chapter 6: static electricity - ms. johnston's...

35
Chapter 6: Static Electricity

Upload: nguyenkien

Post on 28-Aug-2018

267 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Chapter 6: Static Electricity

Page 2: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Bohr-Rutherford Model

• Matter is composed of particles called atoms

Protons:

• found in the nucleus

• small, heavy particles

• positively charged

Page 3: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Electrons:

• Move in the space around

the nucleus

• Small and light (about

1/2000th mass of a proton)

• Negatively charged

Page 4: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Neutrons:

• Found in nucleus

• Small heavy particles

• Do not carry a charge

Page 5: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

• Atoms are normally electrically neutral – equal number of protons and electrons

• Hydrogen atom: 1 proton, 1 electron• Carbon atom: 6 protons, 6 electrons• Uranium atom: 92 protons, 92 electrons

Page 6: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Electrostatics

• Atoms of a solid are held in place

• Nuclei vibrate but are not free to move, therefore the positive charge remains fixed

• Outermost electrons can move from atom to atom, causing charges to form.

Page 7: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Conduction electrons…

Page 8: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

• Whenever electrons are added or removed from a solid, it becomes charged

• When electrons are removed – object becomes positively charged

• When electrons are added – object becomes negatively charged

Page 9: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects
Page 10: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Rules of Static Charge

• Objects with like charges repel each other

• Objects with unlike charges attract one another

• Charged objects attract neutral objects

Page 11: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Law of Conservation of Charge

• the net charge of an isolated system remains constant

• Charge is ‘quantized’, meaning that charge comes in integer multiples of the elementary charge, e

• A proton has a charge of +e, while the electron has a charge of –e.

Page 12: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

• In the early 20th century, R. Millikan found the smallest unit of charge:

e = 1.60x10-19 C where C is the unit of charge, Coulomb

or

1 C = 6.24x1018 e.

Page 13: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

• The charge on an object, then can be calculated by using the formula:

Q = Ne

where Q = electric charge

N = excess number of electrons or protons

e = charge of a single proton or electron (1.6x10-19 C)

Page 14: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Ex. 1 How many electrons have been removed from a positively charged pith ball electroscope if it has a charge of 7.5x10-11 C?

Page 15: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Ex. 2 What is the charge, in coulombs, on an object that has:

a) An excess of 6.25x1019 electrons?

b) A deficiency of 1.0x108 electrons?

Page 16: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Electrostatic Charging

• Most objects are electrically neutral; they have equal amounts of positiveand negative charge

• Solids in which charge flows freely are called conductors (i.e., most metals)

• Outermost electrons in the atoms are so loosely bound to their atoms that they are free to move around

• Solids which hinder the flow of charge are called insulators (plastic, cork, glass, wood, rubber)

• Electrons are tightly bound to the atoms and are not free to flow

Page 17: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Charges can be transferred from one object to another through:

Friction

• if you rub one material with another, electrons have a tendency to be transferredfrom one material to another (glass with silk, rubber with fur).

Page 18: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Conduction

• If a charged object touches a conductor, some charge will flow between the object and the conductor, sharing the charge with the conductor

Page 19: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Induction -

• charged object is brought close to the conductor, but does not touch.

• If the conductor is grounded (touching anything that can give up or take electrons), electrons will either flow onto the conductor or awayfrom it.

• When the ground connection is removed, the conductor will then have a charge opposite in sign to that of the charged object.

Page 20: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Electrical Fields and Electric Charge

• Electric charges exert forces that attract or repel each other when they are not in direct contact

• Every charged object creates an electrical field of force in the space around it

• Any charged object in that field will experience a force of electrical attraction or repulsion

Page 21: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Electric Force• Charles Coulomb (1736-1806) determined that magnitude of force

between two charged objects is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.

Coulomb’s Law:

𝐹 =𝑘𝑄1𝑄2

𝑑2F = Electric Forcek = constant (9.00x109 Nm2/C2)Q1 = electric charge of one objectQ2 = electric charge of 2nd objectd = distance between the two objects

Page 22: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Ex.1: What force would a 1.5 C positive charge exert on 2.0 C negative charge that is 3.0 cm away?

Page 23: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Ex.2: Two charged objects are 4.0 cm apart. What is the charge on the first object if the second object has a +2.0x10-6 C charge and applies a force of +45 N on the first?

Page 24: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Ex.3: Two electrons, each with a charge of -1.6x10-19C, apply a force of +5.8x10-11 N on each other. How far apart are the electrons?

Page 25: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Electric Currents• Charge can move from one object to another through a conductor

• Electric current: when a charge moves, or ‘flows’ from one place to another

• In metals, moving charges have a negative charge

I = Q/t

Q = total charge flowing past a point in a circuitt = time over which charge flowedI = current (units: Amperes)

1 A = the electric current flowing when 1 C of charge moves past a point in a conductor in 1 s.

Page 26: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Ex.1: Calculate the current in an electric toaster if it takes 9.0x102 C of charge to toast 2 slices of bread in 1.5 min.

Page 27: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Ex. 2: A light bulb with a current of 0.80 A is left burning for 25 minutes. How much electric charge passes through the filament of the bulb?

Page 28: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Conventional Current vs. Electron Flow• Electric current is defined as the rate of flow of electrically charged

particles past a point

• Benjamin Franklin, in the 19th century, assumed that a positive charge moved from an area where there was an excess of positive charges to an area where there was a deficit (a negative charge).

• Direction was therefore defined as moving from the positive terminal to the negative terminal of the source of potential energy. This is called conventional current

Page 29: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

• After this concept was firmly entrenched, the electron was discovered and it became clear that an electric current is a flow of negatively-charged electrons from the negative terminal to the positive terminal – electron flow.

• Unless told otherwise, assume that all diagrams use conventionalcurrent

Page 30: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Sources of Electric Current• Electric current supplied by a battery is significantly different from

current supplied by a wall socket

• Batteries supply direct current (DC) – flow is in a fixed single direction with a constant magnitude

• Wall sockets supply alternating current (AC) – flow periodically reverses direction in the circuit and the amount of current varies continuously.

Page 31: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Electric Potential Difference (Voltage)

• Electrical potential energy – storedenergy as a result of electrical charges.

• Separating an electron from a proton requires work, therefore increasing their stored energy (like stretching a spring).

• Charged particles move in the presence of an electric field and can convertelectrical potential energy into other forms of energy

• The loss of energy results in an electric potential difference between two points

Page 32: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

• Potential difference is measured in Volts (V), and is measured by a voltmeter:

1 volt = 1 joule/1 coulomb

ie., a 12 V car battery is a battery that does 12 J of work on each coulomb of charge that flows through it.

• The work done by a charge, Q, going through a potential difference, V, can be written as:

E = QV

Since Q = It, then E = VIt

Page 33: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Ex #1: A 12 V car battery supplies 1.0x103 C of charge to the starting motor. How much energy is used to start the car?

Page 34: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Ex #2: If a current of 10.0 A takes 3.0x102s to boil a kettle of water requiring 3.6x105 J of energy, what is the potential difference across the kettle?

Page 35: Chapter 6: Static Electricity - Ms. Johnston's Webpagejohnstonsd36.weebly.com/uploads/2/1/3/3/21338878/static... · Chapter 6: Static Electricity. ... Rules of Static Charge •Objects

Ex. #3: A 120 V electric sander operating for 5.0 min uses 1.0x105 J of energy. Find the current through the sander.