readout of superconducting flux qubits

41
Readout of superconducting flux qubit Hideaki Takayanagi 髙髙 髙髙 NTT Basic Research Laboratories H. Tanaka, S. Saito, H. Nak H. Tanaka, S. Saito, H. Nak J. Johansson, F. Deppe, J. Johansson, F. Deppe, T.Kutsuzawa,and K. Semba T.Kutsuzawa,and K. Semba NTT Basic Research Labs. Tokyo University of Scien CREST JST M. Ueda M. Ueda Tokyo Institute of Technol M. Thorwart M. Thorwart Heinrich Heine University D. Haviland D. Haviland KTH ers : Nakano (Berry Phase) Johansson Vacuum Rabi) Frontiers in Quantum Nanoscience A Sir Mark Oliphant & PITP Conference Noosa Blue Resort, 24 January 2006

Upload: juliet-roberts

Post on 30-Dec-2015

55 views

Category:

Documents


6 download

DESCRIPTION

Frontiers in Quantum Nanoscience A Sir Mark Oliphant & PITP Conference Noosa Blue Resort, 24 January 2006. Readout of superconducting flux qubits. Hideaki Takayanagi 髙柳 英明 NTT Basic Research Laboratories. H. Tanaka, S. Saito, H. Nakano, J. Johansson, F. Deppe, - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Readout of superconducting flux qubits

Readout of superconducting flux qubits

Hideaki Takayanagi 髙柳 英明NTT Basic Research Laboratories

H. Tanaka, S. Saito, H. Nakano, H. Tanaka, S. Saito, H. Nakano, J. Johansson, F. Deppe, J. Johansson, F. Deppe, T.Kutsuzawa,and K. SembaT.Kutsuzawa,and K. Semba NTT Basic Research Labs. Tokyo University of Science CREST JSTM. UedaM. Ueda Tokyo Institute of TechnologyM. ThorwartM. Thorwart Heinrich Heine UniversityD. HavilandD. Haviland KTH

Posters : Nakano (Berry Phase) Johansson ( Vacuum Rabi)

Frontiers in Quantum NanoscienceA Sir Mark Oliphant & PITP ConferenceNoosa Blue Resort, 24 January 2006

Page 2: Readout of superconducting flux qubits

Sample size Sample size ~~ μm μm

Loop sizeLoop size SQUIDSQUID ~ 7 ~ 7 x 7 x 7 mm22

qubitqubit ~ ~ 5 x 55 x 5 mm22

Mutual inductance Mutual inductance MM ~ 7 pH ~ 7 pH

Josephson junctionsJosephson junctionsAl / AlAl / Al22OO3 3 / Al/ Al

Junction areaJunction areaSQUIDSQUID : : 0.1 x 0.0.1 x 0.0808 mm22

qubitqubit : 0.1 x 0.2 : 0.1 x 0.2 mm22, , ( ( = 0.7 ) = 0.7 )

• e-beam lithographye-beam lithography• Shadow evaporationShadow evaporation• Lift-offLift-off

Oxide layer

Aluminum layer

PMGI

ZEP

Silicon

SiO2J osephson junction

Oxide layer

Aluminum layer

Oxide layer

Aluminum layer

PMGI

ZEP

Silicon

SiO2J osephson junction

PMGI

ZEP

Silicon

SiO2

ZEP

Silicon

SiO2

Silicon

SiO2J osephson junction

J osephson junction

5 m

IC(SQUID)~ 0.5 A

IC(qubit)~ 0.7 A

M Iq ISQ ~ 3.7 GHz

Page 3: Readout of superconducting flux qubits

Multi-photon transition betweenMulti-photon transition between superposition of macroscopic quantum states superposition of macroscopic quantum states

E 0

(1)

1.5101.5051.5001.4951.490

qubit

/

h

< I

P >

T

1.5101.5051.5001.4951.490

qubit

/

1 1

1

12

3

32

233

2

2h

( ) /√2   ground state

( ) /√2   1st excited state

Multi-photon transition

Page 4: Readout of superconducting flux qubits

Macroscopic Quantum state Transition induced by energy difference of single photon.Macroscopic Quantum state Transition induced by energy difference of single photon.Any superposition state can be prepared by adjusting a duration of resonant MW-pulse.Any superposition state can be prepared by adjusting a duration of resonant MW-pulse.

extext : magnetic flux : magnetic flux

Resonant Resonant microwave photonmicrowave photon

Superconducting Superconducting persistent current persistent current ~ 0.5 ~ 0.5 AA

( ~ 10( ~ 1066 cooper pairs ) cooper pairs )

QubitGround state

Qubit Excited state

Analogy of Schroedinger’s catAnalogy of Schroedinger’s cat

superposition of macroscopically distinct statessuperposition of macroscopically distinct states

Page 5: Readout of superconducting flux qubits

Multi-photon spectroscopyMulti-photon spectroscopy

SQUID readout

-2

-1

0

1

2

d I

SW (

nA

)

1.5041.5021.5001.4981.496

qubit /

0

RF : 3.8 GHz

-10 dBm

12

23

2

1

0

-1

-2

d I

SW (

nA

)

1.5041.5021.5001.4981.496

qubit /

0

RF : 3.8 GHz

0 dBm

1 2

2

3

=0.86GHz

1-photon

2 -photon

Multi-photon transition

S. Saito et al., PRL 93, 037001(2004)

Page 6: Readout of superconducting flux qubits

31

Single color Multi photonSum frequency

Two colorsTwo photonsSum frequency

Two colorsTwo photonsDifference frequency

Multiphoton Rabi

1

2

1

2e

g

ee

g g

Observation of multiphoton Qubit control by microwave pulse.

Y. Nakamura, et al., PRL(2001)

Page 7: Readout of superconducting flux qubits

measurement

Ibias

t

Vmeas

t

0

0

Vth

70 ns

400 V

tRF pulse

1200 ns

repetition: repetition: 3.3kHz ( 300 3.3kHz ( 300 s)s)

Non-switchingNon-switching

switchingswitching

Discrimination of the signal

RF pulse

~100 nA

|g>

|e>

tσ̂

x

y

z

|g>

|e>

|e>

|g>

Page 8: Readout of superconducting flux qubits

Sw

itch

ing

pro

bab

ility

5040302010MW pulse length [ns]

6dBm3

-10

-14

-33

20 %

-22

-27

Sw

itch

ing

pro

bab

ility

5040302010MW pulse length [ns]

12dBm8

3

-2

-10

20 %

-6

Sw

itch

ing

pro

bab

ility

5040302010MW pulse length [ns]

2dBm

1

0

-1

-4

20 %

-2

Sw

itch

ing

pro

bab

ility

5040302010MW pulse length [ns]

12dBm

10

86

2

20 %

4

Single color & Multi photon

e

g

1-photon Rabi 2-photon Rabi 3-photon Rabi 4-photon Rabi

10.25GHz x 310.25GHz x 3 rfRabi VaJ n[MHz] 17352

][mV 0134.0 -1anumberphoton : n

frequency Rabi : 2Rabi amplitude pulseMW : rfV

1200

800

400

0Rab

i fre

quen

cy [M

Hz]

300250200150100500

MW pulse amplitude [mV]

2

n = 1

34

Page 9: Readout of superconducting flux qubits

Sw

itch

ing

pro

bab

ility

5040302010MW pulse length [ns]

16.2GHz, 10dBm

6

2

-5

-10

20 %

Sw

itch

ing

pro

bab

ility

5040302010MW pulse length [ns]

16.2GHz, 10dBm

6

2

-5

-10

20 %

Two colors, Two photons & Sum frequency

e

g

500

400

300

200

100

0

Rab

i fre

qu

ency

[M

Hz]

16012080400Vrf1 [mV]

04 6 10dBm

16.2GHz

6dBm

10.25GHz8dBm

2-5-10

4

2

0

-4

-7

-10

8

10.25GHz, - 4dBm 10.25GHz, 4dBm

10.25GHz

16.2GHz

Page 10: Readout of superconducting flux qubits

Sw

itch

ing

pro

bab

ility

5040302010MW pulse length [ns]

11.1GHz, 4dBm

2

10 %

0

-2

-5

-10

Sw

itch

ing

pro

bab

ility

5040302010MW pulse length [ns]

11.1GHz, 4dBm

2

10 %

0

-2

-10

-5

Two colors, Two photons & Difference frequency

e

g

350

300

250

200

150

100

50

0

Rab

i fre

qu

ency

[M

Hz]

806040200Vrf1 [mV]

0

2

4dBm11.1GHz

18.5GHz, 8dBm

4

-10

2

-20

-5

18.5GHz, 0dBm 18.5GHz, 8dBm

11.1GHz

18.5GHz

Page 11: Readout of superconducting flux qubits

Discussion

2

1

2

1 2

1

22 iii

iizxz aaaagH

ii

2

1

cos222 i

iizxz tgH

Assume that the microwave is in the coherent state as tia iii exp

tHtt

i

gtbetat

g

nm

tnmEi

nmnm

g nmE

e

E

gJ

E

gJ

EtbtP

, 212

21

1

2 1441

21

With the conditions21 E E

2

211

11Rabi

44

gJ

gJ

0

Ene

rgy

Lev

el

0.5020.5010.5000.4990.498

Eg

e

is the solution of

The probability to find the state in the ground state is

Page 12: Readout of superconducting flux qubits

350

300

250

200

150

100

50

0R

abi f

req

uen

cy [

MH

z]806040200

Vrf1 [mV]

0

2

4dBm11.1GHz

18.5GHz, 8dBm

4

-10

2

-20

-5

Comparisions between experiments and calculations

500

400

300

200

100

0

Rab

i fre

qu

ency

[M

Hz]

16012080400Vrf1 [mV]

04 6 10dBm

16.2GHz

6

10.25GHz, 8dBm

2-5-10

4

2

0

-4

-7

-10

8

rf221rf111Rabi VaJVaJ

Sum freq. Difference freq.

a1 = 0.00741[mV-1]a2 = 0.0131

a1 = 0.0118 [mV-1]a2 = 0.00911

[MHz] 17352

Page 13: Readout of superconducting flux qubits

Rabi Oscillation : Quantum bit oscillates between and with a frequency that is proportional to the amplitude of irradiated microwave.

0 1

pulse : width of pulse

+

A

B

A’

B’

A B A’B’0 0 0 00 1 0 11 0 1 11 1 1 0

When A=1,B is reversed.

Controlled-not gate0

1

Rotation Gate

Control Gates

)1(102

12

sin02

cos ie Any multiple qubit logic gate may be composed

from CNOT and single qubit gates.

Page 14: Readout of superconducting flux qubits

RabiRabi

56

54

52

50

48

46

Pro

babi

lity(

%)

100908070605040302010

Pulse Width (ns)

(t)0

1

by phase shiftby phase shift ※ ※ in a rotating framein a rotating frame

12

sin02

cos)(

iet by introduce detuningby introduce detuning

)(t

RamseyRamsey

Control ofControl of

π/2Pulse

π/2Pulse

Control of Control of

Control of two angles in Bloch sphere Control of two angles in Bloch sphere q q (( RabiRabi )) andand   (  ( RamseyRamsey ))

longitude

latitude

Page 15: Readout of superconducting flux qubits

1

0

   with detuningwith detuning

0

1

Phase shift without detuningPhase shift without detuning

π/2Pulse π/2Pulse

π/2Pulse π/2Pulse

Rapply ff

0

dfff Rapply ⊿ t12

⊿ t12

t

t

Ψ

Ψ

※ ※ in a rotating framein a rotating frame

Detuning method vs. Phase shift methodDetuning method vs. Phase shift method

Equator

Page 16: Readout of superconducting flux qubits

]2mod[ 12tfR

Ramsey Ramsey (( detuning method ddetuning method d ff ~0.2 GHz~0.2 GHz ))

π/2Pulse

⊿Φ =0

π/2Pulse

π/2Pulse

π/2Pulse

fR : RF ~ 11.4 GHz

⊿Φ = π

⊿Φ = π/2

T=1/fR ~ 88ps

Ramsey Ramsey (( phase shift method dphase shift method d ff =0 Hz=0 Hz ))

T=1/df ~ 5ns

Advantage of Phase shift methodAdvantage of Phase shift method

Page 17: Readout of superconducting flux qubits

1SWP

]mod[ 12tR

URF

URF

Vext

|1>

|0>

Read out voltage

T=25mK

0

1π/2Pulse

⊿ t12

π/2Pulse

ensemble :1 0,000

Ψ

Measurement schemeMeasurement scheme

Page 18: Readout of superconducting flux qubits

33 . Fast Oscillation. Fast Oscillation

Dephasing time1.84[ns]

Resonant Frequancy11.4 [GHz]

Frequancy by fitting11.18±0.01 [GHz]

π/2 pulse => 5 [ns]

50

45

40

35

30

Psw

[%

]

2. 01. 81. 61. 41. 21. 0 t12 [ns]

Av : 10,000 times

⊿Φ =0 ⊿Φ = π⊿Φ = π/2 ⊿Φ = 3π/2

TPhaseShift=89 ps

Page 19: Readout of superconducting flux qubits

• We succeeded in observing Larmor precession ( 11.4 GHz )We succeeded in observing Larmor precession ( 11.4 GHz ) of a flux qubit with phase shifted double pulse method.of a flux qubit with phase shifted double pulse method.     An arbitrary unitary transformation of a single qubit is possible.An arbitrary unitary transformation of a single qubit is possible.

  

・ ・ AdvantageAdvantage

>> We can control qubit phase rapidly ( ~ 10 GHz ).We can control qubit phase rapidly ( ~ 10 GHz ).   →    →  We can save time for each quantum-gate operationWe can save time for each quantum-gate operation   →    →  Compared with the detuning method (~ 0.1 GHz ), Compared with the detuning method (~ 0.1 GHz ), 10 10 ~ ~ 100 times many gates can be implemented.100 times many gates can be implemented.

Page 20: Readout of superconducting flux qubits

Artificial Atom in a Cavity

Cavity QED

A. Wallraff et al, Nature 431, 162 (2004)I. Chiorescu et al, Nature 431, 159 (2004)

Page 21: Readout of superconducting flux qubits

E/M shielding (-100 dB) &

Three-fold -metal shield

RF-line

Ibias -line

Vm-line

sample package

RF-line

Ibias-line

Vm-line

Dilution refridgerator

(~ 20 mK)

Measurement systemMeasurement system

Page 22: Readout of superconducting flux qubits

Microwave line

Csh

I bias V meas

5 m

qubit

SQUID

V measI bias

MW

On-chip component  [1] LC mode 、 filtering   capacitor( Csh ) resistor ( Ibias, Vmeas )[2] strong driving :   microwave line

Sample

Page 23: Readout of superconducting flux qubits

Csh

Microwave line

I bias V meas

Csh

LleadLlead

15

10

5

0

Res

onan

t fr

eque

ncy

[GH

z]

1.5101.5051.5001.4951.490

qubit /

0

EJ = 200 GHz

= 1.7 GHzfres = 4.3 GHz

Qubit Qubit coupled to a spatially separatedcoupled to a spatially separated LC-harmonic oscillator LC-harmonic oscillator

QubitQubit

Coherent dynamics of a flux qubit coupled to a harmonic

oscillator

Two macroscopic quantum systemsTwo macroscopic quantum systems

Page 24: Readout of superconducting flux qubits

Flux-qubit entangled with the LC-oscillator

Qubit, two-level systemQubit, two-level system LC-harmonic oscillatorLC-harmonic oscillator

microwave fieldmicrowave field

|0|0, |1, |1 |0|0, |1, |1, ..., , ..., |N|N

hhpp

hFhFLLMIMIqqIIcirccirc

..

..

..

IIqubitqubit, , LCLC>>

00

10

20

21

11

01 Blue sidebandBlue sideband

Red sidebandRed sideband

-pulse-pulse

Page 25: Readout of superconducting flux qubits

Marking the lateral sidebands

qubit Larmor frequency 13.96 GHzqubit Larmor frequency 13.96 GHz

-pulse length is determined by Rabi exp.-pulse length is determined by Rabi exp.

|10|11

|01

|00

|10|11

|01|00

spectroscopy after or without a spectroscopy after or without a -pulse -pulse 0 10 20 30 40 50

50

60

70

switc

hing

pro

babi

lity

[ %

]

Microwave pulse length [ ns ]

-pulse-pulseQubit Qubit

Rabi oscillationsRabi oscillations

70

60

50

40

30Sw

itchi

ng p

roba

bilit

y [%

]

2018161412108RF frequency [GHz]

after -pulse

without RF pulse

blue sideband 18.3 GHz

qubit 13.96 GHz

-10 dBm

red sideband 9.65 GHz

Page 26: Readout of superconducting flux qubits

Red sideband Rabi oscillations |10Rabi oscillations |10 |01 |01 for various powers, for various powers,

after a after a pulse |00 pulse |00 |10 |10

|10|11

|01|00

|1010+ |01+ |01

Driven, off-resonance, vacuum Rabi oscillations

Sw

itchi

ng

pro

bab

ility

[%]

302010RF pulse width [ns]

-5

9.65 GHz 5 dBm

-3

3

1

-1

10 %

qubit Larmor frequency 13.96 GHz, oscillator frequency 4.31 GHz, qubit Larmor frequency 13.96 GHz, oscillator frequency 4.31 GHz,

red sidebandred sideband at 9.65 GHz at 9.65 GHz

Page 27: Readout of superconducting flux qubits

Blue sideband qubit Larmor frequency 13.96 GHz, oscillator frequency 4.19 GHz, qubit Larmor frequency 13.96 GHz, oscillator frequency 4.19 GHz,

blue sidebandblue sideband at 18.15 GHz at 18.15 GHz

|10|11

|01|00

|0000+ |11+ |11

|10|11

|01|00

conditional dynamicsconditional dynamics

|11

Sw

itchi

ng p

roba

bilit

y [%

]

302010RF pulse width [ns]

18.28 GHz

8

8

7

6

5

10 %

9

10

after -pulse

after 2-pulse

dbm

Page 28: Readout of superconducting flux qubits

C=10 pF, L=0.14 nH p = 4.3 GHz ~ 200 mK >> kBT~20 mK

LC-plasma mode LC-plasma mode                qubit qubit             cocouplingupling

Flux-qubit LC-oscillator systemFlux-qubit LC-oscillator systemPoster: J. Johansson

Page 29: Readout of superconducting flux qubits

for cavity QED ( ENS Paris )for cavity QED ( ENS Paris )

Single mode cavitySingle mode cavity

Qubit n=50, 51Qubit n=50, 51

Page 30: Readout of superconducting flux qubits

Sw

itchi

ng p

roba

bilit

y [%

]

30252015105MW pulse length [ns]

Sw

itchi

ng p

roba

bilit

y [%

]

65432MW pulse length [ns]

14GHz, -3dBm

10.25GHz, -14dBm qubit Rabi oscillation qubit Rabi oscillation pulspulsee

22pulspulsee

-, 2-, 2-pulse determined from Rabi -pulse determined from Rabi oscillationsoscillations

20 mK20 mK

Page 31: Readout of superconducting flux qubits

J. Johansson et al., in preparation

spectroscopy under weak excitations

anti-crossingis observed

with help of thewith help of thedumping pulsedumping pulse

Page 32: Readout of superconducting flux qubits

|e0

|e1

|g1|g0

readout readout qubit state qubit state

excite qubit excite qubit by aby a-pulse-pulse

1 → 21 → 2 3 ⇔ 43 ⇔ 4

shift qubit shift qubit adiabaticallyadiabatically

|e0

|e1

|g1|g0

|e0

|e1

|g1|g0

2 → 32 → 3

|g0

|g1

|e0

4

shift qubit shift qubit adiabaticallyadiabatically

I I qubitqubit, , LC-oscillator LC-oscillator >>   Vacuum Rabi : measurement schemeVacuum Rabi : measurement scheme

Page 33: Readout of superconducting flux qubits

Vacuum Rabi oscillationsVacuum Rabi oscillationsDirect evidence of level quantization in a 0.1 mm large

superconducting macroscopic LC -circuit

J. Johansson et al., submitted

Page 34: Readout of superconducting flux qubits

Influence of higher level occupationInfluence of higher level occupation

J. Johansson et al., submitted

Page 35: Readout of superconducting flux qubits

connection to cavity QEDconnection to cavity QED

Page 36: Readout of superconducting flux qubits

qubit 1qubit 1 qubit qubit 22

・・・・・・・・・・・・

・・・・・・

: Josephson junction

Control signal : RF line

readoutSQUID

for qubit 2

qubit 2qubit 2

LC-resonator as a qubit coupler

Multi qubit operation schemeMulti qubit operation scheme

readoutSQUIDfor

qubit 1

qubit 1qubit 1

Harmonic oscillator

Page 37: Readout of superconducting flux qubits

Map Map-1

qubit 1

harmonic oscillator

qubit 2

( b1 )0

( b1 )

(c)

0

(c)

( b2 )0

( b2 )√

qubit 1

qubit 2

|g, 0> |g, 1>

|g, 2>

|e, 0> |e, 1>

|e, 2>

(a)(a)

(b)(b)

(c)

( b2 )0

( b2 )√

phaseangle

Page 38: Readout of superconducting flux qubits

Coupled Flux QubitsCoupled Flux Qubits

Page 39: Readout of superconducting flux qubits

•Multi-photon Rabi oscillationMulti-photon Rabi oscillation - between Macroscopically distinct states- between Macroscopically distinct states

• Faster (Faster (,,-control -control To make best use of the coherence timeTo make best use of the coherence time

- - -control : Rabi with strong driving -control : Rabi with strong driving - - -control by composite pulse : Z(-control by composite pulse : Z()=X()=X(/2)Y(/2)Y()X(-)X(-/2)/2)

• Coupling between qubit and LC-oscillatorCoupling between qubit and LC-oscillator - Conditional spectroscopy of the coupled system - Conditional spectroscopy of the coupled system - Entanglement with an external oscillator- Entanglement with an external oscillator - - Vacuum Rabi oscillationsVacuum Rabi oscillations• Generation of “two qubit”-like states Generation of “two qubit”-like states

|00|00 + + |11|11 andand |01|01 + + |10|10

SummarySummary

Page 40: Readout of superconducting flux qubits

Flux-qubit, Atom chip team at NTT-BRL Atsugi

Page 41: Readout of superconducting flux qubits

MS+S2006 at NTT AtsugiFebruary 27-March 2, 2006

Int. Symp. on Mesoscopic Superconductivity & Spintronics

~ In the light of quantum computation ~

http://www.brl.ntt.co.jp/event/ms+s2006/

MS+S2004, March 2004