quiet-sun magnetism - probing deep photospheric layers ... · quiet-sun magnetism probing deep...

48
Quiet-Sun Magnetism Probing Deep Photospheric Layers with High Magnetic Sensitivity Andreas Lagg and the GREGOR/GRIS team 1 Max-Planck-Institut f ¨ ur Sonnensystemforschung ottingen, Germany 1 Kiepenheuer Institut f ¨ ur Sonnenphysik (KIS), Freiburg; Leibniz-Institut f¨ ur Astrophysik Potsdam (AIP); Germany Instituto de Astrof´ ısica de Canarias (IAC), Tenerife, Spain Hinode-10 Meeting Nagoya Sep-05 2016 1 / 31 1

Upload: vankien

Post on 12-Nov-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • Quiet-Sun MagnetismProbing Deep Photospheric Layers with High Magnetic Sensitivity

    Andreas Laggand the GREGOR/GRIS team1

    Max-Planck-Institut fur SonnensystemforschungGottingen, Germany

    1 Kiepenheuer Institut fur Sonnenphysik (KIS), Freiburg; Leibniz-Institut fur Astrophysik Potsdam (AIP); Germany

    Instituto de Astrofsica de Canarias (IAC), Tenerife, Spain

    Hinode-10 Meeting

    NagoyaSep-05 2016

    1 / 311

  • Motivation

    RelevanceQS magnetism covers>90% of solar surface(even during maxima);15% in inter-networkcrucial to understandthe solar globalmagnetisme.g. origin:local (surface) dynamoor cascade from globaldynamo?

    2 / 31M. Rempel (MURaM)

  • Controversial Findings Strength: few Gauss 200 Gauss kilo-Gauss?

    Summary angular distributions (Tab. 2 from Steiner & Rezaei, 2012)

    4 / 311

    2

    1

    2

  • Controversial Findings Strength: few Gauss 200 Gauss kilo-Gauss?

    Summary of observations

    5 / 31

  • Controversial Findings Strength: few Gauss 200 Gauss kilo-Gauss?

    Summary of observations

    5 / 31

  • Reasons for Non-Conclusive Results Low B weak signals

    Reason 1: Sensitivity of polarimeters

    B=50G, INC=70 deg

    Wavelength []

    0.40.60.81.0

    I

    0.00100.0005

    0.00000.00050.0010

    Q/I C

    6301.0 6301.5 6302.0 6302.5 6303.00.0040.002

    0.0000.0020.004

    V/I C

    Fe1 Fe1Fe1 Fe1

    6 / 31

  • Reasons for Non-Conclusive Results Low B weak signals

    Reason 1: Sensitivity of polarimeters

    B=50G, INC=70 deg

    Wavelength []

    0.40.60.81.0

    I

    0.00100.0005

    0.00000.00050.0010

    Q/I C

    6301.0 6301.5 6302.0 6302.5 6303.00.0040.002

    0.0000.0020.004

    V/I C

    Fe1 Fe1Fe1 Fe1

    6 / 31

    add noise: 103IC

  • Reasons for Non-Conclusive Results Low B weak signals

    Reason 1: Sensitivity of polarimeters

    B=50G, INC=70 deg

    Wavelength []

    0.40.60.81.0

    I

    0.00100.0005

    0.00000.00050.0010

    Q/I C

    6301.0 6301.5 6302.0 6302.5 6303.00.0040.002

    0.0000.0020.004

    V/I C

    Fe1 Fe1Fe1 Fe1

    6 / 31

    add noise: 103IC

  • Reasons for Non-Conclusive Results Difference: Sensitivity to B and B||

    Reason 2: Bias introduced by Zeeman effect

    B=50G, INC=70 deg

    Wavelength []

    0.40.60.81.0

    I

    0.00100.0005

    0.00000.00050.0010

    Q/I C

    6301.0 6301.5 6302.0 6302.5 6303.00.0040.002

    0.0000.0020.004

    V/I C

    Fe1 Fe1Fe1 Fe1

    7 / 31

    add noise: 103IC

    Stenflo (2013) noise leads to more horizontal fields apparent flux: 25 higher in Bh

  • Reasons for Non-Conclusive Results Cancellation & Methods

    Reasons 3+4: Cancellation & Methods

    Signal cancellationinsufficient spatial resolution for Zeemandiagnostics

    500 km

    Analysis methodsZeeman vs. Hanleselection of profiles(-level)inversions

    ME vs. height dependentfilling factor

    direct techniques (e.g. lineratio)

    8 / 31Hinode GREGOR / Solar-C

  • Reasons for Non-Conclusive Results Cancellation & Methods

    Reasons 3+4: Cancellation & Methods

    Signal cancellationinsufficient spatial resolution for Zeemandiagnostics

    500 km

    Analysis methodsZeeman vs. Hanleselection of profiles(-level)inversions

    ME vs. height dependentfilling factor

    direct techniques (e.g. lineratio)

    8 / 31Hinode GREGOR / Solar-C

  • Reasons for Non-Conclusive Results Height dependence of Bv vs. Bh

    Reason 5: Height dependent Bv & Bh

    Bv vs. Bhdepends strongly on

    spectral line selectionanalysis method (heightdependent inversion vs. ME)heliocentric angle (higheropacity at limb)

    small scale dynamo

    MHD: P() sin (e.g. Vogler & Schussler, 2007)height dependent(Rempel, 2014) Rempel (2014)

    9 / 31

  • Dilemma: How to solve the controversies?

    Possible solutions?

    Increase spatial resolutionlarger telescope aperture

    Increase signal/noise ratiomore photonsbetter polarimetermore sensitive spectral lines

    Remove height biasselect lines with narrow and knownformation heightincrease height resolution

    Remove model ambiguitiesselect simple, bias-free analysismethod without

    10 / 31

  • GREGOR/GRIS Observations

    Recent results from GREGOR / GRIS

    11 / 31

  • GREGOR/GRIS Observations

    GREGOR Infrared Spectrograph (GRIS; Collados et al., 2012)

    GRIS fact sheetWL-range 12.3msensitivity < 104

    / 120 000 (@1.56m)mounted at 1.5 m GREGORtelescope0.180.30 resolution

    12 / 31

  • GRIS Data Fe I @ 1.56 m

    Scan of quiet sun region (2015-Sep-17)

    FFT rebinned:0.135 pixelsize

    0.20 pixelsize(seeing limited: 0.40)

    noise level reduction:4 104 IC

    2.7 104 IC no loss in spatial

    resolution

    spectral binning

    2 (oversampling)

    2.1 104 IC

    02468

    1012

    02468

    1012

    02468

    1012

    0 10 20 30 4002468

    1012

    0.96

    0.99

    1.02

    1.05

    Sto

    kes

    I

    0.0020.0010.000

    0.001

    0.002

    Sto

    kes

    Q

    0.0020.0010.000

    0.001

    0.002

    Sto

    kes

    U

    0.0025

    0.0000

    0.0025

    Sto

    kes

    V

    x [arcsec]

    y[a

    rcse

    c]

    13 / 311

    2

    3

  • S/N Ratios Comparison to Hinode SOT/SP

    Comparison: GRIS vs. SOT/SP: Stokes Maps

    02468

    1012

    02468

    1012

    02468

    1012

    0 10 20 30 4002468

    1012

    0.96

    0.99

    1.02

    1.05

    Sto

    kes

    I

    0.0020.0010.000

    0.001

    0.002

    Sto

    kes

    Q

    0.0020.0010.000

    0.001

    0.002

    Sto

    kes

    U

    0.0025

    0.0000

    0.0025

    Sto

    kes

    V

    x [arcsec]

    y[a

    rcse

    c]

    02468

    1012

    02468

    1012

    02468

    1012

    0 10 20 30 4002468

    1012

    0.88

    0.96

    1.04

    1.12

    Sto

    kes

    I

    0.0025

    0.0000

    0.0025

    Sto

    kes

    Q

    0.0025

    0.0000

    0.0025

    Sto

    kes

    U

    0.005

    0.000

    0.005

    Sto

    kes

    V

    x [arcsec]

    y[a

    rcse

    c]

    14 / 31

    GREGOR/[email protected], 0.40 Hinode SOT/SP (deep 12.8s)

  • S/N Ratios Comparison to Hinode SOT/SP

    Comparison: GRIS vs. SOT/SP: LP/CP Coverage

    0

    2

    4

    6

    8

    10

    12

    0 10 20 30 400

    2

    4

    6

    8

    10

    12

    x [arcsec]

    y[a

    rcse

    c]

    15 / 31

    V

    3Q,U

    3Q,U,V

    3

    GR

    EG

    OR

    /GR

    IS4.

    8s,

    0. 4

    0,21

    04

    Hin

    ode

    SO

    T/S

    P12

    .8s,

    0. 4

    0,71

    04

  • S/N Ratios Comparison to Hinode SOT/SP

    Stokes signal levels

    Comparison GRIS Hinode SOT/SP

    - GRIS [%] LP LP SOT/SP [%] LP LPlevel and or and or

    LP CP CP CP LP CP CP CP3 39.7 73.0 33.1 79.7 9.8 49.3 7.7 51.44 18.4 57.0 13.9 61.5 4.2 37.1 3.1 38.25 9.2 44.2 6.2 47.2 2.1 28.5 1.5 29.1

    16 / 31

  • Magnetic Line Ratios (MLRs) The principle

    Simple diagnostic techniques: MLR - field strength

    Magnetic Line Ratio (Solanki et al., 1992)

    MLR =geff(15652)Vmax(15648)g(15648)Vmax(15652)

    Requirements:spectral lines identical except for Lande factor2 distinct components:(1) magnetized, (2) field-freesmall gradients in log

    not fulfilled for Fe I 1.56 line pair

    BUT: similar formation height, narrowformation height range, similar thermalproperties

    17 / 31

  • Magnetic Line Ratios (MLRs) The principle

    Simple diagnostic techniques: MLR - field strength

    Magnetic Line Ratio (Solanki et al., 1992)

    MLR =geff(15652)Vmax(15648)g(15648)Vmax(15652)

    Requirements:spectral lines identical except for Lande factor2 distinct components:(1) magnetized, (2) field-freesmall gradients in log

    not fulfilled for Fe I 1.56 line pair

    BUT: similar formation height, narrowformation height range, similar thermalproperties

    17 / 31

  • Magnetic Line Ratios (MLRs) The principle

    Simple diagnostic techniques: MLR - field strength

    Magnetic Line Ratio (Solanki et al., 1992)

    MLR =geff(15652)Vmax(15648)g(15648)Vmax(15652)

    Requirements:spectral lines identical except for Lande factor2 distinct components:(1) magnetized, (2) field-freesmall gradients in log

    not fulfilled for Fe I 1.56 line pair BUT: similar formation height, narrow

    formation height range, similar thermalproperties

    17 / 31

  • Magnetic Line Ratios (MLRs) Profile selection

    MLR analysis - select normal profiles

    Stok

    es V

    noise threshold 3 small amplitude asym. a small area asym. A

    (43.7% of the profiles)

    18 / 31

  • Magnetic Line Ratios (MLRs) Profile selection

    MLR analysis - select normal profiles

    Stok

    es V

    noise threshold 3

    small amplitude asym. a small area asym. A

    (43.7% of the profiles)

    18 / 31

  • Magnetic Line Ratios (MLRs) Profile selection

    MLR analysis - select normal profiles

    Stok

    es V

    noise threshold 3 small amplitude asym. a

    small area asym. A

    (43.7% of the profiles)

    18 / 31

  • Magnetic Line Ratios (MLRs) Profile selection

    MLR analysis - select normal profiles

    Stok

    es V

    noise threshold 3 small amplitude asym. a small area asym. A

    (43.7% of the profiles)

    18 / 31

  • Magnetic Line Ratios (MLRs) Profile selection

    MLR analysis - select normal profiles

    Stok

    es V

    noise threshold 3 small amplitude asym. a small area asym. A

    (43.7% of the profiles)18 / 31

  • Magnetic Line Ratios (MLRs) Profile selection

    Stokes Profiles: Red: MLR0.6, large Vmax, Yellow 3: MLR0.6, small Vmax

    19 / 31

    yellow: V 3

  • Magnetic Line Ratios (MLRs) Profile selection

    Stokes Profiles: Red: MLR0.6, large Vmax, Yellow 3: MLR0.6, small Vmax

    MLR ~ 0.6

    19 / 31

    yellow: V 3

  • Magnetic Line Ratios (MLRs) MLRs for Fe I 15648 / Fe I 15652

    MLR Fe I 15648 / Fe I 15652

    0.002 0.004 0.006 0.008 0.010 0.012 0.014Vmax(15648.5)

    0123probability density [%]

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.01.

    53V

    max

    (156

    48.5

    )/3.

    00V

    max

    (156

    52.9

    )

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    prob

    abili

    tyde

    nsity

    [%]

    20 / 31

  • Magnetic Line Ratios (MLRs) MLRs for Fe I 15648 / Fe I 15652

    Different MLR regions

    0.002 0.004 0.006 0.008 0.010 0.012 0.014Vmax(15648.5)

    3.0

    0123probability density [%]

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.01.

    53V

    max

    (156

    48.5

    )/3.

    00V

    max

    (156

    52.9

    )

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    prob

    abili

    tyde

    nsity

    [%]

    21 / 311

    2

  • Magnetic Line Ratios (MLRs) MLRs for Fe I 15648 / Fe I 15652

    Different MLR regions

    0.002 0.004 0.006 0.008 0.010 0.012 0.014Vmax(15648.5)

    3.0

    0123probability density [%]

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.01.

    53V

    max

    (156

    48.5

    )/3.

    00V

    max

    (156

    52.9

    )

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    prob

    abili

    tyde

    nsity

    [%]

    21 / 31

    Blue Region:MLR1.2, small Vmax

    Yellow Region:MLR0.6, small Vmax

    Green Region:MLR1.2, large Vmax

    Red Region:MLR0.6, large Vmax

    1

    2

  • Magnetic Line Ratios (MLRs) MLRs for Fe I 15648 / Fe I 15652

    Different MLR regions

    0.002 0.004 0.006 0.008 0.010 0.012 0.014Vmax(15648.5)

    3.0

    0123probability density [%]

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.01.

    53V

    max

    (156

    48.5

    )/3.

    00V

    max

    (156

    52.9

    )

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    prob

    abili

    tyde

    nsity

    [%]

    21 / 31

    Blue Region:MLR1.2, small Vmax

    Yellow Region:MLR0.6, small Vmax

    Green Region:MLR1.2, large Vmax

    Red Region:MLR0.6, large Vmax

    1

    2

  • Magnetic Line Ratios (MLRs) MLRs for Fe I 15648 / Fe I 15652

    Different MLR regions

    0.002 0.004 0.006 0.008 0.010 0.012 0.014Vmax(15648.5)

    3.0

    0123probability density [%]

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.01.

    53V

    max

    (156

    48.5

    )/3.

    00V

    max

    (156

    52.9

    )

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    prob

    abili

    tyde

    nsity

    [%]

    21 / 31

    Blue Region:MLR1.2, small Vmax

    Yellow Region:MLR0.6, small Vmax

    Green Region:MLR1.2, large Vmax

    Red Region:MLR0.6, large Vmax

    1

    2

  • Magnetic Line Ratios (MLRs) MLRs for Fe I 15648 / Fe I 15652

    Different MLR regions - Where?

    0 10 20 30 40 5002468

    1012

    y[a

    rcse

    c]

    0 10 20 30 40 50x [arcsec]

    02468

    1012

    y[a

    rcse

    c]

    0.940.960.981.001.021.041.06

    I c

    0.00450.00300.00150.00000.00150.00300.0045

    V

    0 10 20 30 4002468

    1012

    0.96

    0.99

    1.02

    1.05

    Sto

    kes

    I

    x [arcsec]

    y[a

    rcse

    c]

    22 / 31MLR1.2, small Vmax (hG) MLR1.2, large Vmax (hG) MLR0.6, small Vmax (kG) MLR0.6, large Vmax (kG)

  • Magnetic Line Ratios (MLRs) MLRs for Fe I 15648 / Fe I 15652

    Different MLR regions - Where?

    0 10 20 30 40 5002468

    1012

    y[a

    rcse

    c]

    0 10 20 30 40 50x [arcsec]

    02468

    1012

    y[a

    rcse

    c]

    0.940.960.981.001.021.041.06

    I c

    0.00450.00300.00150.00000.00150.00300.0045

    V

    0 10 20 30 4002468

    1012

    0.96

    0.99

    1.02

    1.05

    Sto

    kes

    I

    x [arcsec]

    y[a

    rcse

    c]

    22 / 31MLR1.2, small Vmax (hG) MLR1.2, large Vmax (hG) MLR0.6, small Vmax (kG) MLR0.6, large Vmax (kG)MLR1.2, small Vmax (hG) MLR1.2, large Vmax (hG) MLR0.6, small Vmax (kG) MLR0.6, large Vmax (kG)

  • Magnetic Line Ratios (MLRs) MLRs for Fe I 15648 / Fe I 15652

    Different MLR regions - Where?

    0 10 20 30 40 5002468

    1012

    y[a

    rcse

    c]

    0 10 20 30 40 50x [arcsec]

    02468

    1012

    y[a

    rcse

    c]

    0.940.960.981.001.021.041.06

    I c

    0.00450.00300.00150.00000.00150.00300.0045

    V

    0 10 20 30 4002468

    1012

    0.96

    0.99

    1.02

    1.05

    Sto

    kes

    I

    x [arcsec]

    y[a

    rcse

    c]

    22 / 31MLR1.2, small Vmax (hG) MLR1.2, large Vmax (hG) MLR0.6, small Vmax (kG) MLR0.6, large Vmax (kG)MLR1.2, small Vmax (hG) MLR1.2, large Vmax (hG) MLR0.6, small Vmax (kG) MLR0.6, large Vmax (kG)

    some kG patches (red); surrounded by yellow halo; ubiquitous weak fields (green & blue)

  • MHD-Simulation Comparison Small scale dynamo run & IMaX run

    Test using MHD Quiet Sun simulations (SSD+IMaX run)

    23 / 31

    0 5 10 15 200

    5

    10

    15

    0 5 10 15 200

    5

    10

    15

    0.88

    0.96

    1.04

    1.12

    Sto

    kes

    I

    0

    400

    800

    1200

    mag

    netic

    field

    stre

    ngth

    [G]

    log

    =(

    0.2,0.8

    )

    x [arcsec]

    y[a

    rcse

    c]

    MHD simulations: SSD+IMaX runRempel (2014): O16bMRiethmuller et al. (2016)

  • MHD-Simulation Comparison Small scale dynamo run & IMaX run

    Test using MHD Quiet Sun simulations (SSD+IMaX run)

    23 / 31

    0 5 10 15 200

    5

    10

    15

    0 5 10 15 200

    5

    10

    15

    0.96

    0.99

    1.02

    1.05

    Sto

    kes

    I

    0

    400

    800

    1200

    mag

    netic

    field

    stre

    ngth

    [G]

    log

    =(

    0.2,0.8

    )

    x [arcsec]

    y[a

    rcse

    c]

    spatial degrading

    GREGOR-PSF + 0.25 Gaussian +Lorentzian wings

    match contrast, resolution, Ic histogram

    spectral degrading

    12% straylight

    150 mA Gauss

    MLR1.2, small Vmax (hG) MLR1.2, large Vmax (hG) MLR0.6, small Vmax (kG) MLR0.6, large Vmax (kG)

  • MHD-Simulation Comparison Small scale dynamo run & IMaX run

    MLR (SSD + IMaX run, degraded)

    0.002 0.004 0.006 0.008 0.010 0.012 0.014Vmax(15648.5)

    3.0

    0123probability density [%]

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.01.

    53V

    max

    (156

    48.5

    )/3.

    00V

    max

    (156

    52.9

    )

    0

    500

    1000

    1500

    2000

    mag

    netic

    field

    stre

    ngth

    [G]

    24 / 311

  • MHD-Simulation Comparison Small scale dynamo run & IMaX run

    MLR (SSD + IMaX run, degraded)

    0.002 0.004 0.006 0.008 0.010 0.012 0.014Vmax(15648.5)

    3.0

    0123probability density [%]

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.01.

    53V

    max

    (156

    48.5

    )/3.

    00V

    max

    (156

    52.9

    )

    0

    500

    1000

    1500

    2000

    mag

    netic

    field

    stre

    ngth

    [G]

    24 / 31

    Blue Region:MLR1.2, small Vmax

    Yellow Region:MLR0.6, small Vmax

    Green Region:MLR1.2, large Vmax

    Red Region:MLR0.6, large Vmax

    1

  • MHD-Simulation Comparison Small scale dynamo run & IMaX run

    B strength (SSD + IMaX run)

    0 500 1000 1500 2000 2500magnetic field strength [G]

    100

    101

    102pr

    obab

    ility

    dens

    ity[%

    ]

    0.40MLR 0.850.90MLR 1.60

    25 / 31

  • LP/CP ratio The principle

    Simple diagnostic techniques: LP/CP - inclination

    LP/CP ratio (Solanki et al.,1992)

    LP/CP =

    Q2max + U2max

    Vmax

    1 depends only on ifB sufficiently strong( 1 kG)small gradients

    2 depends on and B forweaker fields

    0.7

    0.8

    0.9

    1.0

    I

    0.001

    0.000

    0.001

    Q

    0.001

    0.000

    0.001

    U

    15650 15655 15660 15665

    wavelength []

    0.020.01

    0.00

    0.01

    0.02

    V

    26 / 31

  • LP/CP ratio LP/CP for Fe I 15648

    GRIS: LP/CP for Fe I 15648

    0.002 0.004 0.006 0.008 0.010 0.012 0.014Vmax(15648.5)

    0246probability density [%]

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Q

    2+

    U2 /

    V(1

    5648

    .5)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    prob

    abili

    tyde

    nsity

    [%]

    27 / 31

  • LP/CP ratio LP/CP for Fe I 15648

    MHD (SSD+IMaX, degraded): LP/CP for Fe I 15648

    0.002 0.004 0.006 0.008 0.010 0.012 0.014Vmax(15648.5)

    02468probability density [%]

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Q

    2+

    U2 /

    V(1

    5648

    .5)

    0

    20

    40

    60

    80

    mag

    netic

    field

    incl

    inat

    ion

    []

    28 / 31

  • LP/CP ratio LP/CP for Fe I 15648

    B inclination (SSD + IMaX run)

    0 20 40 60 80 100 120 140 160 180inclination angle []

    0

    2

    4

    6

    8

    10

    12

    14pr

    obab

    ility

    dens

    ity[%

    ]

    0.40MLR 0.850.90MLR 1.60isotropic

    sin()3.22

    29 / 31

  • Summary

    Summary: Quiet Sun Stokes Profiles

    Noise Statistics: GRISHinodenoise level 2.1 104 0.40)TP: 80% above 3(cf. Hinode 12.8 s scan:51%)CP: 73% above 3(cf. Hinode 12.8 s scan:49%)LP: 40% above 3(cf. Hinode 12.8 s scan:10%)

    more reliable inversions arenow possible

    MLR & LP/CP ratio

    some kG patches resolved (vertical fields)PSF-ring around kG patcheshG patches ubiquitousgood agreement with SSD runs some kG patches missing

    Proper PSF deconvolution critical for correctinterpretation of results!

    Future instrumental improvementsGREGOR/GRIS: reach diffraction limitSunrise III: increase height resolution

    30 / 31

  • Summary

    Bibliography

    Asensio Ramos, A. 2009, ApJ, 701, 1032

    Asensio Ramos, A. & Martnez Gonzalez, M. J.2014, A&A, 572, A98

    Asensio Ramos, A. & Trujillo Bueno, J. 2005,ApJL, 635, L109

    Asensio Ramos, A., Trujillo Bueno, J., & LandiDeglInnocenti, E. 2008, ApJ, 683, 542

    Berdyugina, S. V. & Fluri, D. M. 2004, A&A,417, 775

    Bommier, V., et al. 2005, A&A, 432, 295

    Borrero, J. M. & Kobel, P. 2013, A&A, 550, A98

    Buehler, D., Lagg, A., & Solanki, S. K. 2013,A&A, 555, A33

    Collados, M., et al. 2012, AstronomischeNachrichten, 333, 872

    Danilovic, S., van Noort, M., & Rempel, M.2016, A&A, submitted

    Faurobert, M., et al. 2001, A&A, 378, 627

    Faurobert-Scholl, M., et al. 1995, A&A, 298,289

    Ishikawa, R. & Tsuneta, S. 2011, ApJ, 735, 74Kleint, L., et al. 2010, A&A, 524, A37Lagg, A., et al. 2009, in ASP Conf. Ser., Vol.

    415, The Second Hinode Science Meeting:Beyond Discovery-Toward Understanding,ed. Lites, B., et al., 327

    Lites, B. W., et al. 2008, ApJ, 672, 1237Martnez Gonzalez, M. J., et al. 2008, A&A,

    479, 229Martnez Gonzalez, M. J., et al. 2016, A&A

    GREGOR issue, acceptedOrozco Suarez, D. & Bellot Rubio, L. R. 2012,

    ApJ, 751, 2Orozco Suarez, D., et al. 2007, Publications of

    the Astronomical Society of Japan, 59, 837Orozco Suarez, D. & Katsukawa, Y. 2012, ApJ,

    746, 182Rempel, M. 2014, ApJ, 789, 132Riethmuller, T., et al. 2016, ApJ, in preparationSchmidt, W., et al. 2012, Astronomische

    Nachrichten, 333, 796

    Shapiro, A. I., et al. 2011, A&A, 529, A139

    Shchukina, N. & Trujillo Bueno, J. 2003, in ASPConf. Ser., Vol. 307, Solar Polarization, ed.Trujillo-Bueno, J. & Sanchez Almeida, J.,336

    Solanki, S. K., Ruedi, I. K., & Livingston, W.1992, A&A, 263, 312

    Steiner, O. & Rezaei, R. 2012, in ASP Conf.Ser., Vol. 456, Fifth Hinode ScienceMeeting, ed. Golub, L., De Moortel, I., &Shimizu, T., 3

    Stenflo, J. O. 2010, A&A, 517, A37

    Stenflo, J. O. 2013, The Astronomy andAstrophysics Review, 21, 66

    Stenflo, J. O. 2014, in ASP Conf. Ser., Vol. 489,Solar Polarization 7, ed. Nagendra, K. N.,et al., 3

    Trujillo Bueno, J., Shchukina, N., & AsensioRamos, A. 2004, Nature, 430, 326

    Vogler, A. & Schussler, M. 2007, A&A, 465, L43

    31 / 31

    MotivationControversial FindingsStrength: few Gauss 200 Gauss kilo-Gauss?

    Reasons for Non-Conclusive ResultsLow B weak signalsDifference: Sensitivity to B and B||Cancellation & MethodsHeight dependence of Bv vs. Bh

    Dilemma: How to solve the controversies?GREGOR/GRIS ObservationsGRIS DataFei @ 1.56 m

    S/N RatiosComparison to Hinode SOT/SP

    Magnetic Line Ratios (MLRs)The principleProfile selectionMLRs for Fei 15648 / Fei 15652

    MHD-Simulation ComparisonSmall scale dynamo run & IMaX run

    LP/CP ratioThe principleLP/CP for Fei 15648

    Summary

    fd@rm@0: