[email protected] te uku wind farm – planning

14
[email protected] Te Uku Wind Farm – Planning and Operation of a Deeply Embedded Power Plant with Advanced Ancillary Services RAY W BROWN HAYDEN N SCOTT-DYE Meridian Energy Ltd Meridian Energy Ltd New Zealand New Zealand SUMMARY Meridian completed commissioning of the 64.4 MW Te Uku Wind Power Plant (WPP) in 2011. The WPP is embedded within a rural 33 kV distribution network and located approximately 25 km from the 220 kV Grid Exit Point (GXP). Before the WPP was developed, the 220 kV GXP voltage could move out of Grid Code requirements during transmission outages. Planning studies have shown that the WPP is able to reliably control voltage levels across the 33 kV distribution network and maintain the 220 kV GXP 220 kV voltage within Grid Code requirements during contingencies. The WPP is the largest deeply embedded wind farm in New Zealand. Integrating it with the 33 kV distribution network provided a number of challenges and these are discussed. New Zealand does not have subsidies for renewable energy power plants. It has a lightly regulated competitive electricity market with relatively low electricity prices. Environmental approvals allowed for a larger wind farm however the optimal commercial development of the WPP was required in order for its owner to achieve adequate returns in the electricity market. Various technical performance requirements were also placed on the WPP. Transmission integration options to address economic and technical requirements are discussed in the paper. The methodology and simulation studies performed to arrive at the optimal solution are described. The WPP uses full converter output wind turbine generators. The converters provide isolation between the power system and the turbine generator resulting in exceptional grid integration performance. The WPP can provide voltage support even when there is no wind, and modelling has shown that this can solve Grid Code non-compliant 220 kV voltage issues. The WPP is therefore able to provide voltage support ancillary services similar to a STATCON or a synchronous generator operating in synchronous condenser mode. New Zealand is an island system that has high penetration of renewables with over 70% of electricity supply coming from renewable sources. NZ’s energy strategy is to generate 90% of 21, rue d’Artois, F-75008 PARIS C1-108 CIGRE 2012 http : //www.cigre.org

Upload: hanga

Post on 03-Jan-2017

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

[email protected]

Te Uku Wind Farm – Planning and Operation of a Deeply Embedded Power Plant with Advanced Ancillary Services

RAY W BROWN HAYDEN N SCOTT-DYE

Meridian Energy Ltd Meridian Energy Ltd

New Zealand New Zealand

SUMMARY

Meridian completed commissioning of the 64.4 MW Te Uku Wind Power Plant (WPP) in

2011. The WPP is embedded within a rural 33 kV distribution network and located

approximately 25 km from the 220 kV Grid Exit Point (GXP). Before the WPP was

developed, the 220 kV GXP voltage could move out of Grid Code requirements during

transmission outages. Planning studies have shown that the WPP is able to reliably control

voltage levels across the 33 kV distribution network and maintain the 220 kV GXP 220 kV

voltage within Grid Code requirements during contingencies.

The WPP is the largest deeply embedded wind farm in New Zealand. Integrating it with the

33 kV distribution network provided a number of challenges and these are discussed.

New Zealand does not have subsidies for renewable energy power plants. It has a lightly

regulated competitive electricity market with relatively low electricity prices. Environmental

approvals allowed for a larger wind farm however the optimal commercial development of the

WPP was required in order for its owner to achieve adequate returns in the electricity market.

Various technical performance requirements were also placed on the WPP. Transmission

integration options to address economic and technical requirements are discussed in the paper.

The methodology and simulation studies performed to arrive at the optimal solution are

described.

The WPP uses full converter output wind turbine generators. The converters provide isolation

between the power system and the turbine generator resulting in exceptional grid integration

performance. The WPP can provide voltage support even when there is no wind, and

modelling has shown that this can solve Grid Code non-compliant 220 kV voltage issues. The

WPP is therefore able to provide voltage support ancillary services similar to a STATCON or

a synchronous generator operating in synchronous condenser mode.

New Zealand is an island system that has high penetration of renewables with over 70% of

electricity supply coming from renewable sources. NZ’s energy strategy is to generate 90% of

21, rue d’Artois, F-75008 PARIS C1-108 CIGRE 2012

http : //www.cigre.org

Page 2: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

[email protected]

NZ’s electricity from renewable energy by 2025. It is conceivable that within ten years, North

Island wind generation levels may exceed 50% of North Island load during light load periods.

As wind penetration grows, wind power plants will need to provide ancillary services that

have traditionally been provided from other sources.

Frequency related services have historically been provided from grid connected plant. The Te

Uku WPP has governor systems and the performance and integration of these will be

discussed. Instantaneous reserve performance from the wind farm in particular appears to be

superior to conventional plant. The use of the wind farm to provide frequency support

ancillary services is explored in the paper.

In summary, this paper provides an overview of the electrical and grid integration design of

Te Uku WPP, and also explores the ability of the WPP to provide ancillary services. Practical

examples from simulations and commissioning tests are also shown.

KEYWORDS

Ancillary-Services, DER, Renewable-Energy-Resources, Wind-Power, Optimisation, Frequency-

Response

Page 3: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

3

1 THE NEW ZEALAND POWER SYSTEM AND ANCILLARY SERVICES

The NZ power system consists of two island power systems (the North Island and the South

Island) connected by an HVDC (High Voltage Direct Current) link.

The North Island’s electricity is supplied by many fuel sources, and approximately 1500 GWh

p.a. is transferred north over the HVDC link during years when water is plentiful in the South

Island. The South Island’s electricity generation is 100% renewable, coming from hydro

generation and small WPPs (Wind Power Plants).

Demand Demand Peak Generation

Capacity

Wind Capacity

North Island 24,400 GWh 4,500 MW 5,652 MW 428 MW

South Island 14,600 GWh 2,300 MW 3,408 MW 58 MW

Total NZ 39,000 GWh 6,500 MW 9,060 MW 486 MW

Table 1 - NZ Load and Generation 2009/2010 [1]

Due to the low amounts of load and generation, the frequency can change quickly when

generation or the HVDC link trips. The frequency range in the North Island is 47 Hz to 52 Hz.

NZ’s wind energy resource is extensive because the country lies across the “Roaring 40s”. NZ

WPPs generally operate at an average of 42% of maximum capacity, making them

commercially competitive with other forms of electricity generation in NZ without subsidies.

Wind energy is in its infancy in NZ with annual energy penetration having reached only

approximately 4 %. With a NZ light load of approximately 3000 MW in summer, wind

generation can reach levels up to approximately 20 % during brief periods in summer.

The governments’ energy strategic goals have been to generate 90 % of NZ’s electricity from

renewable energy by 2025. In 2010 the government introduced an Emissions Trading Scheme

that will favour renewables over greenhouse gas-emitting power stations over time [2].

It is foreseeable that within 10 years, North Island wind generation levels may exceed 50 % of

North Island load during light load, high wind periods. It is anticipated that during these

periods some WPPs that are unable to provide ancillary services such as frequency and

voltage support will not be dispatched and conventional gas, hydro or coal plants that are able

to provide ancillary services will be dispatched instead. The revenue for owners of these

undispatched WPPs will be reduced as wind penetration grows.

In order to enable high wind penetration, WPPs will need to provide instantaneous reserves

(IR) and frequency keeping services. IR and frequency keeping services earn revenue in the

ancillary services market [3]. Governors have been installed in recent NZ WPPs [4] to enable

them to provide IR and frequency keeping services. When it becomes economically optimal

to use WPPs for frequency support services, market rules and mechanisms will be developed

to enable WPPs to offer these services into the ancillary service market.

The structure of the electricity market is a point of difference between NZ and many

jurisdictions. NZ has full nodal pricing, security-constrained economic dispatch. There is a

reserves market and commercial arrangements for ancillary services such as voltage support.

Page 4: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

4

This paper provides an overview of the electrical and grid integration design of Te Uku WPP,

a deeply embedded wind farm that has been designed to provide both voltage and frequency

ancillary services to the transmission grid.

2 EXISTING TRANSMISSION SYSTEM

DESCRIPTION

The Te Uku WPP site is located approximately 20 km

west of Hamilton in the North Island of New Zealand

between the Raglan and Aotea Harbours. The WPP

covers an area close to 56 km2

The Distribution Network Operator (DNO) in the

region, obtained planning permits for up to 28 Wind

Turbine Generators (WTGs) on the generation site

which could have a capacity up to 3 MW each,

providing for a potential wind farm capacity up to

84 MW. The site wind resource is Class IIB with a

high average wind speed of 8.24 m/s at hub height.

This provided potential for a generation capacity

factor in the order of 40 %.

The centre of the site is approximately 20 km from the Te Kowhai 220 kV / 33 kV substation

that supplies a large proportion of Waikato’s West Hamilton region through a single circuit

33 kV line which extended as far as the town of Raglan. The Te Kowhai offtake has generally

averaged around 20 MW however it has peaked up to 90 MW during times of low existing

embedded generation output (Te Rapa cogeneration) and the switching of load from other

parts of the Hamilton distribution network. The nearest 33 kV line was approximately 8 km

from the centre of the site and this single circuit line was the primary supply to Raglan.

The Te Kowhai substation has two 100 MVA 220 kV / 33 kV transformers. It is connected to

one circuit of the 220 kV double circuit Stratford – Taumarunui – Huntly line (see figure 2).

This is a long line that has capacitance charging issues when the connection to Huntly is lost.

In this case the 220 kV voltage at Te Kowhai can rise to approximately 1.125 pu, outside of

Grid Code requirements, particularly when the offtake at Te Kowhai is light.

The challenge presented to Meridian and the DNO was to complete an optimised design for

the site that could be commercialised. After much detailed analysis, 28 WTGs with 2.3 MW

generators and 101 m diameter turbines and a 33 kV transmission solution was adopted. This

provides an estimated output of 248 GWh p.a. from the wind farm’s 64.4 MW capacity

operating at a capacity factor of 43.9 %

3 PERFORMANCE REQUIREMENTS

The initial phase of the transmission solution design process required the establishment of

appropriate power quality standards for a large embedded wind farm. This required

interpretation of the Grid Codes applicable for the development, and negotiation of standards

with the DNO and the Transmission System Operator (TSO).

Figure 1 – Te Uku Geographical

Overview

Te Uku

Page 5: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

5

Figure 2 – Waikato Transmission Network Overview

The DNO was most interested in the power quality experienced by customers distributed

around its network. The DNO’s requirements were power quality performance based. The

TSO was more prescriptive with its targets requiring fault ride through and adequate power

system response following specific transmission faults. At the time of design, New Zealand

did not have generation fault ride through code requirements.

The wind farm is required to control the steady state voltage at its 33 kV switchboard so that

the network operates such that the regulated 11 kV voltage to supply customers is within

obligations. Studies showed that this could be achieved if the distant Te Kowhai and nearby

DNO substation 33 kV buses were regulated within +/- 5 % of nominal by the wind farm.

The expected steady state voltage range at Te Kowhai 220 kV (TWH220) is from -10% to

+12.5% of nominal. Although the Code has +/-10 % limits on the 220 kV grid, in some grid

contingencies without Te Uku WPP operating, the Te Kowhai voltage may rise to 1.125 pu.

At the request of the TSO, the WPP was designed to operate during weak system conditions

that included transmission outages with low North Island generation. Some of these scenarios

were subsequently found to be inherently unstable without the WPP. The WPP’s design must

also be such that the power quality within the network is within standards after faults at the

WPP or within the DNO or TSO networks. Fault ride through was required for 33 kV and

11 kV network faults, and distant TSO 220 kV and 110 kV Grid faults, and close-in grid

faults during conditions where all network components are in service pre-fault. The WPP is

required to lift its switchboard voltage during undervoltage faults or suppress it during

overvoltage faults, and to control voltage post fault.

Unlike conventional synchronous generators, the WPP can remain connected during close-in

earth faults. During situations where the WPP farm becomes islanded (with no connection

through to the TWH220 bus), including auto-reclose events it was decided to design the WPP

to trip. This was decided in order to maintain simplicity and ensure safety of the network as

the remaining islanded 33 kV network might not have a star/earth reference point.

Te Uku

Key

Page 6: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

6

Comprehensive power system studies were performed to design a transmission solution and

test the wind farm’s performance under numerous grid scenarios.

The reactive power capability requirements in the Grid Code were originally intended to

exclude embedded generation, so the developer was surprised to learn that even deeply

embedded generation are now required to comply with the Code 50% export and 33% import

reactive power rules. The wind farm’s export capability was just outside code requirements

and a dispensation from this requirement was applied for. Fortunately steady state

undervoltages are not an issue in this part of the grid whereas over voltages are, and therefore

the non-compliance does not prevent network owners to perform within their obligations.

4 TRANSMISSION OPTIONS

The two primary options considered were a new 110 kV spur line from Te Kowhai to the

WPP, and enhancement of the existing 33 kV network in order to integrate the WPP into it.

To minimise environmental effects, a 220 kV line was not considered. The DNO had initially

designed a 110 kV connection solution for the wind farm, however with the adoption of

smaller WTGs by Meridian, other more economic options could be considered.

Figure 3 – Transmission solution in the DNO Network

A 33 kV solution for the 64.4 MW WPP was studied in detail. It was found that building a

new 33 kV line from the WPP directly to Te Kowhai, and connecting the existing 33 kV

radial network to the WPP and bussing the two circuits together there to create a 33 kV ring

Page 7: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

7

from the WPP back to Te Kowhai within the DNOs’ network, was a cost effective and

environmentally benign solution.

The new 25 km 33 kV line consists of four sections of underground cable with a total length

of 8.38 km and three sections of overhead line with a total length of 16.9 km. The first 5.6 km

of overhead line from the WPP was double circuit so that one circuit could connect the WPP

to the existing 33 kV network at Cogswell Road, approximately 10 km from the WPP.

The existing 33 kV network also required substantial upgrades in order to support the wind

farm. Approximately 7.8 km of overhead line was reconductored and 5.6 km of new

underground cable replaced an existing circuit. New Ring Main Units were also added to the

network to create two new switching stations.

The combination of new line, circuit upgrades, additional switching stations, the creation of

the network ring, protection upgrades and the wind farm’s voltage control at the remote end

of the network have substantially increased security of supply and power quality to the region

West of Hamilton, and provided for considerable demand growth.

The two 33 kV circuits connecting the WPP to the network can only carry a proportion of the

WPP’s maximum power output. Fast runbacks were installed that detect overloads in the

33 kV network and ramp back the WPP power output within seconds to within the stressed

circuit’s rating. The amount of runback required depends on zone substation demand and

WPP generation at the time of the outage, and varies automatically and dynamically. After the

WPP has ramped its output down such that distribution network equipment is no longer

overloaded, the runback signal is reset. Periodically the WPP runback system lifts the WPP

output and the runback signal from the distribution network will again be set if equipment is

overloaded. In this way the WPP shall automatically maximise its utilisation of the capacity

of the DNO’s network.

Protection upgrades were also made in order to ensure good power quality during all

contingencies. Ride through of the WPP was particularly important. The primary 33 kV

network protections now consist mainly of unit (differential) protections. The high level goal

was to clear most 33 kV faults within 200 ms.

5 ON SITE RETICULATION AND VOLTAGE REGULATION

Meridian selected 2.3 MW full scale converter WTGs. Due to the decoupling of the turbine

speed from the grid frequency that these generators provide, power system integration and

excellent power system performance was achievable.

Figure 4 – Full Scale Converter Wind Turbine Generator Configuration

GearboxGearboxGearboxGearbox Genera to rGenera to rGenera to rGenera to r

GridGridGridGrid

Full ScaleFull ScaleFull ScaleFull ScaleFrequency ConverterFrequency ConverterFrequency ConverterFrequency Converter

CapacitorCapacitorCapacitorCapacitorBankBankBankBank

GearboxGearboxGearboxGearbox Genera to rGenera to rGenera to rGenera to r

GridGridGridGrid

Full ScaleFull ScaleFull ScaleFull ScaleFrequency ConverterFrequency ConverterFrequency ConverterFrequency Converter

CapacitorCapacitorCapacitorCapacitorBankBankBankBank

Page 8: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

8

The 690 V output from the frequency converters is stepped up to 33 kV via outdoor WTG

transformers. Three primary cable strings connect the WTGs back to the centralised

switchboard. Figure 5 shows the WPP line diagram. The WPP switchboard does not have a

main power transformer due to the direct connection to the DNO 33 kV network.

Figure 5 – Te Uku WPP Single Line Diagram

The WTGs provide STATCOM-like dynamic reactive power support. Each 2.3 MW

converter is capable of approximately 1.0 Mvar export and 2.5 Mvar import at nominal

voltage, to give a total wind farm reactive power capacity of approximately 28 Mvar export

and 70 Mvar import. Reactive power output capability is dependent on the reticulation

network voltage and WTG active power output.

When the wind farm is not generating active power, the wind farm can act as a STATCOM.

In this mode each WTG can support network voltage stability by varying its reactive power

output. This is the first application of this mode in New Zealand and it is anticipated that a

voltage support contract will be necessary to enable its operation in the market.

The WPP controls act to control the network steady state 33 kV voltage by managing the

WTG reactive power output. The controls can act in voltage, power factor or Var set-point

modes. Voltage control with a 1.02 pu set point at the WPP switchboard was found to be the

best mode. This maintains voltages in the distribution network and at the 220 kV grid exit

point within 5% of nominal during varying network and generation conditions. During

transient events, the WTG voltage controllers take priority over the 33 kV voltage control and

modify the WTG reactive power output in order to maintain the WTG 690V voltage level

close to unity so that the WTGs ride through (do not trip) due to power system earth faults.

Page 9: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

9

6 POWER SYSTEM STUDIES

The cornerstone of the modelling was the development of an accurate power system model.

The WTG supplier provided a model for its WTGs in a form suitable for DigSilent

PowerFactory. A PowerFactory model of the North Island was provided by the TSO and a

distribution network PowerFactory model was translated and developed from DSO models.

The wind farm is required to perform under a large range of fault types and locations:

• Three phase faults and single phase line and bus faults as far as 360 km away and as

close as the wind farm switchboard;

• Auto reclose events within the transmission and distribution network;

• Circuit breaker failure with long fault clearance times;

• Fault clearance with back-up protection clearance times;

• Light load, high load.

Initial dynamic studies ascertained the critical power system scenarios and events that should

be tested. This determined that there were 36 dynamic scenarios requiring examination. The

WPP was found to generally improve power quality in all fault scenarios studied, except those

where the power system model was already unstable and would not converge without the

WPP in operation. In these inherently unstable cases WPP operation could not be simulated.

Following dynamic studies, steady state studies were undertaken to design the WPP voltage

control methodology. Figure 6 shows some results from this analysis where it was found that

33 kV voltages within the distribution network could be kept within requirements with a WPP

Voltage Control set point between 0.96 and 1.04 pu. It can be seen that the network voltages

decay as generation increases due to voltage and reactive power drop across the network.

Figure 6 –Voltage Variation at Points Around the Distribution Network at Peak Load

The reactive power exchange at Te Kowhai was also examined and it was found (figure 7)

that a higher than nominal WPP voltage setpoint minimised the reactive power exchange at

the Grid Exit / Grid Injection Point.

Page 10: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

10

Further study showed that a higher than nominal WPP voltage control set point would

minimise network losses. Contingency analysis was then successfully undertaken to ensure

that network voltages would be well within limits during outage scenarios.

Figure 7 – Reactive Power Variation at the Grid Exit Point at Minimum Load

7 VOLTAGE SUPPORT ANCILLARY SERVICES

As discussed above, in some grid contingencies without Te Uku WPP operating, the remote

220 kV Te Kowhai Grid Exit Point voltage may rise to 1.125 pu. The Grid Code requires this

voltage to stay within +/-10% of nominal.

The Code also requires power stations to have a voltage control system that regulates reactive

power output in order to control power system voltages. It was found that with a local voltage

set point of 1.02 pu the WPP can bring the 220 kV voltage within code requirements at all

levels of active power generation.

Figure 8 – Light load Contingencies and positive Effect on Overvoltages

TUK wind farm lowers 220 kV

Existing high voltage when HLY-TWH out

(+10%)

Page 11: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

11

The Code does not require power stations to control the power system’s voltage when they

are not generating active power. It was found that when the WPP is operating in reactive

compensation mode with no active power generation, it could also bring the 220 kV voltage

within code requirements when it had a voltage set point of 1.02 pu (see figure 8). This

provides the opportunity for voltage support ancillary service revenue for the WPP, should the

TSO wish to maintain the Te Kowhai voltages within Code requirements. The TSO is

considering whether it will keep the 220 kV voltages within Code requirements by

contracting the WPP to provide voltage ancillary services.

A number of real system tests and actual faults have proven the responsiveness of the WPP

and its ability to control the remote 220 kV voltage in weak grid scenarios.

8 WIND POWER PLANT FREQUENCY RESPONSE

The WPP control system can modulate turbine pitch and therefore the active power as well, at

a very fast rate, allowing quick response to frequency deviations. Figure 9 shows a result from

an actual active power step response test. With sufficient wind, the WPP can step from zero

production to 90 % output within 6 seconds, from a 100 % power step order.

30 MW Manual Step

0

10

20

30

40

22

:22

:48

22

:22

:49

22

:22

:50

22

:22

:51

22

:22

:52

22

:22

:53

22

:22

:54

22

:22

:55

22

:22

:56

22

:22

:57

22

:22

:58

22

:22

:59

22

:23

:00

MW

PP1ActivePower PP1Pscheduled

Figure 9 – Actual Step Response to 30 MW Command from 0 MW

In order for WPPs to provide Instantaneous Reserves (IR), WPP generation is curtailed to

provide head room. This is not ideal with wind generation as this will result in loss of energy

revenue, however in order to enable high wind penetration levels, WPPs will need to provide

IR and frequency keeping services. IR and frequency keeping services earn revenue in the

ancillary services market.

The New Zealand government has a strategic goal to generate 90 % of NZ’s electricity from

renewable energy by 2025. It is probable that within ten years, North Island wind generation

levels may exceed 50 % of North Island load during light load periods. It is anticipated that

during these periods WPPs that are unable to provide ancillary services such as frequency and

voltage support will not be dispatched and conventional gas, hydro or coal plants that are able

Page 12: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

12

to provide ancillary services will be dispatched instead. The owners of these WPPs will suffer

significant commercial losses as wind penetration grows.

In order to achieve high penetrations of wind generation in New Zealand, WPPs are being

developed that provide frequency and voltage support ancillary services. Some pitch

controlled WTGs are able to provide superior frequency support services than conventional

generation due to their faster speed of response, and therefore WPP frequency support

services will add a useful diversity to the ancillary services market in future years.

The Te Uku WPP is equipped with a frequency governor. As WPP frequency governors were

new to NZ, the WPP owner engaged with the TSO to develop and agree the test procedure for

testing WPP governors on the NZ grid. A test plan was subsequently developed and followed.

Figure 10 shows the WPP response to a frequency step of +0.5 Hz. The WPP quickly

reduced its output. The WPP was then manually ramped up to pre-fault power levels and left

in frequency keeping mode with a delta, in order to regulate frequency continuously.

The frequency controller can operate in delta mode, where the active power output is curtailed

by an absolute value (a “delta”) below the calculated available output. When an under

frequency event occurs, the frequency controller uses the delta to stabilise the grid frequency

as in Figure 11.

Droop 4%, Deadband 0.03, +0.5Hz step

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

21:47:30 21:48:01 21:48:31 21:49:01 21:49:31 21:50:02 21:50:32 21:51:02

MW

48.5

48.6

48.7

48.8

48.9

49

49.1

49.2

49.3

49.4

49.5

49.6

49.7

49.8

49.9

50

50.1

50.2

50.3

50.4

50.5

50.6

Hz

PP1ActivePower PP1Frequency Figure 10 – Actual WPP Response to +0.5Hz step

The standard underfrequency characteristic for testing governor systems in NZ is Freq (t) =

49.25 + (0.75 - 0.8055 t ) e -0.1973 t [5]. This curve represents the typical response of the

Page 13: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

13

power system to a severe underfrequency event. A stepped composite of this curve (as shown

in figure 11) was used extensively during Te Uku governor tests. Figure 11 shows the WPPs

response to the frequency curve being injected into the WPP controls when the WPP had a

delta of 100 % and an available production level of approximately 62 MW.

Te Uku 14/09/2011

HPPP Frequency Response - Standard Underfrequency Curve Injection

Wind 14m/s, Droop 4%, Deadband +/-15mHz, Available Power approx 62MW

Frequency Sensitive Mode

-5.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

18:2

8:3

0

18:2

8:3

4

18:2

8:3

8

18:2

8:4

3

18:2

8:4

7

18:2

8:5

1

18:2

8:5

6

18:2

9:0

0

18:2

9:0

4

18:2

9:0

9

18:2

9:1

3

18:2

9:1

7

18:2

9:2

2

18:2

9:2

6

18:2

9:3

0

18:2

9:3

5

18:2

9:3

9

18:2

9:4

3

18:2

9:4

8

18:2

9:5

2

18:2

9:5

6

18:3

0:0

1

18:3

0:0

5

18:3

0:0

9

18:3

0:1

4

MW

47.4

47.6

47.8

48.0

48.2

48.4

48.6

48.8

49.0

49.2

49.4

49.6

49.8

50.0

50.2

Hz

PP1ActivePower PP1Frequency

Figure 11 – Governor response to standard under frequency test signal in delta control

It can be seen that the WPP can respond to an extreme underfrequency event by moving from

0 MW production to approximately 85 % power output in 4 seconds. In real system

underfrequency events however the response would be slightly different. During an event in

December 2011 the trip of the Huntly 220 kV bus with approximately 850 MW of generation

at Huntly power station caused the frequency to drop briefly to 47.5 Hz. The WPP was

operating without a delta but due to inertia being released from the turbines the WPP

increased its output by approximately 15 % for a few seconds. The WPP also assisted to

stabilise voltages in the region. It is therefore anticipated that the WPP would respond slightly

more quickly and with a higher initial output in a real underfrequency event of the magnitude

shown in Figure 11.

In March 2011 the WPP owner completed the commissioning of the final WTG at Te Uku

WPP and later in the same year completed commissioning tests sufficient for providing

frequency ancillary services in the NZ electricity market.

9 CONCLUSION

State-of-the-art Wind Turbine Generators and control systems at Te Uku wind farm have

resulted in excellent power quality within the Waikato power system, West of Hamilton.

Comprehensive power system studies were required to test and design the transmission

solution and the wind farm’s performance.

Page 14: ray.brown@meridianenergy.co.nz Te Uku Wind Farm – Planning

14

The wind farm has been designed to enable the provision of voltage and frequency response

ancillary services. Governor tests have proven the ability of the wind farm to govern, and

show promise for offering this ancillary service to the market. The wind farm’s no-wind

voltage response has shown its ability during actual events to keep remote grid voltages

within code compliance levels. Its performance in these areas provides an indication of the

opportunities available for ancillary services as wind’s participation in the market grows.

As more WPPs are developed that provide superior short term frequency support services

than conventional generation, wind farm frequency support services will add a useful

diversity to the ancillary services market.

BIBLIOGRAPHY

[1] Electricity Commission, Statement of Opportunities, 2010.

[2] New Zealand Ministry for the Environment, Major Design Features of the Emissions

Trading Scheme, Factsheet 16 INFO 318, 2008.

[3] Energy Link and MWH NZ, Wind Energy Integration in NZ, Ministry of Economic

Development and Energy Efficioency and Conservation Authority, 2005.

[4] R.W. Brown, West Wind, Grid Integration, and Keeping the Lights On, NZ Wind

Energy Association conference, 2010

[5] Transpower NZ Ltd, Companion Guide for Testing of Assets, 2010.