4.058 * ((GC + 273) / TcB)) + .1) / (TcB ^ (1 / 6) * BMB ^ (-.5) * PcB ^ (-2 / 3))) / 100

VC = (.00036 * (4.61 * ((GC + 273) / TcC) ^ .618 - 2.04 * EXP(-.449 * ((GC + 273) / TcC)) + 1.94 * EXP(-4.058 * ((GC + 273) / TcC)) + .1) / (TcC ^ (1 / 6) * BMC ^ (-.5) * PcC ^ (-2 / 3))) / 100

VD = (.00036 * (4.61 * ((GC + 273) / TcD) ^ .618 - 2.04 * EXP(-.449 * ((GC + 273) / TcD)) + 1.94 * EXP(-4.058 * ((GC + 273) / TcD)) + .1) / (TcD ^ (1 / 6) * BMD ^ (-.5) * PcD ^ (-2 / 3))) / 100

VE = (.00036 * (4.61 * ((GC + 273) / TcE) ^ .618 - 2.04 * EXP(-.449 * ((GC + 273) / TcE)) + 1.94 * EXP(-4.058 * ((GC + 273) / TcE)) + .1) / (TcE ^ (1 / 6) * BME ^ (-.5) * PcE ^ (-2 / 3))) / 100

VF = (.00036 * (4.61 * ((GC + 273) / TcF) ^ .618 - 2.04 * EXP(-.449 * ((GC + 273) / TcF)) + 1.94 * EXP(-4.058 * ((GC + 273) / TcF)) + .1) / (TcF ^ (1 / 6) * BMF ^ (-.5) * PcF ^ (-2 / 3))) / 100

VG = (.00036 * (4.61 * ((GC + 273) / TcG) ^ .618 - 2.04 * EXP(-.449 * ((GC + 273) / TcG)) + 1.94 * EXP(-4.058 * ((GC + 273) / TcG)) + .1) / (TcG ^ (1 / 6) * BMG ^ (-.5) * PcG ^ (-2 / 3))) / 100

VH = (.00036 * (4.61 * ((GC + 273) / TcG) ^ .618 - 2.04 * EXP(-.449 * ((GC + 273) / TcG)) + 1.94 * EXP(-4.058 * ((GC + 273) / TcG)) + .1) / (TcG ^ (1 / 6) * BMG ^ (-.5) * PcG ^ (-2 / 3))) / 100

VM = YA * VA * SQR(BMA) + YB * VB * SQR(BMB) + YC * VC * SQR(BMC)

VM = VM + YD * VD * SQR(BMD) + YE * VE * SQR(BME) + YF * VF * SQR(BMF)

VM = VM + YG * VG * SQR(BMG) + YH * VH * SQR(BMH) + YI * VI * SQR(BMI)

VBAH = YA * SQR(BMA) + YB * SQR(BMB) + YC * SQR(BMC)

VBAH = VBAH + YD * SQR(BMD) + YE * SQR(BME) + YF * SQR(BMF)

VBAH = VBAH + YG * SQR(BMG) + YH * SQR(BMH) + YI * SQR(BMI)

VR = VM / VBAH

'VISKOSITAS pendingin (gr/dt.cm)

VP = (35.5898 - .04212 * D) * .01

'THERMAL KONDUKTIVITAS (Cal/dt.cm.K)

TIA = TcA ^ (1 / 6) * BMA ^ (1 / 2) / PcA ^ (2 / 3)

TIB = TcB ^ (1 / 6) * BMB ^ (1 / 2) / PcB ^ (2 / 3)

TIC = TcC ^ (1 / 6) * BMC ^ (1 / 2) / PcC ^ (2 / 3)

TID = TcD ^ (1 / 6) * BMD ^ (1 / 2) / PcD ^ (2 / 3)

TIE = TcE ^ (1 / 6) * BME ^ (1 / 2) / PcE ^ (2 / 3)

TIF = TcF ^ (1 / 6) * BMF ^ (1 / 2) / PcF ^ (2 / 3)

TIG = TcG ^ (1 / 6) * BMG ^ (1 / 2) / PcG ^ (2 / 3)

TIH = TcG ^ (1 / 6) * BMG ^ (1 / 2) / PcG ^ (2 / 3)

jp = .000001

KA = ((14.52 * (GC + 273) / TcA) - 5.14) ^ (2 / 3) * (jp / TIA) * CPA

KB = ((14.52 * (GC + 273) / TcB) - 5.14) ^ (2 / 3) * (jp / TIB) * CPB

KC = ((14.52 * (GC + 273) / TcC) - 5.14) ^ (2 / 3) * (jp / TIC) * CPC

KD = ((14.52 * (GC + 273) / TcD) - 5.14) ^ (2 / 3) * (jp / TID) * CPD

KE = ((14.52 * (GC + 273) / TcE) - 5.14) ^ (2 / 3) * (jp / TIE) * CPE

KF = ((14.52 * (GC + 273) / TcF) - 5.14) ^ (2 / 3) * (jp / TIF) * CPF

KG = ((14.52 * (GC + 273) / TcG) - 5.14) ^ (2 / 3) * (jp / TIG) * CPG

KH = ((14.52 * (GC + 273) / TcG) - 5.14) ^ (2 / 3) * (jp / TIG) * CPG

KM = YA * KA * (BMA ^ .333) + YB * KB * (BMB ^ .333) + YC * KC * (BMC ^ .333)

KM = KM + YF * KF * (BMF ^ .333) + YD * KD * (BMD ^ .333) + YE * KE * (BME ^ .333)

KM = KM + YG * KG * (BMG ^ .333) + YH * KH * (BMH ^ .333) + YI * KI * (BMI ^ .333)

BAWAH = YA * (BMA ^ .333) + YB * (BMB ^ .333) + YC * (BMC ^ .333)

BAWAH = BAWAH + YD * (BMD ^ .333) + YE * (BME ^ .333) + YF * (BMF ^ .333)

BAWAH = BAWAH + YG * (BMG ^ .333) + YH * (BMH ^ .333) + YI * (BMI ^ .333)

KM = KM / BAWAH

'KONDUKTIVITAS pendingin (CAL/JAM.M.K)

KP = (.84333 - .0005807 * (GD + 273))

'PERHITUNGAN KOEFISIEN TRANSFER PANAS

RE = 50 * GT / N * Dp / VR

HI = (.27 * KM * (RE) ^ .8 * (CPM * VR / KM) ^ (1 / 3)) / DI

HI = 7.8 * HI

HIO = HI * DI / DOU

Rs = DE * GS / VP

PR = CPP * VP / KP

HO = .46 * KP / DE * Rs ^ .55 * PR ^ .333

UC = (HIO * HO) / (HIO + HO)

UD = UC / (11.06557 * UC + 1) / 100

'KECEPATAN REAKSI DAN PANAS REAKS

kx = 4691261868600# * EXP(-13505.96427# / (GC + 273))

'PANAS REAKSI

HR1 = -79310 + 3.905 * ((GC + 273) - 298)

HR1 = HR1 + (1 / 2) * (-.00344) * ((GC + 273) ^ 2 - 298 ^ 2)

HR1 = HR1 + (1 / 3) * (-3.539E-06) * ((GC + 273) ^ 3 - 298 ^ 3)

HR1 = HR1 + (1 / 4) * (2.295E-09) * ((GC + 273) ^ 4 - 298 ^ 4)

HR2 = -579550 + -.297 * ((GC + 273) - 298)

HR2 = HR2 + (1 / 2) * (.0148) * ((GC + 273) ^ 2 - 298 ^ 2)

HR2 = HR2 + (1 / 3) * (-4.372E-05) * ((GC + 273) ^ 3 - 298 ^ 3)

HR2 = HR2 + (1 / 4) * (2.481E-08) * ((GC + 273) ^ 4 - 298 ^ 4)

HR3 = -757490 + 9.2305 * ((GC + 273) - 298)

HR3 = HR3 + (1 / 2) * (-.00667) * ((GC + 273) ^ 2 - 298 ^ 2)

HR3 = HR3 + (1 / 3) * (-3.193E-05) * ((GC + 273) ^ 3 - 298 ^ 3)

HR3 = HR3 + (1 / 4) * (2.406E-08) * ((GC + 273) ^ 4 - 298 ^ 4)

HR = .75 * HR1 + .2 * HR2 + .05 * HR3

'PERSAMAAN DIFFERENSIAL

' (dx/dz)

RR = 82.06

TT = GC + 273

MM = FBo / FAo

CA0 = FAo / FTO * E1 / RR / TT

RC = kx * CA0 ^ 2 * (1 - GB) * (MM - GB)

DX = (3.14 * DI ^ 2 * RC * .36) / (4 * (FAo / N))

' (dT/dz)

Q1 = (-HR) * DX * FAo / N ' (cal/gmol) (1/cm) (gmol/dt) = cal/dt cm

Q2 = (UD * 3.14 * DOU * (GC - GD)) ' (cal/cm2 oC dt) (cm) (oC) = cal/dt cm

MCPR = FA * CPA + FB * CPB + FC * CPC + FD * CPD + FE * CPE + FF * CPF + FG * CPG + FH * CPH

T = (Q1 - Q2) / (MCPR / N)

' (dTs/dz)

S = -((UD * 3.14 * DOU * (GC - GD)) / (MS * CPP))

' (dP/dz)

fk = (150 * (1 - .36) / RE + 1.75) / 10000

P = (GT / N) ^ 2 * (1 - .36) * fk

P = -.00001 '((P / ((Dp) * (RM) * 981 * .36 ^ 3)))

RETURN

7000

FT = FA + FB + FC + FD + FE + FF + FG + FH

TC = C

GOSUB 8000

RETURN

8000

XX = (TC + 273) - 298

YY = (TC + 273) ^ 2 - 298 ^ 2

ZZ = (TC + 273) ^ 3 - 298 ^ 3

WW = (TC + 273) ^ 4 - 298 ^ 4

CPA = 6.713 * XX + -8.79E-07 / 2 * YY + 4.17E-06 / 3 * ZZ + -2.54E-09 / 4 * WW

CPB = -5.817 * XX + .122 / 2 * YY + -.0000661 / 3 * ZZ + 1.17E-08 / 4 * WW

CPC = 7.44 * XX + -.00324 / 2 * YY + .0000064 / 3 * ZZ + -2.79E-09 / 4 * WW

CPD = 7.701 * XX + .00046 / 2 * YY + 2.52E-06 / 3 * ZZ + -8.59E-10 / 4 * WW

CPE = 2.9 * XX + .119 / 2 * YY + -.0000679 / 3 * ZZ + 1.23E-08 / 4 * WW

CPF = 8.107 * XX + .113 / 2 * YY + -.0000721 / 3 * ZZ + 1.7E-08 / 4 * WW

CPG = -3.123 * XX + .0832 / 2 * YY + -.0000522 / 3 * ZZ + 1.16E-08 / 4 * WW

CPH = 4.728 * XX + .0175 / 2 * YY + -.0000134 / 3 * ZZ + 4.1E-09 / 4 * WW

QS1 = FA * CPA * 3.6

QS2 = FB * CPB * 3.6

QS3 = FC * CPC * 3.6

QS4 = FD * CPD * 3.6

QS5 = FE * CPE * 3.6

QS6 = FF * CPF * 3.6

QS7 = FG * CPG * 3.6

QS7 = FH * CPG * 3.6

QTOT = QS1 + QS2 + QS3 + QS4 + QS5 + QS6 + QS7 + QS8

PRINT

PRINT USING " Suhu operasi = ###.## C"; TC

PRINT " Suhu refferensi = 25 C "

PRINT

PRINT " "

PRINT " Komponen Kgmol /jam Cp dT Qs = m Cp dT "

PRINT " "

PRINT USING " O2 #####.#### #####.## ########.#### "; FA * 3.6; CPA; QS1

PRINT USING " C7H8 #####.#### #####.## ########.#### "; FB * 3.6; CPB; QS2

PRINT USING " N2 #####.#### #####.## ########.#### "; FC * 3.6; CPC; QS3

PRINT USING " H2O #####.#### #####.## ########.#### "; FD * 3.6; CPD; QS4

PRINT USING " C6H5CHO #####.#### #####.## ########.#### "; FE * 3.6; CPE; QS5

PRINT USING " C6H6 #####.#### #####.## ########.#### "; FF * 3.6; CPF; QS6

PRINT USING " C4H2O3 #####.#### #####.## ########.#### "; FG * 3.6; CPG; QS7

PRINT USING " CO2 #####.#### #####.## ########.#### "; FH * 3.6; CPH; QS8

PRINT " "

PRINT USING " Total #######.#### ########.#### "; FT * 3.6; QTOT

RETURN

Hasil Running Program computer

R E A K T O R F I X E D B E D M U L T I T U B E

Jumlah pipa = 6837 pipa

Diameter luar pipa = 3.353 cm

Diameter dalam pipa = 2.664 cm

Pitch = 4.191 cm

Diameter Shell = 4.194 m

Jumlah pendingin = 369198.000 Kg/j

KECEPATAN MASSA MASUK REAKTOR

Komponen Kgmol /jam Kg / jam

O2 124.5205 3984.6553

C7H8 13.1443 1209.2717

N2 468.4342 13116.1572

H2O 0.0000 0.0000

C6H5CHO 0.0123 1.2990

C6H6 0.1399 10.9158

C4H203 0.0000 0.0000

CO2 0.0000 0.0000

Total 606.2511 18322.2988

KECEPATAN MASSA GAS KELUAR REAKTOR

Komponen Kgmol /jam Kg / jam

O2 82.0665 2626.1272

C7H8 1.3144 120.9272

N2 468.4342 13116.1563

H2O 24.0795 433.4310

C6H5CHO 5.9272 628.2800

C6H6 0.0000 0.0000

C4H2O3 5.9149 579.6617

CO2 18.5844 817.7147

Total 606.3211 18322.2988

Enthalpi Umpan Masuk Reaktor :

Suhu operasi = 500.00 C

Suhu refferensi = 25 C

Komponen Kgmol /jam Cp dT Qs = m Cp dT

O2 13.1443 3571.98 46951.0313

C7H8 124.5205 19696.54 2452622.0000

N2 468.4342 3395.24 1590446.2500

H2O 0.0000 4065.76 0.0000

C6H5CHO 0.0123 22865.14 280.2058

C6H6 0.1399 23612.95 3304.5408

C4H2O3 0.0000 13115.67 0.0000

CO2 0.0000 5110.12 0.0000

Total 606.2511 4093604.0000

Reaksi yang terjadi :

C7H8 + O2 -----------> C6H5CHO + H2O

C7H8 + 6 O2 -----------> C4H2O3 + 3 H2O + 3 CO2

C6H6 + 7.5 O2 -----------> 6 CO2 + 3 H2O

KONDISI AWAL

Suhu gas masuk = 500.0 C

Suhu pendingin keluar = 490.0 C

Tekanan awal = 2.0 atm

Increment tebal katalis = 1.00 cm

L(cm) Xa T(c) Td (c) P(atm)

0 0.0000 500.00 490.0 2.000

10 0.0208 504.25 489.9 2.000

20 0.0428 508.35 489.8 2.000

30 0.0661 512.33 489.6 2.000

40 0.0905 516.15 489.4 2.000

50 0.1159 519.82 489.1 1.999

60 0.1422 523.32 488.9 1.999

70 0.1693 526.63 488.6 1.999

80 0.1971 529.73 488.2 1.999

90 0.2254 532.60 487.9 1.999

100 0.2540 535.20 487.5 1.999

110 0.2826 537.52 487.1 1.999

120 0.3111 539.52 486.6 1.999

130 0.3394 541.18 486.2 1.999

140 0.3671 542.49 485.7 1.999

150 0.3940 543.41 485.2 1.998

160 0.4201 543.95 484.7 1.998

170 0.4451 544.11 484.2 1.998

180 0.4690 543.89 483.7 1.998

190 0.4916 543.31 483.2 1.998

200 0.5130 542.39 482.7 1.998

210 0.5330 541.16 482.2 1.998

220 0.5517 539.65 481.8 1.998

230 0.5691 537.91 481.3 1.998

240 0.5852 535.97 480.8 1.998

250 0.6002 533.87 480.4 1.997

260 0.6141 531.65 479.9 1.997

270 0.6269 529.34 479.5 1.997

280 0.6388 526.98 479.1 1.997

290 0.6498 524.59 478.7 1.997

300 0.6599 522.21 478.4 1.997

310 0.6694 519.85 478.0 1.997

320 0.6782 517.53 477.7 1.997

330 0.6864 515.27 477.4 1.997

340 0.6940 513.07 477.1 1.997

350 0.7011 510.95 476.8 1.996

360 0.7078 508.92 476.5 1.996

370 0.7141 506.97 476.2 1.996

380 0.7201 505.12 476.0 1.996

390 0.7257 503.35 475.8 1.996

400 0.7310 501.68 475.5 1.996

410 0.7360 500.10 475.3 1.996

420 0.7408 498.60 475.1 1.996

430 0.7454 497.19 475.0 1.996

440 0.7498 495.87 474.8 1.996

450 0.7539 494.62 474.6 1.995

460 0.7579 493.45 474.5 1.995

470 0.7618 492.36 474.3 1.995

480 0.7655 491.33 474.2 1.995

490 0.7691 490.36 474.0 1.995

500 0.7725 489.46 473.9 1.995

510 0.7759 488.61 473.8 1.995

520 0.7791 487.82 473.7 1.995

530 0.7823 487.08 473.5 1.995

540 0.7853 486.39 473.4 1.995

550 0.7883 485.74 473.3 1.994

560 0.7912 485.13 473.2 1.994

570 0.7940 484.56 473.1 1.994

580 0.7967 484.02 473.0 1.994

590 0.7994 483.52 473.0 1.994

600 0.8020 483.04 472.9 1.994

610 0.8045 482.60 472.8 1.994

620 0.8070 482.18 472.7 1.994

630 0.8095 481.79 472.6 1.994

640 0.8119 481.42 472.6 1.994

650 0.8142 481.07 472.5 1.993

660 0.8165 480.74 472.4 1.993

670 0.8187 480.42 472.4 1.993

680 0.8209 480.13 472.3 1.993

690 0.8231 479.85 472.2 1.993

700 0.8252 479.58 472.2 1.993

710 0.8273 479.33 472.1 1.993

720 0.8294 479.09 472.1 1.993

730 0.8314 478.86 472.0 1.993

740 0.8334 478.64 472.0 1.993

750 0.8354 478.43 471.9 1.992

760 0.8373 478.23 471.9 1.992

770 0.8392 478.04 471.8 1.992

780 0.8410 477.85 471.8 1.992

790 0.8429 477.68 471.7 1.992

800 0.8447 477.51 471.7 1.992

810 0.8464 477.34 471.6 1.992

820 0.8482 477.18 471.6 1.992

830 0.8499 477.03 471.5 1.992

840 0.8516 476.89 471.5 1.992

850 0.8533 476.74 471.4 1.991

860 0.8549 476.61 471.4 1.991

870 0.8566 476.47 471.3 1.991

880 0.8582 476.34 471.3 1.991

890 0.8598 476.22 471.3 1.991

900 0.8613 476.10 471.2 1.991

910 0.8629 475.98 471.2 1.991

920 0.8644 475.86 471.2 1.991

930 0.8659 475.75 471.1 1.991

940 0.8673 475.64 471.1 1.991

950 0.8688 475.54 471.0 1.990

960 0.8702 475.43 471.0 1.990

970 0.8717 475.33 471.0 1.990

980 0.8731 475.23 470.9 1.990

990 0.8744 475.13 470.9 1.990

1000 0.8758 475.04 470.9 1.990

1010 0.8771 474.95 470.8 1.990

1020 0.8785 474.85 470.8 1.990

1030 0.8798 474.76 470.8 1.990

1040 0.8811 474.68 470.7 1.990

1050 0.8823 474.59 470.7 1.989

1060 0.8836 474.51 470.7 1.989

1070 0.8849 474.42 470.6 1.989

1080 0.8861 474.34 470.6 1.989

1090 0.8873 474.26 470.6 1.989

1100 0.8885 474.19 470.6 1.989

1110 0.8897 474.11 470.5 1.989

1120 0.8908 474.03 470.5 1.989

1130 0.8920 473.96 470.5 1.989

1140 0.8931 473.89 470.4 1.989

1150 0.8943 473.81 470.4 1.988

1160 0.8954 473.74 470.4 1.988

1170 0.8965 473.67 470.4 1.988

1180 0.8976 473.61 470.3 1.988

1190 0.8986 473.54 470.3 1.988

1200 0.8997 473.47 470.3 1.988

1203 0.9000 473.45 470.3 1.988

KECEPATAN MASSA GAS KELUAR REAKTOR

Komponen Kgmol /jam Kg / jam

O2 82.0665 2626.1272

C7H8 1.3144 120.9272

N2 468.4342 13116.1563

H2O 24.0795 433.4310

C6H5CHO 5.9272 628.2800

C6H6 0.0000 0.0000

C4H2O3 5.9149 579.6617

CO2 18.5844 817.7147

Total 606.3211 18322.2988

Enthalpi Hasil reaksi :

Suhu operasi = 473.45 C

Suhu refferensi = 25 C

Komponen Kgmol /jam Cp dT Qs = m Cp dT

O2 1.3144 3359.46 4415.7666

C7H8 82.0665 18267.09 1499115.5000

N2 468.4342 3197.49 1497813.5000

H2O 24.0795 3823.43 92066.2578

C6H5CHO 5.9272 21285.38 126162.1016

C6H6 0.0000 22025.61 0.0000

C4H2O3 5.9149 12185.40 226458.5938

CO2 18.5844 4789.26 0.0000

Total 606.3211 3446031.7500

NERACA PANAS :

MASUK : KELUAR :

1. Enthalpi Umpan Masuk Reaktor 1. Enthalpi hasil reaksi:

Qs1 = 4093604.0000 Kcal/jam Qs2 = 3446031.7500 Kcal/jam

2. Panas Reaksi 2. Panas dibawa pendingin

Qr = 2518927.2500 Kcal/jam Qp = 2716473.5000 Kcal/jam

3. Panas Hilang

Qloss = 450026.0000 Kcal/jam

-------------------------------- ---------------------------------

6612531.5000 Kcal/jam 6612531.0000 Kcal/jam

Dari hasil perhitungan Reaktor diperoleh :

Jumlah pipa = 6837 pipa

Diameter Shell = 4.194 m

Jumlah pendingin = 369198 Kg/j

Panjang terhitung = 12.0 m

= 39.5 ft

Panjang Pipa = 12.2 m

= 40.0 ft

Tinggi Head reaktor = 2.097 m

Tinggi reaktor = 12.192 + 2 . 2.097 m

= 14.3 m

1. Menghitung tebal shell

Digunakan bahan Carbon steel SA 178 grade C

Tekanan design (p) = 17.64 psi

Allowable stress = 18750 psi

efisiensi sambungan = 0.85

faktor korosi = 0.125 in

Jari-jari tangki = 82.56 in

Tebal Shell :

p .ri

t shell = + c

S . e - 0.4 . p

17.64 . 82.56

= + 0.125

18750.00 . 0.85 - 0.4 . 17.64

= 0.216 in

Dipakai tebal shell 1/4 in

2. Menghitung tebal head

Bentuk head : Elliptical Dished Head

Digunakan bahan Carbon steel SA 178 grade C

Tekanan design (p) = 32.24 psi

Allowable stress = 18750 psi

efisiensi sambungan = 0.85

faktor korosi = 0.125 in

Jari-jari tangki = 82.56 in

Tebal Head :

0.885 . p .d

t head = + c

2 . S . e - 0.2 . p

0.885 . 32.24 . 165.12

= + 0.125

2 . 18750.00 . 0.85 - 0.2 . 32.24

= 0.273 in

Dipilih tebal head 1/4 in

3. Menghitung ukuran pipa

Diameter Optimum pipa berdasarkan Pers. 15 Peters, hal.525

a. Pipa pemasukan Umpan Reaktor :

Kecepatan Umpan = 40309.059 lb/j

Densitas Umpan = 0.1684 lb/ft^3

Di = 2.2 . ( G/1000 )^ 0.45 . den ^ (-0.31)

= 2.2 . ( 40309.059 / 1000 )^ 0.45 . 0.1684 ^ (-0.31)

= 20.171 in

Dipakai pipa dengan ukuran : 20.00 in

b. Pipa pengeluaran hasil Reaktor :

Kecepatan hasil = 40309.059 lb/j

Densitas hasil = 0.1673 lb/ft^3

Di = 2.2 . ( G/1000 )^ 0.45 . den ^ (-0.31)

= 2.2 . ( 40309.059 / 1000 )^ 0.45 . 0.1673 ^ (-0.31)

= 20.212 in

Dipakai pipa dengan ukuran : 20.00 in

c. Pipa pemasukan dan pengeluaran pemanas:

Kecepatan HITEC = 812235.6250 lb/j

Densitas HITEC = 54.6624 lb/ft^3

Di = 2.2 . ( L/1000 )^ 0.45 . den ^ (-0.31)

= 2.2 . ( 812235.625 / 1000 )^ 0.45 . 54.6624 ^ (-0.31)

= 12.975 in

Dipakai pipa dengan ukuran : 12.00 in

4. Menghitung tebal Isolasi

Diameter shell = 13.76 ft

Tinggi shell = 40.00 ft

Tebal shell = 0.018 ft

Luas permukaan head = 356.70 ft

Luas permukaan shell = 1728.24 ft

Total luas permukaan = 2084.94 ft

Suhu permukaan isolasi = 140.00 F = 600.00 R

Suhu dalam reaktor = 956.39 F = 1416.39 R

Suhu udara lingkungan = 86.00 F = 546.00 R

Konduktifitas thermal diding shell = 28.0000 Btu ft/(j ft F)

Digunakan Isolasi Fine Diatomaceous earth powder

Konduktifitas thermal isolasi = 0.1250 Btu ft/(j ft F)

Koeffisien transfer panas konveksi (hc) :

0.25

hc = 0.3 Tw - Tu

0.25

= 0.3 140.00 - 86.00

= 0.8132418 Btu/j ft F

Koeffisien transfer panas Radiasi (hr) :

4 4

k e (Tw/100) - (Tu/100)

hr = ---------------------------------

[ Tw - Tu ]

4 4

0.178 . 0.8 6.00 - 5.46

= ---------------------------------

[ 600.00 - 546.00 ]

= 5.8827672 Btu/j ft F

A . (T1 - Tu)

Q loss = -----------------------------

t1 t2 1

---- + ---- + ---------

k1 k2 (hr + hc)

2084.940 . (956.39 - 86.00)

= --------------------------------------------

0.018 T is 1

------- + -------- + ------------------

28.00 0.125 0.8132 + 5.8828

0.018 T is 1 2084.940 (956.39 - 86.00)

------- + -------- + -------- = ---------------------------

28.00 0.125 6.6960 450026.000

0.018 T is 1

------- + -------- + -------- = 4.032

28.00 0.125 6.6960

T is

0.00064 + -------- + 0.1493 = 4.032

0.1250

T is

-------- = 3.882

0.1250

T isolasi = 0.485 ft

= 5.824 in

Kesimpulan :1. Tugas

2. Type alat = Reaktor Fixed Bed Multitube, karena reaksinya sangat eksotermis3. Kondisi operasi

4. Katalis

5. Pipa reactor6. Ukuran reaktor

Jumlah pipa = 6837 pipa

Diameter Shell = 4.194 m

Jumlah pendingin = 369198 Kg/j

Panjang terhitung = 12.0 m

= 39.5 ft

Panjang Pipa = 12.2 m

= 40.0 ft

Tinggi Head reaktor = 2.097 m

Tinggi reaktor = 12.192 + 2 . 2.097 m

= 14.3 m

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

= (-rA) EMBED Equation.3

EMBED Equation.3 Z

QR

z

T z+z

: EMBED Equation.3 z

..(3)

.(4)

B

C

_1489231063.unknown

_1489233754.unknown

_1497425068.unknown

_1497425225.unknown

_1497426454.unknown

_1497427950.unknown

_1497426489.unknown

_1497425274.unknown

_1497425155.unknown

_1497425195.unknown

_1497425097.unknown

_1497337713.unknown

_1497425030.unknown

_1489234076.unknown

_1489238618.unknown

_1489233824.unknown

_1489233540.unknown

_1489233659.unknown

_1489233701.unknown

_1489233577.unknown

_1489231718.unknown

_1489232003.unknown

_1489231686.unknown

_629506842.unknown

_1157107948.unknown

_1157123905.unknown

_1327325226.unknown

_1489227238.unknown

_1327325303.unknown

_1413716653.unknown

_1327325606.unknown

_1327325252.unknown

_1157164146.unknown

_1157166370.unknown

_1157166616.unknown

_1157168035.unknown

_1157181176.unknown

_1157166874.unknown

_1157166513.unknown

_1157165806.unknown

_1157125024.unknown

_1157163854.unknown

_1157124865.unknown

_1157109708.unknown

_1157123526.unknown

_1157110485.unknown

_1157110756.unknown

_1157110044.unknown

_1157108316.unknown

_1157109445.unknown

_1157108078.unknown

_1157108243.unknown

_629508413.unknown

_629508512.unknown

_629510987.unknown

_629508324.unknown

_629507062.unknown

_629501782.unknown

_629504221.unknown

_629504680.unknown

_629504825.unknown

_629504909.unknown

_629506597.unknown

_629504779.unknown

_629504619.unknown

_629503480.unknown

_629503818.unknown

_629503593.unknown

_629503310.unknown

_629503353.unknown

_629502227.unknown

_629503276.unknown

_629502795.unknown

_629502858.unknown

_629502696.unknown

_629502757.unknown

_629502556.unknown

_629501929.unknown

_629502164.unknown

_629501810.unknown

_629501294.unknown

_629501601.unknown

_629501718.unknown

_629501468.unknown

_629499664.unknown

_629501179.unknown

_629499316.unknown