rc 10 anexe 1-3 121612 corrssll.inflpr.ro/isotest/raportari/rc10_anexe 1-4.pdf · 2014. 11. 11. ·...

44
ANEXA 1 National Institute for Laser, Plasma, and Radiation Physics (NILPRP/INFLPR) ISOTEST Laboratory Test Report # 7 of 29.11.12 Evaluation of laser beam widths, divergence angles, and beam propagation ratios a) General information 1) Laboratory axes: x - transverse, horizontal; y - transverse, vertical; z - longitudinal (beam axis). 2) Test has been performed in accordance to ISO 11146-1:2005. The four mixed second-order moments <xy>, <xv>, <yu>, <uv> of the full 4 x 4 beam matrix of ISO 11146-2:2005 were not measured. The intrinsic beam invariants and the intrinsic classification specified at e)1)ii) are based on the measurements done independently in x and y, and not on measuring the full 4 x 4 matrix of second- order moments (see also ISO/TR 11146-3:2004 standard and G. Nemes' references therein). 3) Date of test: 29.11.12. 4) Name and address of test organization: ISOTEST Laboratory: http://ssll.inflpr.ro/isotest/index.htm ; National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Str., P.O. Box MG 36, 077125 Magurele, Romania. 5) Name of individuals performing the test: L. Neagu, L. Rusen. b) Information concerning the tested laser 1) Laser type: Diode pumped passively Q-switch Nd: YAG sub-nanosecond laser 2) Manufacturer: INFLPR, Romania 3) Manufacturer’s model designation: SNLS 4) Serial number: N/A, home made c) Test conditions 1) Laser wavelength: 1064 nm 2) Operating mode (CW or pulsed): pulsed (2 Hz repetition rate) 3) Laser parameter settings i) Output energy: 8 mJ 4) Polarization: linear, vertical 5) Environmental conditions: clean filtered air, controlled temperature 22 o C ± 1 o C, room stray light. d) Information concerning testing and evaluation 1) Evaluation method used: Second-order moments 2) Test equipment: Beam profiler type Ophir SPIRICON GRAS 20, SN11422059, ND 2.8 filter attached, stray light suppressor attached (Ф = 5 mm, l = 150 mm). 3) Beam forming optics and attenuating method: i) Type of attenuator: neutral density (ND) (ThorLabs type absorptive ND filters Schott glasses). ii) Type of focusing element: convergent lens, f = 407 mm (± 1%) @ 1064 nm (ThorLabs type LA1172B). iii) From laser to the measuring bench the beam is bent once at 90 0 in the horizontal plane by one flat first surface uncoated glass wedge. e) Test results

Upload: others

Post on 28-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

ANEXA 1

National Institute for Laser, Plasma, and Radiation Physics (NILPRP/INFLPR) ISOTEST Laboratory

Test Report # 7 of 29.11.12

Evaluation of laser beam widths, divergence angles, and beam propagation ratios a) General information 1) Laboratory axes: x - transverse, horizontal; y - transverse, vertical; z - longitudinal (beam axis). 2) Test has been performed in accordance to ISO 11146-1:2005. The four mixed second-order moments <xy>, <xv>, <yu>, <uv> of the full 4 x 4 beam matrix of ISO 11146-2:2005 were not measured. The intrinsic beam invariants and the intrinsic classification specified at e)1)ii) are based on the measurements done independently in x and y, and not on measuring the full 4 x 4 matrix of second-order moments (see also ISO/TR 11146-3:2004 standard and G. Nemes' references therein). 3) Date of test: 29.11.12. 4) Name and address of test organization: ISOTEST Laboratory: http://ssll.inflpr.ro/isotest/index.htm; National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Str., P.O. Box MG 36, 077125 Magurele, Romania. 5) Name of individuals performing the test: L. Neagu, L. Rusen. b) Information concerning the tested laser 1) Laser type: Diode pumped passively Q-switch Nd: YAG sub-nanosecond laser 2) Manufacturer: INFLPR, Romania 3) Manufacturer’s model designation: SNLS 4) Serial number: N/A, home made c) Test conditions 1) Laser wavelength: 1064 nm 2) Operating mode (CW or pulsed): pulsed (2 Hz repetition rate) 3) Laser parameter settings

i) Output energy: 8 mJ 4) Polarization: linear, vertical 5) Environmental conditions: clean filtered air, controlled temperature 22 oC ± 1 oC, room stray light. d) Information concerning testing and evaluation 1) Evaluation method used: Second-order moments 2) Test equipment: Beam profiler type Ophir SPIRICON GRAS 20, SN11422059, ND 2.8 filter attached, stray light suppressor attached (Ф = 5 mm, l = 150 mm). 3) Beam forming optics and attenuating method: i) Type of attenuator: neutral density (ND) (ThorLabs type absorptive ND filters Schott glasses). ii) Type of focusing element: convergent lens, f = 407 mm (± 1%) @ 1064 nm (ThorLabs type LA1172B). iii) From laser to the measuring bench the beam is bent once at 900 in the horizontal plane by one flat first surface uncoated glass wedge. e) Test results

Page 2: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

1) Spatial parameters derived from hyperbolic fit for the beam transformed after focusing element (quantities with subscript 2, in accordance with Clause 9) i) Measured parameters of the real beam approximated as an aligned simple astigmatic (ASA) beam

Spatial beam parameters Mean value

Relative standard deviation of

hyperbolic fit (±%) Coordinate of beam waist location z02x (mm) 427 0.2 Coordinate of beam waist location z02y (mm) 436 0.2 Beam waist width dσ02x (mm) 0.22 36 Beam waist width dσ02y (mm) 0.15 90 Rayleigh length zR2x (mm) 25 36 Rayleigh length zR2y (mm) 15 90 Beam divergence angle θσ2x (mrad) 8.75 0.1 Beam divergence angle θσ2y (mrad) 10.2 0.1 Beam propagation ratio Mx

2 1.4 36

Beam propagation ratio My2 1.2 90

350 400 450 500 5500.0

0.2

0.4

0.6

0.8

1.0

1.2

Dx Dy Hyperbolic fit of D

x

Hyperbolic fit of Dy

Dx, D

y (m

m)

z (mm) - distance after the focusing element

Equation Dx = sqrt ( A + B*z + C*z*z )

Value Standard Error

Dx

A 14.03378 0.01132

B -0.06544 6.77737E-5

C 7.65477E-5 9.22408E-8

Equation Dy = sqrt ( A + B*z + C*z*z )

Value Standard Error

Dy

A 19.67257 0.01338

B -0.08997 6.83337E-5

C 1.03054E-4 9.59697E-8

Fig. 1. Hyperbolic fit of the real beam measured after the focusing element approximated as an ASA beam.

ii) Intrinsic beam invariants and classification

Effective beam propagation ratio invariant: Meff4 = Mx

2My2 = 1.7

Intrinsic astigmatism invariant: a = (1/2)(Mx2 – My

2)2 = 0.02 ≈ 0 Maximum intrinsic astigmatism invariant: aM = (1/2)(Mx

2My2 – 1)2 = 0.24

Beam class (intrinsic stigmatic - IS, or intrinsic astigmatic - IA): IS Beam family (type I, II, III, or IV): type II (a = 0; aM > 0) Note: Using non-aberrated spherical and cylindrical optics the beams can be transformed only within the same class and family.

iii) Calculated parameters of the real beam approximated as a stigmatic (ST) beam

Page 3: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Spatial beam parameters Mean value

Relative standard deviation of

hyperbolic fit (±%) Coordinate of beam waist location z02 (mm) 433 0.2 Beam waist diameter dσ02 (mm) 0.21 46 Rayleigh length zR2 (mm) 22 46 Beam divergence angle θσ2 (mrad) 9.49 0.1 Beam propagation ratio M2 1.5 46

350 400 450 500 5500.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1D

mea

n (m

m)

z (mm) - distance after the focusing element

Dmean 2Hz Hyperbolic fit of D

mean

Equation Dmean = sqrt ( A +B*z + C*z*z )

Value Standard Error

Dmean

A 16.88945 0.01263

B -0.07786 7.03234E-5

C 8.99738E-5 9.61691E-8

Fig. 2. Hyperbolic fit of the real beam measured after the focusing element.

Fig. 3. Example of spatial beam profile of the real beam at z = 445 mm after the focusing element. 2) Original (directly from laser, subscript 1) beam divergence angle – direct measurement (at the back focal plane of the focusing element, in accordance with Clause 8) Focusing element: spherical convergent lens, f = 407 mm (±1 %) @ 1064 nm (ThorLabs type LA-1172B) i) Measured widths in the back-focal plane of the focusing element and the corresponding divergences

Page 4: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Spatial beam parameters Mean value

Relative standard deviation (±%) (from beam profiler errors)

Beam width dσf2x (mm) 0.29 5 Beam width dσf2y (mm) 0.36 5 Beam divergence angle θσ1x = dσf2x/f (mrad) 0.71 5 Beam divergence angle θσ1y = dσf2y/f (mrad) 0.88 5

ii) Calculated divergence of the original beam approximated as a ST - type, θσ1 = (1/2)(θσx1 + θσy1)

θσ1 (mrad) = 0.80 (± 5 %)

3) Retrieved* original beam parameters (beam from laser, before the focusing element, subscript 1) i) Original beam approximated as an ASA beam

Spatial beam parameters Mean value

Relative standard deviation of

hyperbolic fit (±%) Coordinate of beam waist location z01x (mm) 3640 45 Coordinate of beam waist location z01y (mm) 4910 42 Beam waist width dσ01x (mm) 2.8 43 Beam waist width dσ01y (mm) 1.9 93 Rayleigh length zR1x (mm) 4040 58 Rayleigh length zR1y (mm) 2380 100 Beam divergence angle θσ1x (mrad) 0.69 23 Beam divergence angle θσ1y (mrad) 0.82 22 Beam propagation ratio Mx

2 1.4 36 Beam propagation ratio My

2 1.2 90 Absolute astigmatic waist separation ∆za1

** (mm) 1270 207 Relative astigmatic waist separation ∆zr1

*** 0.40 216 ii) Original beam approximated as a ST beam

Spatial beam parameters Mean

value

Relative standard deviation of

hyperbolic fit (±%) Coordinate of beam waist location z01 (mm) 4120 42 Beam waist diameter dσ01 (mm) 2.5 51 Rayleigh length zR1 (mm) 3200 64 Beam divergence angle θσ1 (mrad) 0.79 22 Beam propagation ratio M2 1.5 46

* The original beam parameters (with subscript 1) are calculated by "back - propagation" through the focusing element of the parameters with subscript 2, specified at e)1), using the formulae: z01 = V2(z02 – f) + f; dσ1 = Vdσ2; zR1 = V2zR2; θσ1 = (1/V)θσ2; V = f/[zR2

2 + (z02 – f)2]1/2 ** ∆za1 = |z01x – z01y| *** ∆zr1 = 2·∆za1/(zR1x + zR1y)

Page 5: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

ANEXA 2

National Institute for Lasers, Plasma, and Radiation Physics (INFLPR)

ISOTEST Laboratory

Test report # 21 of 08.11.12 Laser-induced damage threshold (LIDT) by S-on-1 test according to ISO 21254 - 1,2,3,4

Tester’s name: Alexandru Zorila

Date: 08.11.12

Order #: Specimen

Type of specimen: AR coating

Specifications: ARW 650 nm - 1150 nm

Shape and size: Round, 24 mm diameter, 2.5 mm thickness

Manufacturer/ supplier: Ophir Optics SRL, Bucharest, Romania

Part ID # Batch 7638

Date of production 07.11.12

Storage: Original package

Cleaning procedure: Drop & drag with isopropyl alcohol and blowing with Green clean aerosol

Preliminary inspection comments: OK

Mounting of test specimen: Kinematic mount, vertical position Test equipment Laser source

Type: Q-switched, single longitudinal mode

Manufacturer: Quantel (France)

Model #: Brilliant B 10 SLM

Energy meter Manufacturer: Coherent, Inc.

Model #: J-25MT-10 kHz pyroelectric detector

Calibration date: 11.01.12

Calibration due date: 11.01.13

Temporal diagnosis Photodiode Alphalas, type UPD-200-UD

Oscilloscope Tektronix, type DPO-7104

Spatial diagnosis Beam profiler Newport-Ophir-Spiricon, type GRAS20 Diagnosis - Pulse energy real time monitored with type J-25MT-10 kHz pyroelectric detector and calibrated by making a measurement before and after the full test with type J-50MB-YAG pyroelectric detector. - Temporal profile recorded before and after test. Effective pulse duration calculated using waveform recorded data. - Spatial profile recorded before and after test. Beam diameter/widths obtained directly from beam profiler. Effective beam diameter/widths calculated from beam profiler raw data.

Page 6: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Laser parameters

Wavelength: 1064 nm

Operating mode: Pulsed, repetitively

Output energy: Adjustable, up to 450 mJ

Pulse repetition frequency: 10 Hz

Polarization state: Linear, totally polarized, horizontal

Pulse duration - FWHM: 5.2 ns

Pulse duration – effective, τeff: 6.9 ns

Measurement specifications

Beam diameter/widths - second moments: 0.45 mm

Beam diameter/widths - 1/e2 clip level: 0.40 mm

Beam diameter/widths - effective: 0.23 mm

Spatial beam profile: See typical figure (Fig. 2)

Angle of incidence (AOI): 4° ± 1°

Polarization: type P

Number of sites per specimen: 290

Number of shots per site, S: 500

Arrangement of test sites: Near-circular, close packed

Distance between sites: 0.9 mm

Number of specimens tested: 1

Total number of sites for the test: 290

Real time damage detection method: Scattered radiation

Damage detection after test: Visual, Nomarski microscope (50x, 200x, 500x)

Environmental conditions Test environment: Clean filtered air

Temperature: 23 °C ± 1 °C

Humidity: 35 %

Comments

Typical 50x, 200x, and 500x Nomarski picture of the sample after cleaning, before test

Error budget

a) random (type A) errors

Pulse energy standard deviation: ± 1 %

Pulse spot effective area standard deviation: ± 5 %

Effective pulse duration standard deviation: ± 4 %

b) instrument (type B) standard uncertainties

Pulse energy measuring system (4 instruments overall): ± 4 %

Pulsed spot effective area uncertainty (1 instrument): ± 6 %

Effective pulse duration uncertainty (2 instruments): ± 5 %

Estimated LIDT [W/cm2] standard uncertainty: ± 16 %

Page 7: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Temporal and spatial beam profiles

Fig. 1. Temporal profile of the laser pulse.

Fig. 2. Spatial laser beam profile in the target plane (2-D profile and two orthogonal 2-D sections through beam centroid). Effective spot area = 4.3 x 10-4 cm2.

Page 8: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Test Results

Fig. 3. Characteristic damage curve of the sample.

X – number of pulses, N (N ≤ S) for which the damage probability is calculated; Y – threshold energy density, H(N) (J/cm2); 1 – threshold energy density at 0 % damage probability, H0(N) – experimental data; 2 – threshold energy density at 50 % damage probability, H50(N) – experimental data; 3 – H0(N) - nonlinear fit*1 ; 4 – H50(N) - nonlinear fit*1 .

Fig. 4. Measured and extrapolated S-on-1 damage threshold versus number of pulses, N.

X – number of pulses, N; for N ≤ S, calculated from experimental results; for N > S, extrapolated data; Y – threshold energy density at 0 % damage probability, H0(N) (J/cm2); 1 – extrapolated*2 H0(N) for large number of pulses; 2 – experimental data.

Page 9: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Summary of LIDT values Extrapolated 0 % LIDT for N = 108 pulses: energy density H0(108) = 18.6 J/cm2. Extrapolated power density for τeff = 6.9 ns effective pulse duration: E0(108) = H0(108)/τeff = 2.7 GW/cm2. Extrapolated equivalent*3 energy density for τeff,eq = 20 ns: H0,eq(108) = 31 J/cm2. Extrapolated equivalent*4 power density for τeff,eq = 20 ns: E0,eq(108) = 1.5 GW/cm2. Recommendation for durability The extrapolation curve for 108 pulses may not take into account all possible factors leading to potential damage. We recommend an additional safety factor of approximately 0.9 applied to each of the above values. *1 Fitting equation: Hth(N) = Hd + (H1on1 – Hd)/[1 + log10(N)/delta], equation according to ISO21254-2 Annex E *2 Fitting equation: Hth(N) = Hd – d + (H1on1 – Hd)/[1 + log10(N)/delta], equation according to ISO21254-2 Annex E

*3 Equivalence equation used: H0,eq(108) = H0(108)·( τeff,eq /τeff)1/2

*4 Equivalence equation used: E0,eq(108) = E0(108)·( τeff /τeff,eq)1/2

Fig. 5. Example of 200x Nomarski micrograph of a damaged site

(energy density 23 J/cm2, damage after 2 pulses). Statement related to certification of the test results ISOTEST Laboratory certifies that the Laser Induced Damage Threshold of this sample was tested according to recommendations of the ISO 21254-1,2,3,4:2011 standards. During 2013 ISOTEST will submit the paperwork to obtain the accreditation as a test laboratory from Romanian Accreditation Association (RENAR). Currently these results represent ISOTEST internal results. Signatures Eng. Alexandru Zorila E-mail: [email protected] Dr. Aurel Stratan E-mail: [email protected] INFLPR, ISOTEST Laboratory 409 Atomistilor Str., P.O. Box MG-36, 077125 Magurele, Romania Tel: +40-21-457-4562 http://ssll.inflpr.ro/isotest/index.htm

Page 10: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

National Institute for Lasers, Plasma, and Radiation Physics (INFLPR)

ISOTEST Laboratory

Test report # 26 of 12.11.12 Laser-induced damage threshold (LIDT) by S-on-1 test according to ISO 21254 - 1,2,3,4

Tester’s name: Alexandru Zorila, Laurentiu Rusen

Date: 12.11.12

Order #: Specimen

Type of specimen: AR coating

Specifications: ARW-650-1050-LD;

Shape and size: Round, 24 mm diameter, 2.1 mm thickness

Manufacturer/ supplier: Ophir Optics SRL, Bucharest, Romania

Part ID # Batch 7651 P/N – 631931 – 117

Date of production 09.11.12

Storage: Original package

Cleaning procedure: Drop & drag with isopropyl alcohol and blowing with Green clean aerosol

Preliminary inspection comments: OK

Mounting of test specimen: Kinematic mount, vertical position Test equipment Laser source

Type: Q-switched, single longitudinal mode

Manufacturer: Quantel (France)

Model #: Brilliant B 10 SLM

Energy meter Manufacturer: Coherent, Inc.

Model #: J-25MT-10 kHz pyroelectric detector

Calibration date: 11.01.12

Calibration due date: 11.01.13

Temporal diagnosis Photodiode Alphalas, type UPD-200-UD

Oscilloscope Tektronix, type DPO-7104

Spatial diagnosis Beam profiler Newport-Ophir-Spiricon, type GRAS20 Diagnosis - Pulse energy real time monitored with type J-25MT-10 kHz pyroelectric detector and calibrated by making a measurement before and after the full test with type J-50MB-YAG pyroelectric detector. - Temporal profile recorded before and after test. Effective pulse duration calculated using waveform recorded data. - Spatial profile recorded before and after test. Beam diameter/widths obtained directly from beam profiler. Effective beam diameter/widths calculated from beam profiler raw data.

Page 11: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Laser parameters

Wavelength: 1064 nm

Operating mode: Pulsed, repetitively

Output energy: Adjustable, up to 450 mJ

Pulse repetition frequency: 10 Hz

Polarization state: Linear, totally polarized, horizontal

Pulse duration - FWHM: 4.8 ns

Pulse duration – effective, τeff: 6.6 ns

Measurement specifications

Beam diameter/widths - second moments: 0.45 mm

Beam diameter/widths - 1/e2 clip level: 0.40 mm

Beam diameter/widths - effective: 0.23 mm

Spatial beam profile: See typical figure (Fig. 2)

Angle of incidence (AOI): 4° ± 1°

Polarization: Type P

Number of sites per specimen: 290

Number of shots per site, S: 500

Arrangement of test sites: Near-circular, close packed

Distance between sites: 0.9 mm

Number of specimens tested: 1

Total number of sites for the test: 289

Real time damage detection method: Scattered radiation

Damage detection after test: Visual, Nomarski microscope (50x, 200x, 500x)

Environmental conditions Test environment: Clean filtered air

Temperature: 22 °C ± 1 °C

Humidity: 35 %

Comments

Typical 50x, 200x, and 500x Nomarski picture of the sample after cleaning, before test

Error budget

a) random (type A) errors

Pulse energy standard deviation: ± 1 %

Pulse spot effective area standard deviation: ± 5 %

Effective pulse duration standard deviation: ± 4 %

b) instrument (type B) standard uncertainties

Pulse energy measuring system (4 instruments overall): ± 4 %

Pulsed spot effective area uncertainty (1 instrument): ± 6 %

Effective pulse duration uncertainty (2 instruments): ± 5 %

Estimated LIDT irradiance [W/cm2] standard uncertainty: ± 21 %

Page 12: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Temporal and spatial beam profiles

Fig. 1. Temporal profile of the laser pulse.

Fig. 2. Spatial laser beam profile in the target plane with two orthogonal 2-D sections through beam centroid. Effective spot area = 4.2 x 10-4 cm2.

Page 13: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Test Results

Fig. 3. Characteristic damage curve of the sample.

X – number of pulses, N (N ≤ S) for which the damage probability is calculated; Y – threshold energy density, H(N) (J/cm2); 1 – threshold energy density at 0 % damage probability, H0(N) – experimental data; 2 – threshold energy density at 50 % damage probability, H50(N) – experimental data; 3 – H0(N) - nonlinear fit*1 ; 4 – H50(N) - nonlinear fit*1 .

Fig. 4. Measured and extrapolated S-on-1 damage threshold versus number of pulses, N.

X – number of pulses, N; for N ≤ S, calculated from experimental results; for N > S, extrapolated data; Y – threshold energy density at 0 % damage probability, H0(N) (J/cm2); 1 – experimental data; 2 – extrapolated*2 H0(N) for large number of pulses.

Page 14: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Summary of LIDT values Extrapolated 0 % LIDT for N = 108 pulses: energy density H0(108) = 18.2 J/cm2. Extrapolated power density for τeff = 6.7 ns effective pulse duration: E0(108) = H0(108)/τeff = 2.7 GW/cm2. Extrapolated equivalent*3 energy density for τeff,eq = 20 ns: H0,eq(108) = 31.4 J/cm2. Extrapolated equivalent*4 power density for τeff,eq = 20 ns: E0,eq(108) = 1.5 GW/cm2. Recommendation for durability The extrapolation curve for 108 pulses may not take into account all possible factors leading to potential damage. We recommend an additional safety factor of approximately 0.9 applied to each of the above values. *1 Fitting equation: Hth(N) = Hd + (H1on1 – Hd)/[1 + log10(N)/delta], equation according to ISO21254-2 Annex E *2 Fitting equation: Hth(N) = Hd – d + (H1on1 – Hd)/[1 + log10(N)/delta], equation according to ISO21254-2 Annex E

*3 Equivalence equation used: H0,eq(108) = H0(108)·( τeff,eq /τeff)1/2

*4 Equivalence equation used: E0,eq(108) = E0(108)·( τeff /τeff,eq)1/2

Fig. 5. Example of 200x Nomarski micrograph of a damaged site

(energy density 23 J/cm2, damage after 1 pulse). Statement related to certification of the test results ISOTEST Laboratory certifies that the Laser Induced Damage Threshold of this sample was tested according to recommendations of the ISO 21254-1,2,3,4:2011 standards. During 2013 ISOTEST will submit the paperwork to obtain the accreditation as a test laboratory from Romanian Accreditation Association (RENAR). Currently these results represent ISOTEST internal results. Signatures Eng. Alexandru Zorila E-mail: [email protected] Dr. Aurel Stratan E-mail: [email protected] INFLPR, ISOTEST Laboratory 409 Atomistilor Str., P.O. Box MG-36, 077125 Magurele, Romania Tel: +40-21-457-4562 http://ssll.inflpr.ro/isotest/index.htm

Page 15: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

National Institute for Lasers, Plasma, and Radiation Physics (INFLPR)

ISOTEST Laboratory

Test report # 23 of 09.11.12 Laser-induced damage threshold (LIDT) by S-on-1 test according to ISO 21254 - 1,2,3,4

Tester’s name: Alexandru Zorila, Laurentiu Rusen

Date: 09.11.12

Order #: Specimen

Type of specimen: Mirror HR@1540 nm

Specifications: OGL-1540-LD;

Shape and size: Round, 24 mm diameter, 2.1 mm thickness

Manufacturer/ supplier: Ophir Optics SRL, Bucharest, Romania

Part ID # Batch 7631 P/N – 210245 – 117

Date of production 07.11.12

Storage: Original package

Cleaning procedure: Drop & drag with isopropyl alcohol and blowing with Green clean aerosol

Preliminary inspection comments: OK

Mounting of test specimen: Kinematic mount, vertical position Test equipment Laser source

Type: Q-switched, single longitudinal mode

Manufacturer: Quantel (France)

Model #: Brilliant B 10 SLM

Energy meter Manufacturer: Coherent, Inc.

Model #: J-25MT-10 kHz pyroelectric detector

Calibration date: 11.01.12

Calibration due date: 11.01.13

Temporal diagnosis Photodiode Alphalas, type UPD-200-UD

Oscilloscope Tektronix, type DPO-7104

Spatial diagnosis Beam profiler Newport-Ophir-Spiricon, type GRAS20 Diagnosis - Pulse energy real time monitored with type J-25MT-10 kHz pyroelectric detector and calibrated by making a measurement before and after the full test with type J-50MB-YAG pyroelectric detector. - Temporal profile recorded before and after test. Effective pulse duration calculated using waveform recorded data. - Spatial profile recorded before and after test. Beam diameter/widths obtained directly from beam profiler. Effective beam diameter/widths calculated from beam profiler raw data.

Page 16: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Laser parameters

Wavelength: 1064 nm

Operating mode: Pulsed, repetitively

Output energy: Adjustable, up to 450 mJ

Pulse repetition frequency: 10 Hz

Polarization state: Linear, totally polarized, horizontal

Pulse duration - FWHM: 4.8 ns

Pulse duration – effective, τeff: 6.6 ns

Measurement specifications

Beam diameter/widths - second moments: 0.45 mm

Beam diameter/widths - 1/e2 clip level: 0.40 mm

Beam diameter/widths - effective: 0.23 mm

Spatial beam profile: See typical figure (Fig. 2)

Angle of incidence (AOI): 4° ± 1°

Polarization: type P

Number of sites per specimen: 290

Number of shots per site, S: 500

Arrangement of test sites: Near-circular, close packed

Distance between sites: 0.9 mm

Number of specimens tested: 1

Total number of sites for the test: 290

Real time damage detection method: Scattered radiation

Damage detection after test: Visual, Nomarski microscope (50x, 200x, 500x)

Environmental conditions Test environment: Clean filtered air

Temperature: 22 °C ± 1 °C

Humidity: 25 %

Comments

Typical 50x, 200x, and 500x Nomarski picture of the sample after cleaning, before test

Error budget

a) random (type A) errors

Pulse energy standard deviation: ± 1 %

Pulse spot effective area standard deviation: ± 5 %

Effective pulse duration standard deviation: ± 4 %

b) instrument (type B) standard uncertainties

Pulse energy measuring system (4 instruments overall): ± 4 %

Pulsed spot effective area uncertainty (1 instrument): ± 6 %

Effective pulse duration uncertainty (2 instruments): ± 5 %

Estimated LIDT irradiance [W/cm2] standard uncertainty: ± 20%

Page 17: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Temporal and spatial beam profiles

Fig. 1. Temporal profile of the laser pulse.

Fig. 2. Spatial laser beam profile in the target plane with two orthogonal 2-D sections through beam centroid. Effective spot area = 4.2 x 10-4 cm2.

Page 18: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Test Results

Fig. 3. Characteristic damage curve of the sample.

X – number of pulses, N (N ≤ S) for which the damage probability is calculated; Y – threshold energy density, H(N) (J/cm2); 1 – threshold energy density at 0 % damage probability, H0(N) – experimental data; 2 – threshold energy density at 50 % damage probability, H50(N) – experimental data; 3 – H0(N) - nonlinear fit*1 ; 4 – H50(N) - nonlinear fit*1 .

Fig. 4. Measured and extrapolated S-on-1 damage threshold versus number of pulses, N.

X – number of pulses, N; for N ≤ S, calculated from experimental results; for N > S, extrapolated data; Y – threshold energy density at 0 % damage probability, H0(N) (J/cm2); 1 – experimental data; 2 – extrapolated*2 H0(N) for large number of pulses.

Page 19: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Summary of LIDT values Extrapolated 0 % LIDT for N = 108 pulses: energy density H0(108) = 2.6 J/cm2. Extrapolated power density for τeff = 6.6 ns effective pulse duration: E0(108) = H0(108)/τeff = 0.4 GW/cm2. Extrapolated equivalent*3 energy density for τeff,eq = 20 ns: H0,eq(108) = 4.6 J/cm2. Extrapolated equivalent*4 power density for τeff,eq = 20 ns: E0,eq(108) = 0.23 GW/cm2. Recommendation for durability The extrapolation curve for 108 pulses may not take into account all possible factors leading to potential damage. We recommend an additional safety factor of approximately 0.9 applied to each of the above values. *1 Fitting equation: Hth(N) = Hd + (H1on1 – Hd)/[1 + log10(N)/delta], equation according to ISO21254-2 Annex E *2 Fitting equation: Hth(N) = Hd – d + (H1on1 – Hd)/[1 + log10(N)/delta], equation according to ISO21254-2 Annex E

*3 Equivalence equation used: H0,eq(108) = H0(108)·( τeff,eq /τeff)1/2

*4 Equivalence equation used: E0,eq(108) = E0(108)·( τeff /τeff,eq)1/2

Fig. 5. Example of 200x Nomarski micrograph of a damaged site (energy density 5 J/cm2, damage after 263 pulses).

Statement related to certification of the test results

ISOTEST Laboratory certifies that the Laser Induced Damage Threshold of this sample was tested according to recommendations of the ISO 21254-1,2,3,4:2011 standards. During 2013 ISOTEST will submit the paperwork to obtain the accreditation as a test laboratory from Romanian Accreditation Association (RENAR). Currently these results represent ISOTEST internal results. Signatures Eng. Alexandru Zorila E-mail: [email protected] Dr. Aurel Stratan E-mail: [email protected] INFLPR, ISOTEST Laboratory 409 Atomistilor Str., P.O. Box MG-36, 077125 Magurele, Romania Tel: +40-21-457-4562 http://ssll.inflpr.ro/isotest/index.htm

Page 20: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

ANEXA 3

National Institute for Lasers, Plasma, and Radiation Physics (INFLPR) Laser Department, ISOTEST Laboratory

Test report # 30 of 19.11.12 Laser-induced damage threshold (LIDT) by S-on-1 test according to ISO 21254 - 1,2,3,4

Tester’s name: Alexandru Zorila, Laurentiu Rusen

Date: 19.11.12

Order #: Specimen

Type of specimen: Mirror

Specifications: Sample # 3

Shape and size: Round, 25.4 mm diameter, 12 mm thickness

Manufacturer/ supplier: Laboratorul Plasma Temperatura Joasa, INFLPR Part ID # -

Date of production -

Storage: Original package

Cleaning procedure: Drop & drag with isopropyl alcohol and blowing with Green clean aerosol

Preliminary inspection comments: Lines on surface

Mounting of test specimen: Kinematic mount, vertical position Test equipment Laser source

Type: Integrated Ti:Sapphire amplified laser system

Manufacturer: Clark-MXR, Inc.

Model #: CPA-2101

Energy meter Manufacturer: Coherent, Inc.

Model #: J-10MT-10 kHz pyroelectric detector

Calibration date: 11.01.12

Calibration due date: 11.01.13

Temporal diagnosis GRENOUILLE 8-50-USB Swamp Optics, LLC Spatial diagnosis Beam profiler Newport-Ophir-Spiricon, type GRAS20 Diagnosis - Pulse energy real time monitored with type J-10MT-10 kHz pyroelectric detector and calibrated by making a measurement before and after the full test with type J-25MT-10 kHz pyroelectric detector. - Temporal profile recorded before and after test. Effective pulse duration calculated using waveform recorded data. - Spatial profile recorded before and after test. Beam diameter/widths obtained directly from beam profiler. Effective beam diameter/widths calculated from beam profiler raw data.

Page 21: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Laser parameters Wavelength: 775 nm

Operating mode: Pulsed, repetitively

Output energy: Adjustable, up to 500 µJ

Pulse repetition frequency: 2 kHz

Polarization state: Linear, totally polarized, vertical

Pulse duration - FWHM: 250 fs

Pulse duration – effective, τeff: 280 fs

Measurement specifications

Beam diameter/widths - second moments: 0.25 mm

Beam diameter/widths - 1/e2 clip level: - mm

Beam diameter/widths - effective: 0.14 mm

Spatial beam profile: See typical figure (Fig. 2)

Angle of incidence (AOI): 4° ± 1°

Polarization: Type P

Number of sites per specimen: 260

Number of shots per site, S: 100 000

Arrangement of test sites: Near-circular, close packed

Distance between sites: 1 mm

Number of specimens tested: 1

Total number of sites for the test: 235

Real time damage detection method: Scattered radiation

Damage detection after test: Visual, Nomarski microscope (50x, 200x, 500x)

Environmental conditions Test environment: Clean filtered air

Temperature: 23 °C

Humidity: -

Comments

Typical 50x, 200x, and 500x Nomarski picture of the sample after cleaning, before test

Error budget

a) random (type A) errors

Pulse energy standard deviation: ± 2 %

Pulse spot effective area standard deviation: ± 5 %

Effective pulse duration standard deviation: ± 6 %

b) instrument (type B) standard uncertainties

Pulse energy measuring system (4 instruments overall): ± 4 %

Pulsed spot effective area uncertainty (1 instrument): ± 6 %

Effective pulse duration uncertainty (1 instrument): ± 4 %

Estimated LIDT [W/cm2] standard uncertainty: ± 35 %

Page 22: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Temporal and spatial beam profiles

Fig. 1. Temporal profile of the laser pulse.

Fig. 2. Spatial laser beam profile in the target plane (2-D profile and two orthogonal 2-D sections through beam centroid). Effective spot area = 1.5 x 10-4 cm2.

Page 23: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Test Results

Fig. 3. Characteristic damage curve of the sample.

X – number of pulses, N (N ≤ S) for which the damage probability is calculated; Y – threshold energy density, H(N) (J/cm2); 1 – threshold energy density at 0 % damage probability, H0(N) – experimental data; 2 – threshold energy density at 50 % damage probability, H50(N) – experimental data; 3 – H0(N) - nonlinear fit*1 ; 4 – H50(N) - nonlinear fit*1 .

Fig. 4. Measured and extrapolated S-on-1 damage threshold versus number of pulses, N.

X – number of pulses, N; for N ≤ S, calculated from experimental results; for N > S, extrapolated data; Y – threshold energy density at 0 % damage probability, H0(N) (J/cm2); 1 – experimental data; 2 – extrapolated*2 H0(N) for large number of pulses.

Page 24: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

Summary of LIDT values Extrapolated 0 % LIDT for N = 1012 pulses: energy density H0(1012) = 0.21 J/cm2. Extrapolated power density for τeff = 280 fs effective pulse duration: E0(1012) = H0(1012)/τeff = 750 GW/cm2. Recommendation for durability The extrapolation curve for 108 pulses may not take into account all possible factors leading to potential damage. We recommend an additional safety factor of approximately 0.9 applied to each of the above values. *1 Fitting equation: Hth(N) = Hd + (H1on1 – Hd)/[1 + log10(N)/delta], equation according to ISO21254-2 Annex E *2 Fitting equation: Hth(N) = Hd – d + (H1on1 – Hd)/[1 + log10(N)/delta], equation according to ISO21254-2 Annex E

Fig. 5. Example of 200x Nomarski micrograph of a damaged site

(energy density 0.6 J/cm2, damage after 10 pulses).

Statement related to certification of the test results

ISOTEST Laboratory certifies that the Laser Induced Damage Threshold of this sample was tested according to recommendations of the ISO 21254-1,2,3,4:2011 standards. During 2013 ISOTEST will submit the paperwork to obtain the accreditation as a test laboratory from Romanian Accreditation Association (RENAR). Currently these results represent ISOTEST internal results. Signatures Eng. Alexandru Zorila E-mail: [email protected] Dr. Aurel Stratan E-mail: [email protected] INFLPR, ISOTEST Laboratory 409 Atomistilor Str., P.O. Box MG-36, 077125 Magurele, Romania Tel: +40-21-457-4562 http://ssll.inflpr.ro/isotest/index.htm

Page 25: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Laborator ISOTEST

Proprietate INFLPR - ISOTEST

PROCEDURA TEHNICA COD PT – ISOTEST - 02 Editia 1

METODE DE INCERCARE Pag. 1 / 6 Revizia 0/ 10.2012

Exemplar nr. NOTA:

„Acest document este proprietate exclusivă a Laboratorului ISOTEST din INFLPR si este confidential. El nu poate fi folosit sau difuzat la terte parti, fara aprobarea din partea conducerii laboratorului ISOTEST.”

Functia Nume si prenume Semnatura Data

Intocmit Specialist din laborator BLANARU Constantin 03.12.2012

Avizat RAC STRATAN Aurel 04.12.2012

Aprobat Sef laborator NEMES George 05.12.2012

ANEXA 4

Page 26: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Laborator ISOTEST

Proprietate INFLPR - ISOTEST

PROCEDURA TEHNICA COD PT – ISOTEST - 02 Editia 1

METODE DE INCERCARE Pag. 2 / 6 Revizia 0/ 10.2012

1. SCOP: Procedura are ca scop stabilirea modului de dezvoltare / utilizare a metodelor si procedurilor adecvate pentru incercarile de componente si materiale optice desfasurate in laboratorul ISOTEST din INFLPR , astfel incat sa permita efectuarea corecta a acestor incercari. 2. DOMENIUL: Procedura se aplica in Laboratorul ISOTEST din INFLPR. 3. DEFINITII SI PRESCURTARI:

Conform MMC-ISOTEST, Ed 1, Rev 0 / 11.2012.

4. DOCUMENTE DE REFERINTA:

• SR EN ISO / CEI 17025 : 2005 „Cerinte generale pentru competenta laboratoarelor de incercari si etalonari”;

• ISO 21254-1/2011-Lasers and laser-related equipment-Test methods for laser-induced damage threshold, Part 1: Definitions and general principles;

• ISO 21254-2/2011-Lasers and laser-related equipment-Test methods for laser-induced damage threshold, Part 2: Threshold determination

• ISO 21254-3/2011-Lasers and laser-related equipment-Test methods for laser-induced damage threshold, Part 3: Assurance of laser power (energy) handling capabilities

• ISO 21254-4/2011-Lasers and laser-related equipment-Test methods for laser-induced damage threshold, Part 4: Inspection, detection and measurement

• ISO 10110-7,Optics and photonics-Preparation of drawings for optical elements and systems-Part 7:Surface imperfection tolerances

• ISO 11146-1, Lasers and laser-related equipment –Test methods for laser beam width, divergence angles and beam propagation ratios-part 1:Stigmatic and simple astigmatic beams

• ISO 11146-2, Lasers and laser-related equipment –Test methods for laser beam width, divergence angles and beam propagation ratios;Part 2:General astigmatic beams.

5. RESPONSABILITATI: 5.1. Sef laborator

• Stabileste impreuna cu RAC metodele adecvate pentru incercarile propuse; • Verifica existenta tuturor procedurilor si standardelor pentru metodele de incercare necesare in

efectuarea corecta a incercarilor si respectarea lor de catre personalul laboratorului. • Dupa caz, stabileste si dezvolta impreuna cu RAC metode noi de incercare, asigurand si

validarea metodelor in acest caz. 5.2. RAC

• Stabileste impreuna cu Seful laboratorului metodele adecvate pentru incercarile propuse • Verifica respectarea tuturor procedurilor si standardelor pentru metodele de incercare necesare

in efectuarea corecta a incercarilor de catre personalul laboratorului. • Asigura validarea metodei de incercare in cazul dezvoltarii unei metode noi in laborator.

Page 27: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Laborator ISOTEST

Proprietate INFLPR - ISOTEST

PROCEDURA TEHNICA COD PT – ISOTEST - 02 Editia 1

METODE DE INCERCARE Pag. 3 / 6 Revizia 0/ 10.2012

• Controleaza conformitatea cu prezenta procedura si cu procedurile specifice pe parcursul derularii lucrarii;

• Tine evidenta modificarilor diferitelor proceduri / metode de incercare daca acestea au fost actualizate sau modificate in functie de cerintele clientului si cu acordul acestuia;

5.3. Specialistul din laborator care raspunde de efectuarea lucrarii

• Respecta prevederile prezentei proceduri si ale procedurilor / metodelor de incercare legate de lucrarea respectiva;

• Se asigura ca sunt respectate metodele de incercare cerute in documentatii pentru efectuarea incercarilor respective.

5.4 Specialist din laborator care raspunde de etalonari si verificarile metrologice:

• Asigura identificarea echipamentelor din laborator; • Intocmeste si asigura respectarea programului de etalonare / verificare metrologica externa

pentru echipamentele din ISOTEST. • Inregistrează echipamentele si aparatura utilizata in laborator in „Lista echipamentelor

laboratorului ISOTEST” care se actualizeaza periodic. Aceasta se pastreaza in „Dosarul echipamentului” cod PT-ISOTEST-03-01.

• Verifica buna funcţionare a aparaturii din laborator si identifica echipamentele defecte, le izoleaza, le marcheaza si urmareste rezolvarea neconformitatii lor.

6. CONDITII PREALABILE: 6.1. Existenta personalului calificat, instruit si cu experienta corespunzatoare domeniului; 6.2. Existenta standardelor de referinta pentru metodele de lucru si procedurile de lucru specifice privind functionarea si utilizarea echipamentelor, manipularea obiectelor de incercat; 6.3. Existenta echipamentelor necesare efectuarii de incercari, etalonate si verificate metrologic. 7. PROCEDURA: 7.1. Laboratorul asigura utilizarea metodelor si procedurilor adecvate pentru incercari:

- PL-ISOTEST-02: Curatarea componentelor si materialelor optice pentru incercare - PL-ISOTEST-03: Inspectia componentelor si materialelor optice pentru incercare - PL-ISOTEST-04: Test S-on-1/femtosecunde - PL-ISOTEST-05: Test S-on-1/nanosecunde - PL-ISOTEST-06: Test fiabilitate Tip 2 - PL-ISOTEST-07: Masurarea duratei efective a pulsurilor laser de nanosecunde - PL-ISOTEST-08: Masurarea ariei efective a spotului laser pe suprafata probei - PL-ISOTEST-09: Masurarea duratei efective a pulsurilor laser de femtosecunde .

Metodele utilizate de laboratorul ISOTEST prezentate in procedurile de lucru listate mai sus se

finalizeaza prin rezultatele obtinute pentru incercari (RI), intocmite in conformitate cu procedura „Raportarea rezultatelor” cod: PT-ISOTEST-07. Pentru manipularea, transportul, depozitarea si pregatirea obiectelor pentru incercari, precum si pentru estimarea incertitudinii de incercare, laboratorul asigura proceduri adecvate : „Manipularea

Page 28: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Laborator ISOTEST

Proprietate INFLPR - ISOTEST

PROCEDURA TEHNICA COD PT – ISOTEST - 02 Editia 1

METODE DE INCERCARE Pag. 4 / 6 Revizia 0/ 10.2012

obiectelor de incercat”,cod: PT-ISOTEST-05 si „Evaluarea incertutudinii de masurare a PDCLprin testul S-on-1 ”, cod PT-ISOTEST-08 7.2. Specialistul din laborator care raspunde de efectuarea lucrarii are acces la toate normele, instructiunile, standardele, manualele si datele de referinta relevante pentru lucrarea respectiva. 7.3. Alegerea metodelor:

7.3.1. Laboratorul utilizeaza metode standardizate publicate in standarde internationale in conformitate cu cap 4 din prezenta procedura, care sunt dedicate incercarilor care se efectueaza in laborator. Atunci când este necesar, aceste documente sunt suplimentate cu detalii in PL specifice si instructiuni de lucru, pentru a asigura o aplicare corespunzatoare.

7.3.2 Metodele folosite in laboratorul ISOTEST sunt urmatoarele: 7.3.2.1 Manipularea obiectelor de incercat: PT-ISOTEST-05 7.3.2.2 Curatarea componentelor si materialelor optice pentru incercare: PL-ISOTEST-02 7.3.2.3 Inspectia componentelor si materialelor optice pentru incercare: PL-ISOTEST-03 7.3.2.4 Test S-on-1/femtosecunde: PL-ISOTEST-04 7.3.2.5 Test S-on-1/nanosecunde: PL-ISOTEST-05 7.3.2.6 Test fiabilitate Tip 2: PL-ISOTEST-06 7.3.2.7 Masurarea duratei efective a pulsurilor laser de nanosecunde: PL-ISOTEST-07 7.3.2.8 Masurarea ariei efective a spotului laser pe suprafata probei: PL-ISOTEST-08 7.3.2.9 Masurarea duratei efective a pulsurilor laser de femtosecunde: PL-ISOTEST-09 7.3.2.10 Asigurarea calitatii rezultatelor incercarilor: PT-ISOTEST-06 7.3.2.11 Raportarea rezultatelor: PT-ISOTEST-07 7.3.2.12 Evaluarea incertitudinii de masurare a PDCL prin testul S-on-1: PT-ISOTEST-08 7.3.3 Aparatele utilizate in cadrul procedurii sunt listate in Tabelul urmator:

Echipament / Etalon Amplasare Observatii

Laser Nd:YAG Brilliant b / QUANTEL, SN: 0742001; M11-001100-590; 0731404; 0749701; 0731505

Pav. LASERI, cam. 106

Laser CPA-2101 (CLARK-MXR, SUA) Model 010324, SN 04115 (Unitatea Laser si Sursa de Alimentare ORC 1000), SN 284 (Unitatea Electronica de Control), SN 8495344 (Unitatea de Control al Temperaturii)

Pav. LASERI, cam. 411

Powermetru/Energimetru EPM 2000 TOP ASSY / COHERENT, SN: 0993D12

Pav. LASERI, cam. 106

Powermetru/Energimetru LabMax-TOP / COHERENT, SN: 0206E12R

Pav. LASERI, cam. 106

Powermetru/Energimetru LabMax-TOP / COHERENT, SN: 0619K10R

Pav. LASERI, cam. 106

Cap detector energie J-50MB-YAG / COHERENT, SN: 0186E12R

Pav. LASERI, cam. 106

Cap detector energie J-25MT-10kHz / COHERENT, SN: 0004A12R

Pav. LASERI, cam. 106

Cap detector energie J-10MT-10kHz / COHERENT, SN: 035O12R

Pav. LASERI, cam. 411

Page 29: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Laborator ISOTEST

Proprietate INFLPR - ISOTEST

PROCEDURA TEHNICA COD PT – ISOTEST - 02 Editia 1

METODE DE INCERCARE Pag. 5 / 6 Revizia 0/ 10.2012

Profilometru laser GRAS 20 / SPIRICON , SN: 1142058;

Pav. LASERI, cam. 106

Profilometru laser GRAS 20 / SPIRICON , SN: 11422059

Pav. LASERI, cam. 411

Osciloscop DPO 7104 / Tektronix Inc., SN: B021447

Pav. LASERI, cam. 106

Grenouille Model 8-50/ Swamp Optics, LLC, SN: 8-50-283-USB

Pav. LASERI, cam. 411

Microscop Axio Lab.A1 , Carl Zeiss GmbH, SN: 3140000158

Pav. LASERI, cam. 106

7.3.4. La solicitarea clientului pentru efectuarea de incercare Seful laboratorului si RAC confirma ca poate aplica corect metodele standardizate inainte de a incepe activitatea de incercare si informeaza clientul privind metoda aleasa. Daca metodele standardizate se modifica, se reactualizeaza confirmarea, conform procedurii “Relatii cu clientii. Conditii de colaborare”, cod PS-ISOTEST-05.

7.3.5. Laboratorul poate utiliza si metode dezvoltate in laborator sau adoptate de acesta, daca acestea sunt corespunzatoare scopului dorit si daca sunt validate. Metodele de incercare dezvoltate de laborator, pentru cazul propriu, sunt monitorizate de RAC din laborator si sunt dezvoltate numai de personal calificat. 7.4. Momentan laboratorul ISOTEST foloseste metode standardizate. In situatia in care managementul laboratorului decide dezvoltarea de noi metode, se va realiza validarea metodelor respective. Pentru metodele noi de incercare, procedurile se elaboreaza inainte de efectuarea incercarii si trebuie sa contina urmatoarele informatii:

a) Identificarea adecvata; b) Domeniul de aplicare; c) Descrierea tipului obiectului care va fi incercat; d) Parametrii sau caracteristicile si domeniile de determinat; e) Aparatele si echipamentele, inclusiv cerintele de performanta tehnica; f) Conditiile de mediu cerute si orice perioada de stabilizare necesara; g) Descrierea procedurii, inclusiv:

• aplicarea de marcaje de identificare, manipularea, transportul, depozitarea si pregatirea obiectelor;

• verificarile care trebuie efectuate inaintea inceperii lucrarii; • verificarea daca echipamentele functioneaza corect si daca se cere, etalonarea sau reglarea

echipamentului inainte de fiecare utilizare; • metoda de inregistrare a observatiilor si rezultatelor; • masurile de securitate care trebuie respectate

h) Criteriile si/sau cerintele pentru acceptare/respingere; i) Datele care se inregistreaza si metoda de analiza si prezentare; j) Incertitudinea sau procedura de estimare a incertitudinii.

7.5. In cazul in care este necesara validarea metodelor, se procedeaza astfel:

7.5.1. Determinarea performantelor unei metode trebuie sa fie una dintre, sau o combinatie a urmatoarelor:

• etalonarea folosind etaloane de referinta sau materiale de referinta;

Page 30: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Laborator ISOTEST

Proprietate INFLPR - ISOTEST

PROCEDURA TEHNICA COD PT – ISOTEST - 02 Editia 1

METODE DE INCERCARE Pag. 6 / 6 Revizia 0/ 10.2012

• compararea rezultatelor obtinute prin alte metode; • comparari interlaboratoare; • evaluarea sistematica a factorilor care influenteaza rezultatul; • evaluarea incertitudinii rezultatelor bazata pe intelegerea stiintifica a principiilor teoretice ale

metodei si pe experienta practica. 7.5.2. Evaluarea performantei metodei, rezultatele obtinute, procedura utilizata pentru validare si o

declaratie ca metoda este adecvata utilizarii intentionate trebuie inregistrate intr-un “Protocol de Validare”, care va contine:

• prima pagina care contine titlul metodei; • fiecare din urmatoarele pagini va contine câte un parametru de performanta al metodei cu

descriere, comentarii daca este cazul, criterii de performanta, experimente, evaluarea datelor si note. Parametrii principali care trebuie abordati sunt: repetabilitatea, reproductibilitatea, exactitatea, abaterea fata de valorile de referinta, limitele de detectie, liniaritatea, domeniul de lucru, incertitudinea de calibrare si selectivitatea metodei.

7.5.3. Rezultatele incercarilor efectuate pentru validarea metodei se vor trece intr-un “Caiet de date” separat pentru fiecare metoda supusa validarii care va avea pe coperta titlul metodei si numele persoanelor care au efectuat etalonarile sau incercarile.

7.5.4. Pe masura dezvoltarii metodei se vor efectua analize pentru a verifica daca necesitatile clientului mai sunt inca indeplinite. Orice schimbare in cerinte care necesita modificari trebuie aprobata si autorizata.

7.5.5. Atunci când in metodele nestandardizate validate se fac modificari, daca este necesar, se efectueaza o noua validare. 8. CRITERII DE ACCEPTARE / RESPINGERE

Conform PT-ISOTEST-07: “Raportarea rezultatelor”. 9. FORMULARE SI INREGISTRARI

Conform PT-ISOTEST-07: “Raportarea rezultatelor”.

Page 31: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Lab

ISOTEST

Proprietate INFLPR

ISOTEST

PROCEDURĂ DE LUCRU

COD PT-

ISOTEST-11 Edi ţia: 1

EVALUAREA INCERTITUDINII DE MASURARE

A PDCL PRIN TESTUL S-on-1

Pag. 1 /12

Rev. 0 Data:

19.10.2012

Functia

Nume si prenume

Semnatura Data

Întocmit: RMC STRATAN Aurel 19.10.2012

Avizat: Director Tehnic ISOTEST FENIC Constantin 22.10.2012

Aprobat: Şef Laborator ISOTEST NEMES George 23.10.2012

Exemplar nr. ___

Acest document este proprietatea INFLPR – Lab ISOTEST. Difuzarea, multiplicarea sau

modificarea acestuia de catre o terta parte, fara permisiunea scrisa a proprietarului este interzisa.

Page 32: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Lab

ISOTEST

Proprietate INFLPR

ISOTEST

PROCEDURĂ DE LUCRU

COD PT-

ISOTEST-11 Edi ţia: 1

EVALUAREA INCERTITUDINII DE MASURARE

A PDCL PRIN TESTUL S-on-1

Pag. 2 /12

Rev. 0 Data:

19.10.2012

(1) Scop

Procedura de lucru PT-ISOTEST-11 se referă la evaluarea incertitudinii standard de

masurare a pragului de distrugere a componentelor optice in camp laser intens (PDCL). (2) Domeniu de aplicare

Procedura de lucru PT-ISOTEST-11 se aplică în cadrul Laboratorului ISOTEST si

este asociata Testului S-on-1 (PT-ISOTEST-01). (3) Defini ţii şi prescurt ări PDCL: prag de distrugere în câmp laser SLM: mono-mod longitudinal (4) Documente de referin ţă

Standard ISO 21254 - 1, 2, 3, 4: Metode de test pentru PDCL Partea 1: Definiţii şi principii generale; Partea 2: Determinarea pragului de distrugere; Partea 3: Asigurarea condiţiilor de manipulare a puterii (energiei) laserului; Partea 4: Inspecţie, detecţie şi măsurare.

(5) Responsabilitati - se indica responsabilitatile fiecarui angajat implicat in activitatea procedurata. 5.1. Şef Laborator ISOTEST: George NEMEŞ

Loc ţiitor şef laborator: Alexandru ZORILĂ Avizeaza procedura de lucru si rezultatele masurarii. 5.2. RAC din Laboratorul ISOTEST: Aurel STRATAN

Loc ţiitor RAC: Săndel SIMION Verifica aplicarea procedurii de lucru. 5.3. Personal de specialitate:

Alexandru ZORILĂ Laurenţiu RUSEN Liviu NEAGU Ioana DUMITRACHE Determina experimental stabilitatea parametrilor energetici, spatiali si temporai ai surselor laser BRILLIANT-b-10-SLM si CLARK 2101; calculeaza incertitudinea combinata (tip A + tip B) a rezultatului masurarii PDCL conform prezentei proceduri de lucru.

Page 33: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Lab

ISOTEST

Proprietate INFLPR

ISOTEST

PROCEDURĂ DE LUCRU

COD PT-

ISOTEST-11 Edi ţia: 1

EVALUAREA INCERTITUDINII DE MASURARE

A PDCL PRIN TESTUL S-on-1

Pag. 3 /12

Rev. 0 Data:

19.10.2012

(6) Conditii prealabile

Lista echipamentelor OEC

Domeniile pentru care se solicit ă

acreditarea Echipament / Etalon Nr. Certificat de etalonare /

data / emitent

Poz. Domeniul

1

Încercarea rezistenţei

componentelor optice în câmp

laser

Laser Nd:YAG Brilliant b / QUANTEL, SN: 0742001; M11-001100-590; 0731404; 0749701; 0731505

0742001 / 17.12.2010; 0742001 / 17.12.2011

Laser CPA-2101 (CLARK-MXR, SUA) Model 010324, SN 04115 (Unitatea Laser si Sursa de Alimentare ORC 1000), SN 284 (unitatea Electronica de control), SN 8495344 (Unitatea de Control a temperaturii).

HORIBA JOBIN YVON, CPA 2101 Test Report, 05.03.2009

Powermetru/Energimetru EPM 2000 TOP ASSY / COHERENT, SN: 0993D12

120507122105 / 07.05.2012 - COHERENT, Inc.

Powermetru/Energimetru LabMax-TOP / COHERENT, SN: 0206E12R

120514082055 / 14.05.2012 - COHERENT, Inc.

Cap detector energie J-25MT-10kHz / COHERENT, SN: 0004A12R

120111102736 / 11.01.2012 - COHERENT, Inc.

Cap detector energie J-10MT-10kHz / COHERENT, SN: 035O12R

120111102736 / 24.07.2012 - COHERENT, Inc.

Cap detector energie J-50MB-YAG / COHERENT, SN: 0186E12R

120507150654 / 07.05.2012 – COHERENT, Inc.

Profilometru laser GRAS 20 / SPIRICON , SN: 1142058;

284 / 19.06.2012 – ELECTRO-TOTAL s.r.l.

Profilometru laser GRAS 20 / SPIRICON , SN: 11422059

284 / 19.06.2012 – ELECTRO-TOTAL s.r.l.

Osciloscop DPO 7104 / Tektronix Inc., SN: B021447

-

Grenouille Model 8-50/ Swamp Optics, LLC, SN: 8-50-283-USB

Certificat calibrare / 21.09.2010 - Swamp Optics, LLC

(7) Evaluarea incertitudinii de masurare a PDCL las er prin testul S-on-1

Standardul ISO 21254-1:2011 [1] defineste pragul de distrugere in camp laser

(PDCL) ca fiind cantitatea maxima de radiatie laser incidenta pe o supafata optica pentru

care probabilitatea de distrugere extrapolata este zero, unde cantitatea de radiatie laser

poate fi exprimata prin densitatea de energie (fluenta) de varf Hmax a pulsurilor laser, in

J/cm2, sau prin densitatea de putere de varf Emax a pulsurilor laser, in W/cm2.

Aria efectiva Aeff a spotului laser pe suprafata optica testata (in planul tintei) este

definita ca raportul dintre energia Q a pulsului laser si densitatea de energie Hmax a pulsului

laser [1]:

Page 34: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Lab

ISOTEST

Proprietate INFLPR

ISOTEST

PROCEDURĂ DE LUCRU

COD PT-

ISOTEST-11 Edi ţia: 1

EVALUAREA INCERTITUDINII DE MASURARE

A PDCL PRIN TESTUL S-on-1

Pag. 4 /12

Rev. 0 Data:

19.10.2012

(1)

,

unde H(x,y) este profilul spatial bidimensional de fluenta H(x,y) al pulsului laser in planul

tintei.

Aria efectiva a spotului laser se determina prin masurarea si integrarea profilului

spatial H(x,y) in planul tintei sau intr-un plan echivalent, asa cum se arata in procedura de

lucru PL-ISOTEST-01-03. Odata cunoscuta aria spotului Aeff si masurand energia Q per puls,

se determina cu ajutoriul ecuatiei (1) fluenta de varf Hmax a pulsului laser incident in planul

tintei.

Durata efectiva teff a pulsului laser se defineste ca raportul dintre energia Q si

puterea de varf Pmax a pulsului laser [1]:

, (2)

unde P(t) este puterea instantanee a pulsului laser.

Durata efectiva a pulsului laser se determina prin masurarea si integrarea profilului

temporal P(t) al pulsului laser, asa cum se arata in procedura de lucru PL-ISOTEST-01-02.

Cunoscand durata teff a pulsului laser, se determina densitatea de putere de varf Emax a

pulsurilor laser in planul tintei cu ecuatia (3):

(3)

Determinarea PDCL prin testul S-on-1 se realizeaza pe baza datelor furnizate de cele

9 caracteristici de probabilitate de distrugere PN(Q) ridicate experimental de algoritmul

programului de operare, unde N reprezinta numarul de pulsuri laser pentru care se

calculeaza probabilitatea de distrugere, iar Q este energia laser per puls [2]. De exemplu, in

cazul testului S-on-1 cu pulsuri de nanosecunde, N = 1; 2; 5; 10; 20; 50; 100; 200; 500.

Pentru fiecare valoare a lui N, programul determina un set de date experimentale {PN(Qi)}

alcatuit din l puncte discrete de probabilitate de distrugere PN(Qi), l ≤ q, unde q reprezinta

numarul de intervale Qi ± ∆Q care acopera gama de energii per puls disponibila

maxmax

),(

H

dxdyyxH

H

QAeff

∫ ∫∞

∞−

∞−==

max

0

max

)(

P

dttP

P

Qt eff

∫∞

==

efft

HE max

max=

Page 35: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Lab

ISOTEST

Proprietate INFLPR

ISOTEST

PROCEDURĂ DE LUCRU

COD PT-

ISOTEST-11 Edi ţia: 1

EVALUAREA INCERTITUDINII DE MASURARE

A PDCL PRIN TESTUL S-on-1

Pag. 5 /12

Rev. 0 Data:

19.10.2012

experimental. Probabilitatea de distrugere PN(Qi) pentru un anumit interval Qi ± ∆Q se

calculeaza cu relatia

(4)

unde ntotal reprezinta numarul total de situri interogate cu energii laser incluse in intervalul

[Qi ± ∆Q], din care nD reprezinta numarul de situri distruse dupa aplicarea unui numar de

pulsuri laser Nmin ≤ N.

Densitatea de energie laser Hmax la pragul de distrugere a probei, pentru

probabilitatile de distrugere de 0% (0% PDCL (N)) si de 50% (50% PDCL (N)), se evalueaza

prin fitarea liniara a setului de date {PN(Qi)}. In final, caracteristica de distrugere a probei

testate (densitatea de energie laser Hmax la pragul de distrugere (0% PDCL si 50% PDCL)

functie de numarul de pulsuri laser aplicate pe proba) se deduce din setul de date {0% PDCL

(N)), (50% PDCL(N)}.

Masurarea PDCL prin testul S-on-1 are la baza ipoteza conform careia toate siturile

de test ale probei prezinta o comportare identica la iradierea laser. Pentru o astfel de

suprafata optica omogena, modelele teoretice care studiaza interactia laser-materie indica o

dependenta liniara a probabilitatii de distrugere de energia plusurilor laser de test [3, 4]. Insa,

in practica, aceasta relatie determinista intre probabilitatea de distrugere si energia laser este

afectata de o serie de surse de erori, care sunt intrinsec legate de procedura de test:

1. Caracteristica de rezistenta in camp laser poate varia semnificativ pe suprafata

probei, fiind in primul rand determinata de starea suprafetei (fracturi, zgarieturi, defecte,

contaminanti), si apoi de proprietatile intrinseci ale materialului [5]. Intrucat omogenitatea

suprafetei din punct de vedere al pragului de distrugere laser nu poate fi testata printr-o

metoda independenta, influenta neomogenitatii suprafetei optice asupra incertitudinii

rezultatului masurarii PDCL este dificil de cuantificat. O indicatie a influentei neomogenitatii

suprafetei probei asupra rezultatului masurarii este data de incertitudinea relativa uP a fitarii

parametrice, mediata pe cele 9 caracteristici de probabilitate de distrugere PN(Q). Calculul

incertitudii uP de determinare a PDCL prin regresia liniara a setului de date experimentale

{PN(Qi)} este aratat in Anexa 1 a prezentului material.

Conform datelor publicate in literatura [6] si a rezultatelor experimentale obtinute in

cadrul testelor S-on-1 efectuate in laboratorul ISOTEST [7], valorile uzuale ale incertitudinii

uP se incadreaza in limitele de 10 % - 22 %, fiind in principal determinate de calitatea optica a

componentei masurate.

total

DiN n

nQP =)(

Page 36: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Lab

ISOTEST

Proprietate INFLPR

ISOTEST

PROCEDURĂ DE LUCRU

COD PT-

ISOTEST-11 Edi ţia: 1

EVALUAREA INCERTITUDINII DE MASURARE

A PDCL PRIN TESTUL S-on-1

Pag. 6 /12

Rev. 0 Data:

19.10.2012

2. Eroarea intrinseca a algoritmului S-on-1 este cauzata de largimea 2∆Q a

intervalelor de energie Qi ± ∆Q utilizate in calculul probabilitatii de distrugere (toate siturile

interogate cu diferite energii laser cuprinse intr-un interval Qi ± ∆Q sunt considerate ca fiind

iradiate cu o aceeasi energie Qi, energia mediana a intervalului respectiv). Considerand o

distributie rectangulara de probabilitate a acestui tip de eroare, incertitudinea standard

corespunzatoare poate fi estimata cu relatia

,3Q

Qu Q

∆=∆

(5)

unde Q este energia per puls mediata pe toate siturile interogate in cadrul procedurii de test.

Testele S-on-1 efectuate pe suprafete acoperite cu diferite depuneri dielectrice si metalice, si

pe substraturi nedepuse de quartz topit polisate pana la diferite grade de rugozitate, au

evidentiat o incertitudine medie u∆Q = 4,4 % [7].

3. Fluctuatia parametrilor de fascicul laser (energia per puls (Q), aria efectiva(Aef) a

spotului laser pe suprafata de test, durata efectiva (tef) a pulsului laser), care este evaluata

prin determinarea experimentala a incertitudinilor standard de tip A respective, uQ, uA, ut. In

tabelul 1 sunt specificate valori orientative ale incertitudinii de tip A a parametrilor de fascicul

pentru cele doua surse laser utilizate in cadrul testului S-on-1.

Tabelul 1. Incertitudinea de tip A a parametrilor de fascicul pentru sursele laser utilizate in

testul S-on-1.

Nr.

Parametru de fascicul

Incertitudine standard Tip A

Laser in pulsuri de nanosecunde

BRILLIANT-b-10-SLM (Quantel)

Laser in pulsuri de femtosecunde

CPA-2101 (Clark-MXR)

1 Energie puls laser uQ

± 2 % @1064 nm ± 4 % @532 nm ± 6 % @355 nm

uQ

± 2 % @775 nm

2 Aria efectiva a spotului laser pe suprafata optica de test

uA

± 5 % @1064 nm ± 6 % @532 nm ±7 % @355 nm

uA

± 5 % @775 nm

3 Durata efectiva a pulsului laser ut

± 3 % @1064 nm ± 5 % @532 nm ± 6 % @355 nm

ut

± 6 % @775 nm

Page 37: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Lab

ISOTEST

Proprietate INFLPR

ISOTEST

PROCEDURĂ DE LUCRU

COD PT-

ISOTEST-11 Edi ţia: 1

EVALUAREA INCERTITUDINII DE MASURARE

A PDCL PRIN TESTUL S-on-1

Pag. 7 /12

Rev. 0 Data:

19.10.2012

4. Erorile de calibrare ale sistemelor de masura ale parametrilor de fascicul laser sunt

evaluate conform incertitudinii de calibrare specificate de producator sau conform

specificatiilor tehnice, dupa cum urmeaza:

- Sistemul de masura a energiei pulsurilor laser alcatuit din doua detectoare piroelectrice tip

J-50MB-YAG, J-25-MT-10 kHz sau J-10MT-10 kHz si doua energimetre LabMax-TOP

(Coherent, Inc.), EPM 2000 TOP ASSY, caracterizat prin incertitudinea standard de tip B

uBQ = ± 4 %.

- Sistemul de masura a ariei efective a spotului laser, bazat pe un analizor de fascicul laser

Spiricon Firewire type Gras-20 cu camera CCD si soft dedicat BeamGage, caracterizat prin

incertitudinea standard de tip B uBA = ± 6 %.

- Sistemul de masura a duratei efective a pulsurilor laser de nanosecunde, bazat pe

fotodioda rapida UPD-200-UD (Alphalas) si osciloscopul digital DPO 7104 (Tektronix Inc.),

caracterizat prin incertitudinea standard de tip B uBt-n = ± 5 %.

- Sistemul de masura a duratei efective a pulsurilor laser de femtosecunde, bazat pe

dispozitivul GRENOUILLE 8-50 (Swamp Optics, LLC), caracterizat prin incertitudinea

standard de tip B uBt-f = ± 4 %.

Luand in considerare sursele de eroare mentionate mai sus si experienta

internationala acumulata in testele S-on-1, o eroare absoluta de ± 25 % in masurarea PDCL

atesta in general o procedura de masurare corecta si o calitate optica rezonabila a

componentei testate [8].

Incertitudinea standard relativa uF in masurarea densitatii de energie Hmax [J/cm2] a

spotului laser pe suprafata de test este data de relatia [9]:

222222BAABQQQF uuuuuu ++++= ∆

(6)

Inceritudinea standard relativa uE in masurarea densitatii de puter Emax [W/cm2] a

spotului laser pe suprafata de test este data de relatia:

22222222BttBAABQQQE uuuuuuuu ++++++= ∆

(7)

unde uBt inseamna uBt-n sau uBt-f functie de sursa laser utilizata in procedura de test.

Incertitudinea combinata UC (tip A + tip B) a rezultatului masurarii PDCL se estimeaza

cu ajutorul relatiei (8), atunci cand PDCL se specifica in fluenta laser [J/cm2], si cu relatia (9),

pentru PDCL exprimat in densitate de putere laser, [W/cm2].

Page 38: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Lab

ISOTEST

Proprietate INFLPR

ISOTEST

PROCEDURĂ DE LUCRU

COD PT-

ISOTEST-11 Edi ţia: 1

EVALUAREA INCERTITUDINII DE MASURARE

A PDCL PRIN TESTUL S-on-1

Pag. 8 /12

Rev. 0 Data:

19.10.2012

]/[, 2222 cmJPDCLuuU FPC += (8)

]/[, 2222 cmWPDCLuuU EPC += (9)

In continuare se da un exemplu de evaluare a incertitudinii UC intr-un test S-on-1

efectuat cu pulsuri laser de nanosecunde la lungimea de unda de 1064 nm. Suprafata optica

testata a fost de tip depunere dielectrica antireflectanta (AR) la 1064 nm, producator Ophir

Optics SRL din Bucuresti. In Fig. 1 sunt aratate doua caracteristici de probabilitate de

distrugere ale acestei probe, pentru N = 1 si N = 500, determinate experimental de algoritmul

S-on-1.

Fig. 1. Caracteristicile P1(Q) si P500(Q) ridicate experimental de algoritmul S-on-1 pe o proba de test cu

acoperire dielectrica tip AR@1064 nm.

Caracteristica de distrugere a probei testate, dedusa din 9 caracteristici de

probabilitate de distrugere, este prezentata in Fig. 2.

100 101 102 103

5

10

15

20

25

30

1 2 3 4

Y

X

Fig. 2. Caracteristica S-on-1 de distrugere a probei testate:

X, numarul de pulsuri laser; Y, densitatea de energie a pulsurilor laser [J/cm2] 50% PDCL; 0% PDCL.

Page 39: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Lab

ISOTEST

Proprietate INFLPR

ISOTEST

PROCEDURĂ DE LUCRU

COD PT-

ISOTEST-11 Edi ţia: 1

EVALUAREA INCERTITUDINII DE MASURARE

A PDCL PRIN TESTUL S-on-1

Pag. 9 /12

Rev. 0 Data:

19.10.2012

Rezultatele masurarilor sunt sintetizate in Tabelul 2, unde 0% PDCL∞ reprezinta

densitatea de energie laser de varf H0(108) (sau densitatea de putere laser de varf E0(108)) la

pragul de distrugere, pentru un numar de 108 pulsuri aplicate pe proba. Valorile H0(108) si

E0(108) au fost obtinute prin extrapolarea caracteristicii 0% PDCL determinata experimental,

conform ISO 21254-2, Anexa E.

Tabelul 2. Sinteza rezultatelor testului S-on-1

Nr. Parametri Unitati de masura

Valoare

1 0% PDCL∞ (H0(108)) J/cm2 11,7

2 0% PDCL∞ (E0(108) GW/cm2 1,7

3 Aef cm2 4,2 x 10-4

4 tef ns 6,6

5 uP % 15

6 u∆Q % 3

7 uQ % 1

8 uA % 5

9 ut % 3

10 uBQ % 4

11 uBA % 6

12 uBt-n % 5

13 uF % 9.8

14 uE % 12

15 UC (ecuatia (8)) % 18

16 UC (ecuatia (9)) % 20

Densitatea de energie / putere laser la pragul de distrugere, 0% PDCL∞, extrapolata

pentru un numar mare de pulsuri laser, poate fi exprimata astfel:

H0(108) = 11,7 J/cm2 ± 18 %;

E0(108)= 1,7 GW/cm2 ± 20 %.

Page 40: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Lab

ISOTEST

Proprietate INFLPR

ISOTEST

PROCEDURĂ DE LUCRU

COD PT-

ISOTEST-11 Edi ţia: 1

EVALUAREA INCERTITUDINII DE MASURARE

A PDCL PRIN TESTUL S-on-1

Pag. 10 /12

Rev. 0 Data:

19.10.2012

Referinte

[1] ISO 21254-1:2011, "Lasers and laser-related equipment - Test methods for laser-

radiation-induced damage threshold –Part 1: Definitions and general principles".

[2] ISO 21254-2:2011, "Lasers and laser-related equipment - Test methods for laser-

radiation-induced damage threshold –Part 2: Threshold determination".

[3] E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, "Ablation of solids by

femtosecond lasers: Ablation mechanism and ablation thresholds for metals and

dielectrics", Phys. Plasmas 9, 949-957 (2002).

[4] S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H.

Welling, "Ablation of metals by ultrashort laser pulses", JOSA B 14, 2716-2722 (1997).

[5] Laurence, T. A., Bude, J. D., Ly, S., Shen, N., Feit, M. D., "Extracting the distribution of

laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high

fluences (20-150 J/cm2)", Opt. Express 20, 11561-11573 (2012).

[6] K. Starke, T. Gro�, D. Ristau, W. Riggers, J. Ebert, "Laser-induced damage threshold of

optical components for high repetition rate Nd:YAG lasers", Proc. SPIE 3578, 584-593

(1990).

[7] A. Stratan, A. Zorila, L. Rusen, S. Simion, C. Blanaru, C. Fenic, L. Neagu, G. Nemes,

"Automated test station for laser-induced damage threshold measurements according to

ISO 21254-1,2,3,4 standards", SPIE Laser Damage Symposium XLIV: Annual

Symposium on Optical Materials for High Power Lasers, 23-26 Sept. 2012, NIST, Boulder,

Colorado, USA, Paper 8530-80, to be published in Proc. SPIE.

[8] C.J. Stolz, D. Ristau, M. Turowski, H. Blaschke, Thin Film Femtosecond Laser Damage

Competition, Boulder Damage Symposium, Boulder, CO, United States, 21-23 September

2009, https://e-reports-ext.llnl.gov/pdf/382702.pdf

[9] JCGM 100:2008, "Evaluation of measurement data - Guide to the expression of

uncertainty in measurement" (2008). http://physics.nist.gov/cuu/Uncertainty/typeb.html

Page 41: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Lab

ISOTEST

Proprietate INFLPR

ISOTEST

PROCEDURĂ DE LUCRU

COD PT-

ISOTEST-11 Edi ţia: 1

EVALUAREA INCERTITUDINII DE MASURARE

A PDCL PRIN TESTUL S-on-1

Pag. 11 /12

Rev. 0 Data:

19.10.2012

ANEXA 1

Fitarea parametrica a caracteristicii PN(Q). Calculul incertitudinii uP.

Setul de date {PN(Qi)} este alcatuit din l puncte discrete de probabilitate de distrugere

PN(Qi), unde l reprezinta numarul de intervale Qi ± ∆Q care acopera gama de energii per

puls utilizata experimental. In general, probabilitatea de distrugere PN(Q) este o functie liniara

de Q, aceasta dependenta fiind distorsionata de o perturbatie aleatoare (sau "zgomot alb")

provocata de erorile de masurare si de neomogenitatile structurale ale materialului testat.

Zona de tranzitie cuprinsa intre PN(Qi) = 0 si PN(Qi) = 1 este fitata cu o dreapta

QbaQP NNN +=)(ˆ , (A1-1)

unde aN si bN sunt parametrii caracteristici care sunt fitati cu datele experimentale, pentru un

anumit numar N.

Eroarea reziduala asociata fiecarui punct experimental PN(Qi) este definita astfel:

.)()(ˆ)( iNNiNiNiNi QbaQPQPQPu −−=−= (A1-2)

Parametrii aN si bN se determina din conditia ca suma patratelor erorilor reziduale sa

fie minima:

.0;0;])([ 2

11

2 =∂∂=

∂∂−−== ∑∑

== NNiNNi

l

iN

l

ii b

S

a

SQbaQPuS (A1-3)

Din ecuatiile (3) rezulta:

=

=

⋅−

⋅⋅−⋅=

⋅−=

l

ii

l

iNiNi

N

NNN

QlQ

PQlQPQb

QbPa

1

22

1

)(

,

, (A1-4)

unde l

QQ

l

QPP i

i

l

iiN

N

∑∑== == 11 ,

)(.

Page 42: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam

INFLPR Lab

ISOTEST

Proprietate INFLPR

ISOTEST

PROCEDURĂ DE LUCRU

COD PT-

ISOTEST-11 Edi ţia: 1

EVALUAREA INCERTITUDINII DE MASURARE

A PDCL PRIN TESTUL S-on-1

Pag. 12 /12

Rev. 0 Data:

19.10.2012

Calitatea fitarii parametrice este data de abaterea standard a parametrilor S, aN si bN:

=

=

−=

−+=

−=

l

ii

Sb

l

ii

Sa

S

QQ

QQ

Q

l

l

S

1

2

1

2

2

)(

1

)(

1

2

σσ

σσ

σ

(A1-5)

In final, eroarea totala de fitare este evaluata prin incertitudinea uP a fitarii parametrice :

2N

b

N

a

P

bau

σσ += . (A1-6)

Algoritmul iterativ S-on-1 recalculeaza parametrii aN, bN dupa interogarea fiecarui sit

si stabileste energia de test QNS pentru situl urmator. Criteriul fundamental utilizat pentru

determinarea valorii acestei energii este minimizarea incertitudinilor uP-NL, uP-NP

corespunzatoare caracteristicilor de probabilitate de distrugere PNL(Q) si PNP(Q), unde NL,

NP reprezinta numarul minim, respectiv maxim de pulsuri laser pentru care se calculeaza

probabilitatea de distrugere.

Page 43: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam
Page 44: RC 10 Anexe 1-3 121612 Corrssll.inflpr.ro/ISOTEST/Raportari/RC10_Anexe 1-4.pdf · 2014. 11. 11. · Spatial beam parameters Mean value Relative standard deviation (±%) (from beam