reactor batch

13
RESUMEN Se obtuvo un éster mediante una reacción de esterificación catalizada con ácido en un reactor batch, además se determinó el rendimiento y conversión de la reacción planteada. En el reactor batch se agrega el ácido con el catalizador y se calienta a una determinada temperatura, paralelamente se calienta aparte el alcohol a la misma temperatura del ácido, una vez que estén a la misma temperatura separadamente se mezclan y se mantiene la temperatura constante durante un intervalo de tiempo, en el cual se van tomando muestras sucesivas las cuales se proceden a titular. Una vez transcurrido el tiempo de reacción se separa los productos de los reactivos mediante destilación, se recogen los volúmenes de cada componente y se toma su medida. Mediante las concentraciones de los reactivos durante el tiempo de reacción se logró obtener la conversión de la reacción y el rendimiento del proceso de esterificación. Se concluye que la temperatura de reacción y la relación molar de los reactivos determinan directamente la conversión de la reacción. DESCRIPTORES: REACCION_DE_ESTERIFICACION/TIEMPO_DE_REACCION/RELACION_MOL AR/CONVERSION

Upload: valeria-benalcazar

Post on 24-Dec-2015

108 views

Category:

Documents


3 download

DESCRIPTION

PRODUCCION DE A

TRANSCRIPT

Page 1: REACTOR BATCH

RESUMEN

Se obtuvo un éster mediante una reacción de esterificación catalizada con ácido

en un reactor batch, además se determinó el rendimiento y conversión de la

reacción planteada.

En el reactor batch se agrega el ácido con el catalizador y se calienta a una

determinada temperatura, paralelamente se calienta aparte el alcohol a la misma

temperatura del ácido, una vez que estén a la misma temperatura separadamente

se mezclan y se mantiene la temperatura constante durante un intervalo de

tiempo, en el cual se van tomando muestras sucesivas las cuales se proceden a

titular. Una vez transcurrido el tiempo de reacción se separa los productos de los

reactivos mediante destilación, se recogen los volúmenes de cada componente y

se toma su medida.

Mediante las concentraciones de los reactivos durante el tiempo de reacción se

logró obtener la conversión de la reacción y el rendimiento del proceso de

esterificación.

Se concluye que la temperatura de reacción y la relación molar de los reactivos

determinan directamente la conversión de la reacción.

DESCRIPTORES:

REACCION_DE_ESTERIFICACION/TIEMPO_DE_REACCION/RELACION_MOL

AR/CONVERSION

Page 2: REACTOR BATCH

OBTENCION DE ACETATO DE ETILO

1. OBJETIVOS

1.1. Obtener acetato de etilo mediante la reacción de esterificación de ácido

acético catalizada con un ácido en un reactor batch.

1.2. Determinar el rendimiento de la reacción de esterificación del ácido acético

1.3. Determinar el grado de conversión de la reacción planteada

2. TEORIA

2.1. Energía de activación

“La energía de activación puede considerarse como una barrera para la

transferencia de energía (de energía. Cinética a energía potencial) entre

moléculas reactivas y debe ser vencida.

Una manera de considerar tal barrera para las reacciones es a través del uso

de coordenadas de reacción. Dichas coordenadas denotan la energía

potencial del sistema en, función del progreso a lo largo de la trayectoria de

reacción, al ir desde reactivos hasta un producto intermedio y después hacia el

producto final

Para determinar la energía de activación se usa el principio de la ecuación de

Arhenius” (1).

( )

Ec: 2.1-1

2.2. Velocidad de reacción

“La velocidad de reacción se define como la cantidad de sustancia que se

transforma en una determinada reacción por unidad de volumen y tiempo. Por

ejemplo, la oxidación del hierro bajo condiciones atmosféricas es una reacción

lenta que puede tardar muchos años, pero la combustión del butano en un

fuego es una reacción que sucede en fracciones de segundo.

La cinética química es la parte de la fisicoquímica que estudia las velocidades

de reacción, la dinámica química estudia los orígenes de las diferentes

velocidades de las reacciones. El concepto de cinética química se aplica en

muchas disciplinas, tales como la ingeniería química, enzimología e ingeniería

ambiental.” (2)

Page 3: REACTOR BATCH

2.3. Reactor tipo batch

“El reactor tipo Batch es un reactor donde no existe flujo de entrada ni de salida, es simplemente un reactor con un agitador que homogeniza la mezcla. Las ventajas del reactor residen en su flexibilidad. Un solo recipiente puede realizar una secuencia de diversas operaciones sin la necesidad de romper la contención. Esto es particularmente útil cuando se procesan tóxicos o componentes altamente potentes. “El reactor se carga (es decir, se llena) por los huecos de la parte superior. El reactor intermitente tiene la ventaja de permitir una alta conversión, que puede obtenerse dejando el reactivo dentro del reactor por periodos prolongados, pero también cuenta con la desventaja del alto costo de mano de obra por lote, la variabilidad del producto de un lote a otro y la dificultad para producción a gran escala. Un reactor intermitente no tiene flujo de entrada de reactivos ni flujo de salida de productos mientras se efectúa la reacción.”(3)

Figura 2.3-1 Reactor batch

2.4. Ecuación General de Balance Molar y Ecuación de Diseño en función de

la concentración y conversión.

“Para entender un poco más estos reactores, se plantea la ecuación de balance de masa de la siguiente manera:

(

) (

) (

) (

)

EC.2.4-1

Ec: 2.4-2

En un reactor Batch no hay flujo de entrada ni de salida, por tanto los 2 primeros términos de la ecuación son cero.

Page 4: REACTOR BATCH

(

) (

) Ec: 2: 4-3

Sustituyendo por términos:

Ec: 2: 4-4

Donde V habla del volumen del reactor, k está asociada a la constante de remoción de materia orgánica, C refiere a la concentración de materia orgánica del agua residual y n de la cinética de la ecuación. Suponiendo una cinética de primer orden (n = 1), se elimina el término del volumen de un lado y otro, quedando la siguiente ecuación:” (4).

Ec: 2.4-5

Haciendo la integral, se concluye:

Ec: 2.4-6

2.5. Orden de reacción

”En algunas reacciones la velocidad resulta proporcional a las concentraciones de los reactivos elevadas a una potencia. Así, si la velocidad es directamente proporcional a la primera potencia de la concentración de un solo reactivo, se dice que la reacción es de primer orden. El término segundo orden se aplica a dos tipos de Reacciones, aquellas cuya velocidad es proporcional al cuadrado de una sola concentración y a aquellas otras cuya velocidad es proporcional al producto de la primera potencia de dos concentraciones de diferentes reactivos. Se conocen también reacciones de órdenes superiores. Esta situación se generaliza como sigue: si la velocidad de una reacción es proporcional a la potencia α de la concentración de un reactivo A, a la potencia β de la concentración de un reactivo B, etc.:

v = k [A]α[B]β[C]γ... Ec: 2.5-1 Se denomina orden de la reacciona la suma de exponentes α+β+γ+... El orden de una reacción tiene, por lo tanto, un sentido eminentemente práctico. Constante de velocidad o velocidad específica Se denomina así a la constante de proporcionalidad k puesta en juego en la relación anterior. Es característica de la reacción a la temperatura del medio reaccionante y resulta numéricamente igual a la velocidad de reacción cuando

Page 5: REACTOR BATCH

las concentraciones de los reactivos son todas las unidades. Sus unidades se deducen de la ecuación cinética y varían con el orden de reacción.” (5).

3. PARTE EXPERIMENTAL

3.1. Materiales y Equipos

3.1.1. Reactor batch R: (0- 11.3562354)mL

3.1.2. Cronometro Ap + 0.01 s

3.1.3. Termómetro Ap: + 1 °C R: [0-100] °C

3.1.4. Balanza analítica Ap: + 0.0001 kg R: 9.9999 kg

3.1.5. Vaso de precipitación Ap: + 2500 ml R: 500 ml

3.1.6. Bureta R: (0-50)mL Ap: 0,01mL

3.1.7. Equipo de destilación

3.1.8. Mangueras

3.1.9. Estufa

3.1.10. Trípode

3.1.11. Soporte universal

3.1.12. Matraz de aforo R: (0- 1000)mL

3.2. Sustancias y reactivos

3.2.1. Ácido acético CH3COOCH3 (l)

3.2.2. Alcohol antiséptico (CH3-OH) (l)

3.2.3. Ácido sulfúrico H₂SO₄ (l)

3.2.4. Agua H2O (l)

3.2.5. Hidróxido de sodio NaOH (l)

3.2.6. Fenolftaleína C20H14O4

3.3. Procedimiento

3.3.1. Colocar 1000 ml de alcohol calentar en un vaso de precipitación hasta

alcanzar una temperatura de 50 °C.

3.3.2. Armar correctamente el equipo de destilación comprobando que no exista

fugas.

3.3.3. Colocar 1000 ml de ácido acético en el reactor con dos gotas de ácido

sulfúrico calentar hasta obtener una temperatura de 50 °C.

3.3.4. Verter el alcohol dentro del reactor al momento que las dos sustancias se

encuentran a 50 °C.

3.3.5. Durante 30 minutos mantener la temperatura del reactor a un rango de

(50-60) °C.

3.3.6. Obtener muestras cada 5 minutos de la solución.

Page 6: REACTOR BATCH

3.3.7. Después de 30 minutos se eleva la temperatura hasta que alcance el

punto de ebullición del alcohol que será de 77 °C el cual va hacer

destilado primero.

3.3.8. Luego de haber terminado de destilarse el alcohol la temperatura subirá

hasta el punto de ebullición del acetato de etilo que será de 88 °C.

3.3.9. Cuando la temperatura suba a 92 °C se empezara a destilar el agua

presente en la solución.

3.3.10. Después de haber obtenido toda la cantidad de agua en el reactor queda

el ácido acético como residuo

3.3.11. Recoger el ácido acético residuo 50 ml y se realiza la titulación con

hidróxido de sodio 1 N

4. DATOS

4.1. Datos experimentales

Tabla 4.1-1 Datos experimentales

N° Tiempo (min) Volumen NaOH (0,1 M)

1 0 0

2 2 0,7

3 4 1,3

4 6 1,8

5 8 2,0

6 10 3,1

7 15 2,1

8 20 1,8

9 25 1,7

10 30 1,4

11 35 1,6

12 40 1,5

13 45 2,0

Page 7: REACTOR BATCH

4.2. Datos Adicionales

Tabla 4.2-1 Solución para titulación (NaOH)

4.3. Volumen de reacción

Tabla 4.2.-1 Volúmenes

Reactivo Volumen inicial Volumen

recuperado

Ácido acético

Etanol

Acetato de etilo

+ Agua

5. REACCIÓN

( ) Ec. 5.-1

6. CÁLCULOS

6.1. Cálculo de la concentración del ácido acético

Ec. 6.1.-1

( )( ) ( )( )

6.2. Cálculo de la conversión de ácido acético

Ec. 6.2.-1

No. Sustancia ( )

1 NaOH 0,05 M

Page 8: REACTOR BATCH

6.3. Calculo de la velocidad de reacción para cada reactor

Ec. 6.3-1

Ec. 6.3-2

6.4. Calculo de la constante de proporcionalidad.

Ln(-ra)= ln k + n ln(Ca) Ec. 6.4.-1

6.5. Calculo del orden de reacción

Ln(-ra)= ln k + n ln(Ca) Ec. 6.5.-1

6.6. Calculo de la conversión teórica

Ec. 6.4.-1

( )( )

Ec. 6.4.-2

6.7. Calculo del rendimiento de acetato de etilo

( ) Ec. 6.5.-1

Page 9: REACTOR BATCH

7. RESULTADOS

Tabla 7-1 RESULTADOS

No.

Tiempo, min

(ml)

CAf

(M)

(mol/Ls)

Ln( )

(mol/Ls)

Ln

(mol/Ls)

K

(mol/Ls)

n

( )

X teórica X experiencia % Rendimiento

1 0

2 2

3 4

4 6

5 8

6 10

7 15

8 20

9 25

10 30

11 35

12 40

13 45

Page 10: REACTOR BATCH

8. DISCUSION

En la obtención del acetato de etilo, existieron partes en el procedimiento que son

críticas para obtener el producto como lo son la determinación de la relación de

concentración de reactivos para obtener el mayor rendimiento de producto

(acetato de etilo), otro factor relevante fue mantener la temperatura a la que se

lleva a cabo la reacción (50°C-60°C) puesto que si este rango no se controla

adecuadamente, la temperatura puede aumentarse y la configuración del sistema

de calentamiento del reactor dificulta que se la pueda bajar rápidamente y

causaría que la reacción de esterificación se detenga dando lugar así a la reacción

secundaria que es la reacción de hidrolisis y se empiecen a destilar los

componentes que no han reaccionado completamente (etanol), afectando

directamente al rendimiento del proceso. Un aspecto igualmente importante a

considerarse es el control de las temperaturas en el proceso de separación

(destilación) del producto y los reactivos que no reaccionaron, ya que las

temperatura de ebullición del etanol (72°C-74°C) es muy cercana a la del acetato

de etilo (77-80°C), lo cual puede ocasionar una pérdida de volumen del producto y

por lo tanto bajar el rendimiento ya que no se tiene un valor real del volumen de

acetato de etilo producido.

En cuanto a la cuantificación de las cantidades reaccionantes por medio de

titulación, es de consideración la concentración del agente titulante la cual no debe

ser muy alta, debido a si esto ocurre los volúmenes gastados conllevarían

demasiado error, ya que la apreciación del método no sería muy acertada.

Para conseguir resultados confiables se recomienda controlar adecuadamente los

rangos de temperaturas a las cuales se lleva a cabo la reacción y el proceso de

separación además de preparar el agente titulante a concentraciones entre (0,05-

0,1M) para minimizar el error en el cálculo de las concentraciones de reactivos y

productos.

9. CONCLUSIONES

9.1. La temperatura en la obtención de acetato de etilo es un factor muy

relevante, puesto que la reacción de esterificación es exotérmica el

aumento de la temperatura de reacción favorece al aumento de la

velocidad de reacción y conversión en un rango determinado de la relación

molar de los reactivos (ETOH/Ac.ACT).

Page 11: REACTOR BATCH

10. REFERENCIAS BIBLIOGRAFICAS

10.1. Citas Bibliográficas

(1) FOGGLER, Scott, “Elementos de Ingeniería de las reacciones químicas”,

Cuarta Edición, Educación Pearson, 2008. Pag 92

(2) INTERNET:http://catarina.udlap.mx/u_dl_a/tales/documentos/lic/munoz_c_

r/capitulo3.pdf

(3) http://es.wikipedia.org/wiki/Velocidad_de_reacci%C3%B3n

(4) INTERNET:http://catarina.udlap.mx/u_dl_a/tales/documentos/lic/munoz_c_

r/capitulo3.pdf

(5) http://www.ugr.es/~focana/dfar/aplica/cinetiHidroli/cinetiHidroliAcMet.pdf

10.2. Bibliografía

10.2.1. FOGGLER, Scott, “Elementos de Ingeniería de las reacciones

químicas”, Cuarta Edición, Educación Pearson, 2008.

10.2.2. www.catarina.udlap.mx

10.2.3. www.ugr.es

10.2.4. pendientedemigracion.ucm.es

Page 12: REACTOR BATCH

Nombres Fecha

Universidad Central del Ecuador

Facultad de Ingeniería Química

Ingeniería de las Reacciones Químicas II

Dibuja: Grupo 1

Revisa: Ing. De la Rosa 2014-08-20

Escala:

-

-

TEMA:

OBTENCION DE ACETATO DE ETILO-

REACTOR BATCH

Lámina

1

11. ANEXOS

11.1. Diagrama del Equipo

Page 13: REACTOR BATCH

Nombres Fecha

Universidad Central del Ecuador

Facultad de Ingeniería Química

Ingeniería de las Reacciones Químicas II

Dibuja: Grupo 1

Revisa: Ing. De la Rosa 2014-08-20

Escala:

-

-

TEMA:

OBTENCION DE ACETATO DE ETILO-

REACTOR BATCH

Lámina

2