rapid&apoptosis&screening&with&orflo’s& moxi&flow

4
Orflo Application Note 7/2015 Rapid Apoptosis Screening with Orflo’s Moxi Flow Cytometer Greg Dittami and H.E. Ayliffe, Orflo Technologies, LLC Introduction Cellular apoptosis is a sophisticated mechanism employed by cells to carefully control death in response to cell injury. Commonly referred to as “programmed cell death,” apoptosis progresses through a systematic signaling cascade that results in characteristic, directed morphological and biochemical outputs in the cell. The overall outcome is a highly regulated cell death process that minimizes trauma to the cell’s extracellular environment. At a systemic level, the critical role of apoptosis is easily highlighted through its implication in hearing loss 1 , cardiovascular failure 2 , cancer progression 3 , neurodegenerative disorders 4 , and numerous other pathologies 5 . Correspondingly, scientific research has intently focused on revealing the underlying pathways of apoptosis, defining its external triggers, identifying therapeutic interventions, and further exploring the role of apoptosis in numerous pathologies. Furthermore, the monitoring of apoptosis has also been established as a key indicator in identifying the “biocompatibility” of pharmaceutics and other environmental conditions for cell systems. Concurrent with the increased interest in apoptosis monitoring, numerous assays have been created to quantify the expression of associated molecular targets such as phosphatidylserine (PS) externalization in the plasma membrane and caspase enzyme activation as well as other apoptotic characteristics including mitochondrial potential changes, chromatin condensation, and DNA fragmentation. However, these assays often require advanced technical expertise, costly instrumentation, and timeconsuming analysis using techniques such as western blot, ELISA, and flow cytometry. Here, we present the Orflo Moxi Flow system as a simple, rapid, and effective flow cytometric alternative to the existing methods for studying apoptosis. Specifically, the Moxi Flow is a portable flow cytometer that costs under $10,000, requires no warmup time, never requires cleaning or maintenance, performs tests in under 15 seconds, and requires minimaltono training. The Moxi Flow is the first flow cytometer to combine the Coulter Principle , for precise cell sizing and counts, with a simultaneous fluorescent measurements. The result is an affordable flow cytometer that delivers “Assays on Demand,” including apoptosis quantification. In this brief technical note, we demonstrate the versatility of the Moxi Flow in monitoring cellular apoptosis through two of the most common techniques: 1.) Fluorescently coupled Annexin V tagging of PS externalization on the plasma membrane and 2.) Fluorescent Labeled Inhibitors of Caspases (FLICA) detection of actived caspase enzymes. Fig. 1 – Orflo Technologies Moxi Flow System and dualuse flow cassette (inset). The Moxi Flow is the World’s first flow cytometer to combine the Coulter Principle for precise particle sizing and cell counts with a (single channel) fluorescence (PMT) measurement for “Assays on Demand”, including highly accurate PIbased viability and Annexin VPE apoptosis measurements.

Upload: others

Post on 15-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rapid&Apoptosis&Screening&with&Orflo’s& Moxi&Flow

     

O r f l o A p p l i c a t i o n N o t e 7 / 2 0 1 5

Rapid  Apoptosis  Screening  with  Orflo’s  Moxi  Flow  Cytometer  

Greg  Dittami  and  H.E.  Ayliffe,  Orflo  Technologies,  LLC  

 Introduction  

Cellular   apoptosis   is   a   sophisticated  mechanism   employed   by   cells   to   carefully  control   death   in   response   to   cell   injury.      Commonly   referred   to   as   “programmed   cell  death,”   apoptosis   progresses   through   a  systematic   signaling   cascade   that   results   in  characteristic,   directed   morphological   and  biochemical   outputs   in   the   cell.     The   overall  outcome   is   a   highly   regulated   cell   death  process   that   minimizes   trauma   to   the   cell’s  extracellular   environment.       At   a   systemic  level,   the   critical   role   of   apoptosis   is   easily  highlighted  through  its  implication  in  hearing  loss1,   cardiovascular   failure2,   cancer  progression3,   neurodegenerative   disorders4,  and   numerous   other   pathologies5.    Correspondingly,   scientific   research   has  intently   focused   on   revealing   the   underlying  pathways   of   apoptosis,   defining   its   external  triggers,   identifying   therapeutic  interventions,   and   further   exploring   the   role  of   apoptosis   in   numerous   pathologies.    Furthermore,  the  monitoring  of  apoptosis  has  also   been   established   as   a   key   indicator   in  identifying   the   “biocompatibility”   of  pharmaceutics   and   other   environmental  conditions  for  cell  systems.            

Concurrent   with   the   increased  interest   in   apoptosis   monitoring,   numerous  assays   have   been   created   to   quantify   the  expression   of   associated   molecular   targets  such   as   phosphatidylserine   (PS)  externalization   in   the  plasma  membrane  and  caspase   enzyme   activation   as   well   as   other  apoptotic   characteristics   including  mitochondrial   potential   changes,   chromatin  condensation,   and   DNA   fragmentation.      However,   these   assays   often   require  advanced   technical   expertise,   costly  instrumentation,   and   time-­‐consuming  analysis   using   techniques   such   as   western  blot,   ELISA,   and   flow   cytometry.     Here,   we  present   the   Orflo   Moxi   Flow   system   as   a  simple,   rapid,   and   effective   flow   cytometric  alternative   to   the   existing   methods   for  

studying   apoptosis.       Specifically,   the   Moxi  Flow   is   a   portable   flow   cytometer   that   costs  under   $10,000,   requires   no   warm-­‐up   time,  never   requires   cleaning   or   maintenance,  performs   tests   in   under   15   seconds,   and  requires   minimal-­‐to-­‐no   training.       The   Moxi  Flow   is   the   first   flow   cytometer   to   combine  the   Coulter   Principle   ,   for   precise   cell   sizing  and   counts,   with   a   simultaneous   fluorescent  measurements.     The   result   is   an   affordable  flow   cytometer   that   delivers   “Assays   on  Demand,”   including   apoptosis   quantification.      In   this   brief   technical   note,   we   demonstrate  the  versatility  of  the  Moxi  Flow  in  monitoring  cellular   apoptosis   through   two   of   the   most  common   techniques:     1.)   Fluorescently-­‐coupled   Annexin   V   tagging   of   PS  externalization  on  the  plasma  membrane  and  2.)  Fluorescent  Labeled  Inhibitors  of  Caspases  (FLICA)   detection   of   actived   caspase-­‐enzymes.        

Fig.   1   –  Orflo  Technologies  Moxi  Flow  System  and   dual-­‐use   flow   cassette   (inset).     The  Moxi  Flow   is   the   World’s   first   flow   cytometer   to  combine   the   Coulter   Principle   for   precise  particle   sizing   and   cell   counts   with   a   (single-­‐channel)  fluorescence  (PMT)  measurement  for  “Assays  on  Demand”,  including  highly  accurate  PI-­‐based  viability  and  Annexin  V-­‐PE  apoptosis  measurements.    

Page 2: Rapid&Apoptosis&Screening&with&Orflo’s& Moxi&Flow

     

O r f l o A p p l i c a t i o n N o t e 7 / 2 0 1 5

Methods    Cell  Culture  

Jurkat   E6-­‐1   (ATCC)   were   cultured  (37°C,   5%  CO2)   in  RPMI-­‐1640   supplemented  with   10%   FBS,   1mM     Sodium   Pyruvate,   and  10mM  HEPES  (all  Life  Tech.).      For  apoptosis  induction,   500µL   of   1mM   camptothecin  (Tocris)   stock   (in  DMSO)  was  added   to  10ml  of   culture   media.       4.5mL   of   the   Jurkat  suspension   was   then   added   (30µM   final  camptothecin).     For   the   negative   control,  DMSO  was  substituted  for  camptothecin.  

 PE-­‐Annexin  V  Assay  

Cells  were  labeled  with  Annexin  V-­‐PE  (BioLegend),  following  Orflo’s  Moxi  Flow  Apoptosis  (PE-­‐Annexin  V)  and  Viability  (PI)  –Staining  Protocol.      After  preparation,  cells  were  run  on  the  Moxi  Flow  (Orflo  Tech.)  system  using  the  Apoptosis  Assay.      A  separate  sample  was  stained  with  Moxi  Cyte  Viability  Kit  (Orflo  Tech.)  following  the  manufacturers  protocol  for  determination  of  viability  using  the  Viability  Assay  on  the  Moxi  Flow.        For  the  time-­‐course  data,  cells  were  assayed  on  the  Moxi  Flow  at  ten  discrete  time  points  over  a  ~10hr  period.    Three  measurements  were  made  at  each  time  point.    SR-­‐FLICA  Caspase  3/7  Assay  

Jurkat  E6-­‐1  (ATCC)  cells  were  induced  to   apoptosis   with   30µM   camptothecin   as  described  above.    After  a  six  hour   incubation  period,   the   cells   were   labeled   with   a  sulforhodamine(SR)-­‐FLICA   Caspase-­‐3/7  Assay   Kit   (ImmunoChemistry   Tech.)  following   the   manufacturer’s   protocol.       A  separate,  PE-­‐Annexin  V  sample  was  prepared  (as   described   above)   for   direct   comparison  purposes.    Results  and  Discussion  

The  Moxi  Flow  (Figure  1)  is  a  flow  cytometer  with  a  532nm  (green)  laser  and  590/40nm    PMT  collection  filter,  tailored    for  capturing  emission  from  Phycoerythrin  (PE)  and  Propidium  Iodide  (PI).    At  the  core  of  the  system  is  a  disposal  flow  cell  cassette  (Figure  1  –  inset)  that  precisely  counts  and  sizes  particles  (Coulter  Principle)  and  exactly  measures  fluidic  volume.    Because  the  entire  test  is  performed  on-­‐cassette,  no  fluid  enters  the  system,  obviating  the  need  for  time-­‐consuming  cleaning,  disinfecting,  and  shutdown  procedures.      Furthermore,  the  microfluidic  architecture  eliminates  the  need  for  the  cost  and  complexity  associated  with  

sheath  fluid  use  in  standard  systems.    Finally,  the  system’s  small  footprint  ensures  portability  to  place  anywhere  in  the  lab,  including  culture  hoods.      

 

Fig.   2   –  Moxi  Flow  results   for  a  Camptothecin  (30µM,   6hr)   treated   Jurkat   sample.   (a)     SR-­‐FLICA   labeled   cells   (b)   PE-­‐Annexin   V   labeled  cells     (c)    Moxi  Cyte  Viability  Kit   labeled  Cells.    Data   is   presented   as   fluorescence   vs   size  scatter   plots   (left)   and   fluorescence-­‐only  histograms  (right).        

Page 3: Rapid&Apoptosis&Screening&with&Orflo’s& Moxi&Flow

     

O r f l o A p p l i c a t i o n N o t e 7 / 2 0 1 5

Two  well-­‐characterized,  early-­‐stage  markers  in  the  cellular  apoptosis  progression  are  the  activation  of  caspase  enzymes,  involved  in  the  signaling  cascade,  and  the  translocation  of  the  membrane  phospholipid,  phosphatidylserine  (PS),  from  the  inner  to  the  outer  leaflet  of  the  plasma  membrane.      The  data  shown  in  Figure  2  highlight  the  ability  of  the  Moxi  Flow  to  track  and  quantify  each  event  in  a  cell  sample.      Figure  2a)  shows  the  results  of  camptothecin-­‐treated  Jurkat  cells  labeled  with  a  SB-­‐FLICA  probes.    The  FLICA  approach  entails  of  using  fluorophore-­‐coupled,  membrane  permeable  peptide  sequences  that  covalently  bond  only  to  activated  caspase  enzymes.    Following  a  wash  of  the  cell  sample,  cells  with  elevated  levels  of  these  activated  caspases  (apoptotic  cells)  separate  out  fluorescently  from  non-­‐apoptotic  cells.    The  data  in  Figure  2a.)  show  

specific  labeling  of  caspase-­‐3  and  caspase-­‐7  enzymes  with  a  clear  separation  in  the  apoptotic  cell  population.      In  Figure  2b),  the  PS  translocation  event  is  detected  on  the  same  sample  by  targeting  it  with  a  PE-­‐conjugated  Annexin  V  probe,  a  cellular  protein  with  a  high-­‐affinity  for  PS.    Because  the  Annexin  V  probe  is  cell-­‐impermeant,  only  cells  with  apoptosis-­‐induced  exposure  of  PS,  or  cells  with  compromised  membranes  (necrotic  cells),  are  labeled  with  this  probe.    As  can  be  seen  in  Figure  2b,  this  Annexin  V+  population  readily  separates  from  the  Annexin  V-­‐  cell  group.    The  percentages  of  the  two  methods  (SR-­‐FLICA    and  PE-­‐Annexin  V),  correlate  well  (56%  and  62%  respectively)  as  would  be  expected.      As  a  final  step,  a  quick  (5min,  PI)  viability  assay  was  used  to  determine  the  sub-­‐population/percentage  of  necrotic  cells  that  contributed  to  the  

 

Fig.  3  –    Time-­‐course  of  apoptosis  induction  Jurkat  cells.    Apoptosis  was  measured  with  PE-­‐Annexin  V  at  ten   discrete   time   points   (n=3)   for   a   Camptothecin-­‐treated   (30µM)   sample   and   a   control   (DMSO   only)  sample.   (Inset)   shows   corresponding   viability  measurement   (PI-­‐permeability)   of   each   sample   over   the  same  time  course.    

Page 4: Rapid&Apoptosis&Screening&with&Orflo’s& Moxi&Flow

     

O r f l o A p p l i c a t i o n N o t e 7 / 2 0 1 5

apoptotic  positive  populations  in  both  assays.    The  early-­‐stage  apoptotic  cell  percentage  could  then  be  readily  calculated  through  a  simple  subtraction  of  the  PI+  cell  percentage  from  the  Annexin  V+  percentage.  

 Because  of  the  ease-­‐of-­‐use,  rapid  test  and  operation  time,  and  convenience  of  the  Moxi  Flow,  it  is  uniquely  suited  to  collection  of  kinetic  data.    Figure  3  shows  the  application  of  the  Moxi  Flow  to  the  measurement  (PS  expression  using  PE-­‐Annexin  V)  of  the  time-­‐course  of  apoptosis  induction    with  the  drug  camptothecin.      The  red  curve  shows  the  classic  activation  curve  of  capmtothecin-­‐induced  apoptosis  induction,  readily  fit  with  a  Hill  Equation  to  extract  the  activation  kinetics  (base=5.6%,  max=85%,  rate=9%/hr,  half  time=5.7hr).    The  negative  control  (blue)  shows  the  expected  slight,  linear  drift  in  apoptosis  expected  for  cells  maintained  in  experiment  culture  conditions.      Separately,  at  each  time  point,  measurements  of  sample  viability  were  taken  for  each  sample  (Fig.  3  inset),  confirming  that  both  samples  exhibited  viabilities  >  97%  throughout  the  course  of  the  experiment,  assuring  a  minimal  and  consistent  contribution  of  necrotic  cells  to  the  overall  Annexin  V+  population.      Conclusions  

The  data   in   this   technical  note  shows  the  versatility  of  the  Moxi  Flow  in  monitoring  and   quantifying   apoptosis   by   using   both   the  PE-­‐Annexin   V   assay   and   SR-­‐FLICA  approaches.    With  its  small  footprint,  fast  test  

times,   instant  warm-­‐up,   and   lack   of   cleaning  and  maintenance,   the  Moxi   Flow   is   uniquely  suited   to   enabling   apoptosis   studies   with  immediate   and   accurate   assays-­‐on-­‐demand.    Furthermore,   the   Moxi   Flow   distinguishes  itself   from   traditional   flow   systems   with   its  portability,   low   cost   ($10,000),   and   a  minimal-­‐to-­‐no   training   requirement.     These  features   should   establish   the  Moxi   Flow  as   a  staple   in   any   lab   performing   routine  apoptosis  and  viability  analysis.    References  

 1. Teru  Kamogashira,  Chisato  Fujimoto,  and  

Tatsuya  Yamasoba,  “Reactive  Oxygen  Species,  Apoptosis,  and  Mitochondrial  Dysfunction  in  Hearing  Loss,”  BioMed  Research  International,  v.  2015,  Article  ID  617207,  7  pages,  2015  

2. Peter   M.   Kang   and   Seigo   Izumo,  “Apoptosis   and  Heart   Failure   –  A   Critical  Review   of   the   Literature,”   Circulation  Research,  2000,  v86,  1107-­‐1113  

3. Scott   W.   Lowe   and   Athena   W.   Lin,  “Apoptosis   in   Cancer,”,   Carcinogenesis,  2000,  v21(3),  485-­‐495.  

4. Mark   P.   Mattson,   “Apoptosis   in  Neurodegenerative   Disorders,”   Nature,  Nov.  2000,  v1,  120-­‐129.  

5. B.  Favaloro,  N.  Allocati,  V.  Graziano,  C.  Di  Iio,  and  V.  De  Laurenzi,  “Role  of  Apoptosis  in  Disease,”  Aging,  May  2012,  v4(5),  330-­‐349.