qg signatures in the unruh effectcqc/slides/... · quantum gravity signatures in the unruh effect...

85
Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 1 / 31

Upload: others

Post on 01-Jun-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Quantum gravity signatures in the

Unruh effect

N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016)

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 1 / 31

Page 2: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Outline: QG signatures in the Unruh effect

The Unruh effect- Overview- The detector approach

Dimensional reduction- Spectral dimension- Unruh dimension

Quantum gravity corrections- Ostrogradski models- Spectral representation

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 2 / 31

Page 3: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: Overview

Accelerating observer sees thermal bath of particles

Trajectory inertial observer (t, x, y, z)

Trajectory uniformly accelerating (Rindler) observer (τ, ξ, y, z)

Relation coordinates:

t =eaξ

asinh (aτ), x =

eaξ

acosh (aτ), y = y, z = z.

Klein-Gordon for m = 0: [−∂2

t + ∂2x + ∂2

y + ∂2z

]φ(t, x, y, z) = 0[

e−2aξ(−∂2τ + ∂2

ξ ) + ∂2y + ∂2

z

]φ(τ, ξ, y, z) = 0

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 3 / 31

Page 4: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: Overview

Accelerating observer sees thermal bath of particles

Trajectory inertial observer (t, x, y, z)

Trajectory uniformly accelerating (Rindler) observer (τ, ξ, y, z)

Relation coordinates:

t =eaξ

asinh (aτ), x =

eaξ

acosh (aτ), y = y, z = z.

Klein-Gordon for m = 0: [−∂2

t + ∂2x + ∂2

y + ∂2z

]φ(t, x, y, z) = 0[

e−2aξ(−∂2τ + ∂2

ξ ) + ∂2y + ∂2

z

]φ(τ, ξ, y, z) = 0

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 3 / 31

Page 5: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: Overview

Accelerating observer sees thermal bath of particles

Trajectory inertial observer (t, x, y, z)

Trajectory uniformly accelerating (Rindler) observer (τ, ξ, y, z)

Relation coordinates:

t =eaξ

asinh (aτ), x =

eaξ

acosh (aτ), y = y, z = z.

Klein-Gordon for m = 0: [−∂2

t + ∂2x + ∂2

y + ∂2z

]φ(t, x, y, z) = 0[

e−2aξ(−∂2τ + ∂2

ξ ) + ∂2y + ∂2

z

]φ(τ, ξ, y, z) = 0

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 3 / 31

Page 6: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: Overview

Solutions:

uR =e−iΩτ

2π2√a

sinh

(πΩ

a

)1/2

×

KiΩ/a

(|~p⊥|aeaξ)ei~p⊥·~x⊥

uM =1√

2(2π)3ωe−i(ωt−kxx−

~k⊥·~x⊥)

define annihilation/creation operatorsaω , bΩ

such that

aω |0M 〉 = 0, bΩ |0R〉 = 0

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 4 / 31

Page 7: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: Overview

Solutions:

uR =e−iΩτ

2π2√a

sinh

(πΩ

a

)1/2

×

KiΩ/a

(|~p⊥|aeaξ)ei~p⊥·~x⊥

uM =1√

2(2π)3ωe−i(ωt−kxx−

~k⊥·~x⊥)

define annihilation/creation operatorsaω , bΩ

such that

aω |0M 〉 = 0, bΩ |0R〉 = 0

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 4 / 31

Page 8: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: Overview

Field expansion:

φ =

∫d3k

(2π)3

1√

(aω u

Mω + a†ω (uMω )†

)=

∫d3p

(2π)3

1√

(bΩ u

RΩ + b†Ω (uRΩ)†

)

Relation between a, a† and b, b†?

⇒ Bogolyubov transformation:

bΩ =

∫dω

∫d~k⊥

(αΩω aω − βΩω a

†ω

)Find coefficients α, β

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 5 / 31

Page 9: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: Overview

Field expansion:

φ =

∫d3k

(2π)3

1√

(aω u

Mω + a†ω (uMω )†

)=

∫d3p

(2π)3

1√

(bΩ u

RΩ + b†Ω (uRΩ)†

)Relation between a, a† and b, b†?

⇒ Bogolyubov transformation:

bΩ =

∫dω

∫d~k⊥

(αΩω aω − βΩω a

†ω

)Find coefficients α, β

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 5 / 31

Page 10: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: Overview

Field expansion:

φ =

∫d3k

(2π)3

1√

(aω u

Mω + a†ω (uMω )†

)=

∫d3p

(2π)3

1√

(bΩ u

RΩ + b†Ω (uRΩ)†

)Relation between a, a† and b, b†?

⇒ Bogolyubov transformation:

bΩ =

∫dω

∫d~k⊥

(αΩω aω − βΩω a

†ω

)Find coefficients α, β

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 5 / 31

Page 11: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: Overview

Interested in number of particles observed by accelerating observer

nΩ =〈0M | N |0M 〉

V

=〈0M | b†Ω bΩ′ |0M 〉

V

=

∫d3kβΩωβ

∗Ω′ω

where

βΩω = −1√

2πaω(e2πΩ/a − 1)

(ω + kx

ω − kx

)−iΩ/2a

then

nΩ =1

e2πΩa − 1

δ(Ω− Ω′)δ(~k⊥ − ~k′⊥)

Thermal bath of particles with temperature T = a/2π

⇒ Geometric effect

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 6 / 31

Page 12: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: Overview

Interested in number of particles observed by accelerating observer

nΩ =〈0M | N |0M 〉

V

=〈0M | b†Ω bΩ′ |0M 〉

V

=

∫d3kβΩωβ

∗Ω′ω

where

βΩω = −1√

2πaω(e2πΩ/a − 1)

(ω + kx

ω − kx

)−iΩ/2athen

nΩ =1

e2πΩa − 1

δ(Ω− Ω′)δ(~k⊥ − ~k′⊥)

Thermal bath of particles with temperature T = a/2π

⇒ Geometric effect

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 6 / 31

Page 13: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: Overview

Interested in number of particles observed by accelerating observer

nΩ =〈0M | N |0M 〉

V

=〈0M | b†Ω bΩ′ |0M 〉

V

=

∫d3kβΩωβ

∗Ω′ω

where

βΩω = −1√

2πaω(e2πΩ/a − 1)

(ω + kx

ω − kx

)−iΩ/2athen

nΩ =1

e2πΩa − 1

δ(Ω− Ω′)δ(~k⊥ − ~k′⊥)

Thermal bath of particles with temperature T = a/2π

⇒ Geometric effect

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 6 / 31

Page 14: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: The detector approach

(I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, New J.Phys. 12 095017 (2010))

Two internal energy states E2 > E1

Interaction scalar field and detector:

LI = gm(τ)φ(x)

Spontaneous emission inertial observer (intrinsic to detector)

|E2〉 |0M 〉 → |E1〉 |~k〉

Amplitude

A(~k) = ig 〈E1|m(0) |E2〉∫dτei(E1−E2)τ 〈~k|φ(x(τ)) |0M 〉

Transition probability (∆E ≡ E2 − E1, ∆τ ≡ τ1 − τ2)

Pi→f =

∫d3k|A|2 = g2| 〈E1|m |E2〉 |2F (∆E)

where F (∆E) =

∫dτ1dτ2e

i∆E∆τG(∆τ − iε)

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 7 / 31

Page 15: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: The detector approach

(I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, New J.Phys. 12 095017 (2010))

Two internal energy states E2 > E1

Interaction scalar field and detector:

LI = gm(τ)φ(x)

Spontaneous emission inertial observer (intrinsic to detector)

|E2〉 |0M 〉 → |E1〉 |~k〉

Amplitude

A(~k) = ig 〈E1|m(0) |E2〉∫dτei(E1−E2)τ 〈~k|φ(x(τ)) |0M 〉

Transition probability (∆E ≡ E2 − E1, ∆τ ≡ τ1 − τ2)

Pi→f =

∫d3k|A|2 = g2| 〈E1|m |E2〉 |2F (∆E)

where F (∆E) =

∫dτ1dτ2e

i∆E∆τG(∆τ − iε)

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 7 / 31

Page 16: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: The detector approach

(I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, New J.Phys. 12 095017 (2010))

Two internal energy states E2 > E1

Interaction scalar field and detector:

LI = gm(τ)φ(x)

Spontaneous emission inertial observer (intrinsic to detector)

|E2〉 |0M 〉 → |E1〉 |~k〉

Amplitude

A(~k) = ig 〈E1|m(0) |E2〉∫dτei(E1−E2)τ 〈~k|φ(x(τ)) |0M 〉

Transition probability (∆E ≡ E2 − E1, ∆τ ≡ τ1 − τ2)

Pi→f =

∫d3k|A|2 = g2| 〈E1|m |E2〉 |2F (∆E)

where F (∆E) =

∫dτ1dτ2e

i∆E∆τG(∆τ − iε)

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 7 / 31

Page 17: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: The detector approach

(I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, New J.Phys. 12 095017 (2010))

Two internal energy states E2 > E1

Interaction scalar field and detector:

LI = gm(τ)φ(x)

Spontaneous emission inertial observer (intrinsic to detector)

|E2〉 |0M 〉 → |E1〉 |~k〉

Amplitude

A(~k) = ig 〈E1|m(0) |E2〉∫dτei(E1−E2)τ 〈~k|φ(x(τ)) |0M 〉

Transition probability (∆E ≡ E2 − E1, ∆τ ≡ τ1 − τ2)

Pi→f =

∫d3k|A|2 = g2| 〈E1|m |E2〉 |2F (∆E)

where F (∆E) =

∫dτ1dτ2e

i∆E∆τG(∆τ − iε)

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 7 / 31

Page 18: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: The detector approach

(I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, New J.Phys. 12 095017 (2010))

Two internal energy states E2 > E1

Interaction scalar field and detector:

LI = gm(τ)φ(x)

Spontaneous emission inertial observer (intrinsic to detector)

|E2〉 |0M 〉 → |E1〉 |~k〉

Amplitude

A(~k) = ig 〈E1|m(0) |E2〉∫dτei(E1−E2)τ 〈~k|φ(x(τ)) |0M 〉

Transition probability (∆E ≡ E2 − E1, ∆τ ≡ τ1 − τ2)

Pi→f =

∫d3k|A|2 = g2| 〈E1|m |E2〉 |2F (∆E)

where F (∆E) =

∫dτ1dτ2e

i∆E∆τG(∆τ − iε)

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 7 / 31

Page 19: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: The detector approach

For massive scalar field in Minkowski space:

G(p2) =1

p2 −m2=

1

(p0 +√~p2 +m2)(p0 −

√~p2 +m2)

Positive frequency Wightman function encircles pole at√~p2 +m2

G+(~x, t) = −i∫

d3~p

(2π)3

∮γ+

dp0

2πG(p2)e−i(p

0t−~p·~x),

in real space we find

G+(x, x′) = −im

4π2

K1(im√

(t− t′ − iε)2)− (~x− ~x′)2√(t− t′ − iε)2)− (~x− ~x′)2

m→ 0, G+(x, x′) = −1

4π2

1

(t− t′ − iε)2 − (~x− ~x′)2

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 8 / 31

Page 20: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: The detector approach

For massive scalar field in Minkowski space:

G(p2) =1

p2 −m2=

1

(p0 +√~p2 +m2)(p0 −

√~p2 +m2)

Positive frequency Wightman function encircles pole at√~p2 +m2

G+(~x, t) = −i∫

d3~p

(2π)3

∮γ+

dp0

2πG(p2)e−i(p

0t−~p·~x),

in real space we find

G+(x, x′) = −im

4π2

K1(im√

(t− t′ − iε)2)− (~x− ~x′)2√(t− t′ − iε)2)− (~x− ~x′)2

m→ 0, G+(x, x′) = −1

4π2

1

(t− t′ − iε)2 − (~x− ~x′)2

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 8 / 31

Page 21: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: The detector approach

For massive scalar field in Minkowski space:

G(p2) =1

p2 −m2=

1

(p0 +√~p2 +m2)(p0 −

√~p2 +m2)

Positive frequency Wightman function encircles pole at√~p2 +m2

G+(~x, t) = −i∫

d3~p

(2π)3

∮γ+

dp0

2πG(p2)e−i(p

0t−~p·~x),

in real space we find

G+(x, x′) = −im

4π2

K1(im√

(t− t′ − iε)2)− (~x− ~x′)2√(t− t′ − iε)2)− (~x− ~x′)2

m→ 0, G+(x, x′) = −1

4π2

1

(t− t′ − iε)2 − (~x− ~x′)2

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 8 / 31

Page 22: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: The detector approach

Total emission (evaluated on accelerated trajectory):

|E2〉 |0M 〉 → |E1〉 |~k〉 , Pi→f

Induced transition probability

Pi→f (induced) = Pi→f − Pi→f (spontaneous)

Response function induced emission

F (∆E) =

∫ ∞−∞

dτ1dτ2ei∆E∆τ [GM (∆τ − iε)−GR(∆τ − iε)]

where

GM (x2) = 〈0M |φ(x)φ(0) |0M 〉 , GR(x2) = 〈0R|φ(x)φ(0) |0R〉

Induced response function per unit time (E ≡ ∆E)

F (E) =

∫ ∞−∞

dτeiEτ [GM (τ − iε)−GR(τ − iε)]

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 9 / 31

Page 23: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: The detector approach

Total emission (evaluated on accelerated trajectory):

|E2〉 |0M 〉 → |E1〉 |~k〉 , Pi→f

Induced transition probability

Pi→f (induced) = Pi→f − Pi→f (spontaneous)

Response function induced emission

F (∆E) =

∫ ∞−∞

dτ1dτ2ei∆E∆τ [GM (∆τ − iε)−GR(∆τ − iε)]

where

GM (x2) = 〈0M |φ(x)φ(0) |0M 〉 , GR(x2) = 〈0R|φ(x)φ(0) |0R〉

Induced response function per unit time (E ≡ ∆E)

F (E) =

∫ ∞−∞

dτeiEτ [GM (τ − iε)−GR(τ − iε)]

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 9 / 31

Page 24: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: The detector approach

Total emission (evaluated on accelerated trajectory):

|E2〉 |0M 〉 → |E1〉 |~k〉 , Pi→f

Induced transition probability

Pi→f (induced) = Pi→f − Pi→f (spontaneous)

Response function induced emission

F (∆E) =

∫ ∞−∞

dτ1dτ2ei∆E∆τ [GM (∆τ − iε)−GR(∆τ − iε)]

where

GM (x2) = 〈0M |φ(x)φ(0) |0M 〉 , GR(x2) = 〈0R|φ(x)φ(0) |0R〉

Induced response function per unit time (E ≡ ∆E)

F (E) =

∫ ∞−∞

dτeiEτ [GM (τ − iε)−GR(τ − iε)]

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 9 / 31

Page 25: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: The detector approach

Total emission (evaluated on accelerated trajectory):

|E2〉 |0M 〉 → |E1〉 |~k〉 , Pi→f

Induced transition probability

Pi→f (induced) = Pi→f − Pi→f (spontaneous)

Response function induced emission

F (∆E) =

∫ ∞−∞

dτ1dτ2ei∆E∆τ [GM (∆τ − iε)−GR(∆τ − iε)]

where

GM (x2) = 〈0M |φ(x)φ(0) |0M 〉 , GR(x2) = 〈0R|φ(x)φ(0) |0R〉

Induced response function per unit time (E ≡ ∆E)

F (E) =

∫ ∞−∞

dτeiEτ [GM (τ − iε)−GR(τ − iε)]

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 9 / 31

Page 26: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The detector approach: massless scalar

Wightman functions

GM = −a2

16π2

1

sinh2 (aτ/2− iaε)

GR = −1

4π2

1

(τ − iε)2

Induced response rate

F (E) =

∫ ∞−∞

dτeiEτ [GM (τ − iε)−GR(τ − iε)]

= −1

4π2(2πi)(iE)

−1∑k=−∞

e−iE2πiak

=1

2πE

1

e2πaE − 1

Define profile function F(E) as

F (E) ≡1

2πF(E)

1

e2πaE − 1

.

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 10 / 31

Page 27: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The detector approach: massless scalar

Wightman functions

GM = −a2

16π2

1

sinh2 (aτ/2− iaε)

GR = −1

4π2

1

(τ − iε)2

Induced response rate

F (E) =

∫ ∞−∞

dτeiEτ [GM (τ − iε)−GR(τ − iε)]

= −1

4π2(2πi)(iE)

−1∑k=−∞

e−iE2πiak

=1

2πE

1

e2πaE − 1

Define profile function F(E) as

F (E) ≡1

2πF(E)

1

e2πaE − 1

.

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 10 / 31

Page 28: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The detector approach: massless scalar

Wightman functions

GM = −a2

16π2

1

sinh2 (aτ/2− iaε)

GR = −1

4π2

1

(τ − iε)2

Induced response rate

F (E) =

∫ ∞−∞

dτeiEτ [GM (τ − iε)−GR(τ − iε)]

= −1

4π2(2πi)(iE)

−1∑k=−∞

e−iE2πiak

=1

2πE

1

e2πaE − 1

Define profile function F(E) as

F (E) ≡1

2πF(E)

1

e2πaE − 1

.

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 10 / 31

Page 29: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

The Unruh effect: The detector approach

Massless F(E) = E

Massive F(E) =√E2 −m2 θ(E −m)

particle needs E > m for excitation

Massless scalar in general dimensions

F(E) =πd−1

2

Γ(d−1

2

)(2π)d−2

Ed−3

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 11 / 31

Page 30: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Spectral dimension

Consider a (modified) diffusion/heat equation

∂σK(x, x′;σ) = −F (−∂2E)K(x, x′;σ)

with BC: K(x, x′; 0) = δd(x− x′)

σ diffusion time

K heat/diffusion kernel

F (−∂2E) determined by the equations of motion

⇒ F (p2E) = (G(−p2

E))−1

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 12 / 31

Page 31: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Spectral dimension

Consider a (modified) diffusion/heat equation

∂σK(x, x′;σ) = −F (−∂2E)K(x, x′;σ)

with BC: K(x, x′; 0) = δd(x− x′)

σ diffusion time

K heat/diffusion kernel

F (−∂2E) determined by the equations of motion

⇒ F (p2E) = (G(−p2

E))−1

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 12 / 31

Page 32: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Spectral dimension

Consider a (modified) diffusion/heat equation

∂σK(x, x′;σ) = −F (−∂2E)K(x, x′;σ)

with BC: K(x, x′; 0) = δd(x− x′)

σ diffusion time

K heat/diffusion kernel

F (−∂2E) determined by the equations of motion

⇒ F (p2E) = (G(−p2

E))−1

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 12 / 31

Page 33: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Spectral dimension

∂σK(x, x′;σ) = −F (−∂2E)K(x, x′;σ)

has as solution

K(x, x′;σ) =

∫ddp

(2π)deip(x−x

′)e−σF (p2E)

with return probability (random walk) after time σ

P (σ) =

∫ddp

(2π)de−σF (p2

E)

Dimension as seen by diffusion process: spectral dimension

Ds(σ) = −2d lnP (σ)

d lnσ

Accessible experimentally?

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 13 / 31

Page 34: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Spectral dimension

∂σK(x, x′;σ) = −F (−∂2E)K(x, x′;σ)

has as solution

K(x, x′;σ) =

∫ddp

(2π)deip(x−x

′)e−σF (p2E)

with return probability (random walk) after time σ

P (σ) =

∫ddp

(2π)de−σF (p2

E)

Dimension as seen by diffusion process: spectral dimension

Ds(σ) = −2d lnP (σ)

d lnσ

Accessible experimentally?

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 13 / 31

Page 35: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Spectral dimension

∂σK(x, x′;σ) = −F (−∂2E)K(x, x′;σ)

has as solution

K(x, x′;σ) =

∫ddp

(2π)deip(x−x

′)e−σF (p2E)

with return probability (random walk) after time σ

P (σ) =

∫ddp

(2π)de−σF (p2

E)

Dimension as seen by diffusion process: spectral dimension

Ds(σ) = −2d lnP (σ)

d lnσ

Accessible experimentally?

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 13 / 31

Page 36: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Spectral dimension

∂σK(x, x′;σ) = −F (−∂2E)K(x, x′;σ)

has as solution

K(x, x′;σ) =

∫ddp

(2π)deip(x−x

′)e−σF (p2E)

with return probability (random walk) after time σ

P (σ) =

∫ddp

(2π)de−σF (p2

E)

Dimension as seen by diffusion process: spectral dimension

Ds(σ) = −2d lnP (σ)

d lnσ

Accessible experimentally?

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 13 / 31

Page 37: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Unruh dimension

Profile function massless scalar in general dimension d

F(E) =πd−1

2

Γ(d−1

2

)(2π)d−2

Ed−3

Define Unruh dimension

DU (E) ≡d lnF(E)

d lnE+ 3

- Effective dimension of spacetime seen by Unruh effect

- Agrees with topological dimension d for m = 0

- Closely related to spectral dimension Ds

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 14 / 31

Page 38: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Unruh dimension

Profile function massless scalar in general dimension d

F(E) =πd−1

2

Γ(d−1

2

)(2π)d−2

Ed−3

Define Unruh dimension

DU (E) ≡d lnF(E)

d lnE+ 3

- Effective dimension of spacetime seen by Unruh effect

- Agrees with topological dimension d for m = 0

- Closely related to spectral dimension Ds

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 14 / 31

Page 39: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Unruh dimension

Profile function massless scalar in general dimension d

F(E) =πd−1

2

Γ(d−1

2

)(2π)d−2

Ed−3

Define Unruh dimension

DU (E) ≡d lnF(E)

d lnE+ 3

- Effective dimension of spacetime seen by Unruh effect

- Agrees with topological dimension d for m = 0

- Closely related to spectral dimension Ds

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 14 / 31

Page 40: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Non-trivial momentum dependence G(p2) gives rise to

Possible QG corrections visible in profile function F(E)

Dimensional reduction encoded in (Ds)

Connection between DU and Ds?

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 15 / 31

Page 41: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Non-trivial momentum dependence G(p2) gives rise to

Possible QG corrections visible in profile function F(E)

Dimensional reduction encoded in (Ds)

Connection between DU and Ds?

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 15 / 31

Page 42: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

QG corrections: Class I

Effective Lagrangian is a polynomial Pn(z) with roots µi

L =1

2φPn(−∂2)φ where Pn(z) = c

n∏i=1

(z − µi)

Ostrogradski decomposition two-point function

G(p2) =1

c

n∑i=1

Ai

p2 − µiwhere Ai = (

∏j 6=i

(µi − µj))−1

Leading to

F(E) =1

c

n∑i=1

Ai√E2 − µiθ(E −

õi)

- Identify µi = m2 > 0

- Restrict to polynomials with roots on positive real axis

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 16 / 31

Page 43: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

QG corrections: Class I

Effective Lagrangian is a polynomial Pn(z) with roots µi

L =1

2φPn(−∂2)φ where Pn(z) = c

n∏i=1

(z − µi)

Ostrogradski decomposition two-point function

G(p2) =1

c

n∑i=1

Ai

p2 − µiwhere Ai = (

∏j 6=i

(µi − µj))−1

Leading to

F(E) =1

c

n∑i=1

Ai√E2 − µiθ(E −

õi)

- Identify µi = m2 > 0

- Restrict to polynomials with roots on positive real axis

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 16 / 31

Page 44: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

QG corrections: Class I

Effective Lagrangian is a polynomial Pn(z) with roots µi

L =1

2φPn(−∂2)φ where Pn(z) = c

n∏i=1

(z − µi)

Ostrogradski decomposition two-point function

G(p2) =1

c

n∑i=1

Ai

p2 − µiwhere Ai = (

∏j 6=i

(µi − µj))−1

Leading to

F(E) =1

c

n∑i=1

Ai√E2 − µiθ(E −

õi)

- Identify µi = m2 > 0

- Restrict to polynomials with roots on positive real axis

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 16 / 31

Page 45: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

QG corrections: Class I

Effective Lagrangian is a polynomial Pn(z) with roots µi

L =1

2φPn(−∂2)φ where Pn(z) = c

n∏i=1

(z − µi)

Ostrogradski decomposition two-point function

G(p2) =1

c

n∑i=1

Ai

p2 − µiwhere Ai = (

∏j 6=i

(µi − µj))−1

Leading to

F(E) =1

c

n∑i=1

Ai√E2 − µiθ(E −

õi)

- Identify µi = m2 > 0

- Restrict to polynomials with roots on positive real axis

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 16 / 31

Page 46: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

QG corrections: Class II

Model where Wightman function is superposition of massive contributions (Kallen-Lehmannrepresentation)

G+(x) =

∫ ∞0

dm2ρ(m2)G0(x;m)

where: ρ(m2) is the spectral density

G0 = GM the massive Wightman function

Profile function

F(E) =

∫ E2

0dm2ρ(m2)

√E2 −m2

A superposition of massive contributions, weighed by ρ(m2)

Ostrogradski: ρ(m2) sum of δ(m−√µi)

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 17 / 31

Page 47: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

QG corrections: Class II

Model where Wightman function is superposition of massive contributions (Kallen-Lehmannrepresentation)

G+(x) =

∫ ∞0

dm2ρ(m2)G0(x;m)

where: ρ(m2) is the spectral density

G0 = GM the massive Wightman function

Profile function

F(E) =

∫ E2

0dm2ρ(m2)

√E2 −m2

A superposition of massive contributions, weighed by ρ(m2)

Ostrogradski: ρ(m2) sum of δ(m−√µi)

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 17 / 31

Page 48: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Multi-scale models

Consider a two scale model:

P2(p2) =1

m2p2(p2 −m2) ⇒ G(p2) =

1

p2−

1

p2 −m2

scales as

p2 m2 G(p2) ∝ p−2 Ds = 4

p2 m2 G(p2) ∝ p−4 Ds = 2

Leading to the profile function

F(E) = E −√E2 −m2 θ(E −m)

which scales as

E2 m2 F(E) ∝ E DU = 4

E2 m2 F(E) ∝ E−1 DU = 2

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 18 / 31

Page 49: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Multi-scale models

Consider a two scale model:

P2(p2) =1

m2p2(p2 −m2) ⇒ G(p2) =

1

p2−

1

p2 −m2

scales as

p2 m2 G(p2) ∝ p−2 Ds = 4

p2 m2 G(p2) ∝ p−4 Ds = 2

Leading to the profile function

F(E) = E −√E2 −m2 θ(E −m)

which scales as

E2 m2 F(E) ∝ E DU = 4

E2 m2 F(E) ∝ E−1 DU = 2

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 18 / 31

Page 50: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Multi-scale models

Consider a two scale model:

P2(p2) =1

m2p2(p2 −m2) ⇒ G(p2) =

1

p2−

1

p2 −m2

scales as

p2 m2 G(p2) ∝ p−2 Ds = 4

p2 m2 G(p2) ∝ p−4 Ds = 2

Leading to the profile function

F(E) = E −√E2 −m2 θ(E −m)

which scales as

E2 m2 F(E) ∝ E DU = 4

E2 m2 F(E) ∝ E−1 DU = 2

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 18 / 31

Page 51: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Multi-scale models

Consider a two scale model:

P2(p2) =1

m2p2(p2 −m2) ⇒ G(p2) =

1

p2−

1

p2 −m2

scales as

p2 m2 G(p2) ∝ p−2 Ds = 4

p2 m2 G(p2) ∝ p−4 Ds = 2

Leading to the profile function

F(E) = E −√E2 −m2 θ(E −m)

which scales as

E2 m2 F(E) ∝ E DU = 4

E2 m2 F(E) ∝ E−1 DU = 2

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 18 / 31

Page 52: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Multi-scale models

Profile function 2-scale model (m = 1)

F(E) = E −√E2 −m2 θ(E −m)

DU

Ds

0.01 1 100E0

1

2

3

4

D

1 2 3 4 5E

0.2

0.4

0.6

0.8

1.0

1.2FHEL

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 19 / 31

Page 53: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Multi-scale models

Profile function 2-scale model (m = 1)

F(E) = E −√E2 −m2 θ(E −m)

DU

Ds

0.01 1 100E0

1

2

3

4

D

1 2 3 4 5E

0.2

0.4

0.6

0.8

1.0

1.2FHEL

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 19 / 31

Page 54: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Multi-scale models

Consider a three scale model:

P3(p2) =1

m22m

23

p2(p2 −m22)(p2 −m2

3)

⇒ G(p2) =1

p2−

m23

m23 −m2

2

1

p2 −m22

+m2

2

m23 −m2

2

1

p2 −m23

scales as

p2 m22 G(p2) ∝ p−2 Ds = 4

m22 p2 m2

3 G(p2) ∝ p−4 Ds = 2

m23 p2 G(p2) ∝ p−6 Ds =

4

3

Leading to the profile function

F(E) = E −m2

3

m23 −m2

2

√E2 −m2

2 θ(E −m2) +m2

2

m23 −m2

2

√E2 −m2

3 θ(E −m3)

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 20 / 31

Page 55: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Multi-scale models

Consider a three scale model:

P3(p2) =1

m22m

23

p2(p2 −m22)(p2 −m2

3)

⇒ G(p2) =1

p2−

m23

m23 −m2

2

1

p2 −m22

+m2

2

m23 −m2

2

1

p2 −m23

scales as

p2 m22 G(p2) ∝ p−2 Ds = 4

m22 p2 m2

3 G(p2) ∝ p−4 Ds = 2

m23 p2 G(p2) ∝ p−6 Ds =

4

3

Leading to the profile function

F(E) = E −m2

3

m23 −m2

2

√E2 −m2

2 θ(E −m2) +m2

2

m23 −m2

2

√E2 −m2

3 θ(E −m3)

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 20 / 31

Page 56: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Multi-scale models

Consider a three scale model:

P3(p2) =1

m22m

23

p2(p2 −m22)(p2 −m2

3)

⇒ G(p2) =1

p2−

m23

m23 −m2

2

1

p2 −m22

+m2

2

m23 −m2

2

1

p2 −m23

scales as

p2 m22 G(p2) ∝ p−2 Ds = 4

m22 p2 m2

3 G(p2) ∝ p−4 Ds = 2

m23 p2 G(p2) ∝ p−6 Ds =

4

3

Leading to the profile function

F(E) = E −m2

3

m23 −m2

2

√E2 −m2

2 θ(E −m2) +m2

2

m23 −m2

2

√E2 −m2

3 θ(E −m3)

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 20 / 31

Page 57: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Multi-scale models

Profile function 3-scale model (m2 = 0.1, m3 = 10)

F(E) = E −m2

3

m23 −m2

2

√E2 −m2

2 θ(E −m2) +m2

2

m23 −m2

2

√E2 −m2

3 θ(E −m3)

0.01 0.1 1 10 100 1000E

0

1

2

3

4

5D

5 10 15 20E

-0.001

0.001

0.002

0.003

0.004

0.005FHEL

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 21 / 31

Page 58: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Multi-scale models

Profile function 3-scale model (m2 = 0.1, m3 = 10)

F(E) = E −m2

3

m23 −m2

2

√E2 −m2

2 θ(E −m2) +m2

2

m23 −m2

2

√E2 −m2

3 θ(E −m3)

0.01 0.1 1 10 100 1000E

0

1

2

3

4

5D

5 10 15 20E

-0.001

0.001

0.002

0.003

0.004

0.005FHEL

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 21 / 31

Page 59: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Relate Ds to DU

Consider two-point function of the form

G(p2) ∝ p−(2+η) (1)

in d = 4:

Ds =8

2 + η

DU = 4− η

New mass-scale decreases Du by two

Du = 6−8

Ds, DU = Ds for η = 0, 2

⇒ Use DU to measure Ds

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 22 / 31

Page 60: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Relate Ds to DU

Consider two-point function of the form

G(p2) ∝ p−(2+η) (1)

in d = 4:

Ds =8

2 + η

DU = 4− η

New mass-scale decreases Du by two

Du = 6−8

Ds, DU = Ds for η = 0, 2

⇒ Use DU to measure Ds

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 22 / 31

Page 61: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Relate Ds to DU

Consider two-point function of the form

G(p2) ∝ p−(2+η) (1)

in d = 4:

Ds =8

2 + η

DU = 4− η

New mass-scale decreases Du by two

Du = 6−8

Ds, DU = Ds for η = 0, 2

⇒ Use DU to measure Ds

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 22 / 31

Page 62: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Kaluza-Klein models

Massless scalar field φ(x, x5) =∞∑

n=−∞φn(x)ei

nRx5 with x5 ∈ [0, 2πR]

gives for the action

1

2

∫d5x[(∂µφ)2 − (∂5φ)2] = 2πR

∫d4x

1

2

∞∑n=−∞

[|∂µφn|2 −

n2

R2|φn|2

]

Tower of Kaluza-Klein modes φn give

G(p2) =1

2πR

∞∑n=−∞

(p2 −

n2

R2

)−1

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 23 / 31

Page 63: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Kaluza-Klein models

Massless scalar field φ(x, x5) =∞∑

n=−∞φn(x)ei

nRx5 with x5 ∈ [0, 2πR]

gives for the action

1

2

∫d5x[(∂µφ)2 − (∂5φ)2] = 2πR

∫d4x

1

2

∞∑n=−∞

[|∂µφn|2 −

n2

R2|φn|2

]Tower of Kaluza-Klein modes φn give

G(p2) =1

2πR

∞∑n=−∞

(p2 −

n2

R2

)−1

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 23 / 31

Page 64: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Kaluza-Klein models

Profile function

F(E) =1

2πR

E + 2∞∑n=1

√E2 −

n2

R2θ(E −

n

R)

scales as

E < 1/R F(E) ∝ E DU = 4

E 1/R F(E) ∝ E2 DU = 5

1 2 3 4 5 6

E

2 Π

50

100

150

200

250

300

350FHEL

10 20 30 40 50

E

2 Π

5000

10 000

15 000

20 000

25 000FHEL

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 24 / 31

Page 65: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Kaluza-Klein models

Profile function

F(E) =1

2πR

E + 2∞∑n=1

√E2 −

n2

R2θ(E −

n

R)

scales as

E < 1/R F(E) ∝ E DU = 4

E 1/R F(E) ∝ E2 DU = 5

1 2 3 4 5 6

E

2 Π

50

100

150

200

250

300

350FHEL

10 20 30 40 50

E

2 Π

5000

10 000

15 000

20 000

25 000FHEL

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 24 / 31

Page 66: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Kaluza-Klein models

Profile function

F(E) =1

2πR

E + 2∞∑n=1

√E2 −

n2

R2θ(E −

n

R)

scales as

E < 1/R F(E) ∝ E DU = 4

E 1/R F(E) ∝ E2 DU = 5

1 2 3 4 5 6

E

2 Π

50

100

150

200

250

300

350FHEL

10 20 30 40 50

E

2 Π

5000

10 000

15 000

20 000

25 000FHEL

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 24 / 31

Page 67: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Spectral Actions

Action generated by trace Dirac operator

Sχ,Λ = Tr [χ(D2/Λ2)]

where- χ is a positive function specific to the model- Λ sets scale of the theory- D is a Dirac operator

D2 = −(1∂2 + E), E = −iγµγ5∂µφ− φ2

- Related to almost-commutative standard model(A.H. Chamseddine and A. Connes, Commun. Math. Phys. 186, 731(1997))

(A.H. Chamseddine and A. Connes, Phys. Rev. Lett. 77, 4868(1995))

- Spectral action through heat-kernel techniques

- Setup Euclidean: Wick-rotate to get Lorentzian signature

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 25 / 31

Page 68: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Spectral Actions

Action generated by trace Dirac operator

Sχ,Λ = Tr [χ(D2/Λ2)]

where- χ is a positive function specific to the model- Λ sets scale of the theory- D is a Dirac operator

D2 = −(1∂2 + E), E = −iγµγ5∂µφ− φ2

- Related to almost-commutative standard model(A.H. Chamseddine and A. Connes, Commun. Math. Phys. 186, 731(1997))

(A.H. Chamseddine and A. Connes, Phys. Rev. Lett. 77, 4868(1995))

- Spectral action through heat-kernel techniques

- Setup Euclidean: Wick-rotate to get Lorentzian signature

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 25 / 31

Page 69: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Spectral Actions

Action generated by trace Dirac operator

Sχ,Λ = Tr [χ(D2/Λ2)]

where- χ is a positive function specific to the model- Λ sets scale of the theory- D is a Dirac operator

D2 = −(1∂2 + E), E = −iγµγ5∂µφ− φ2

- Related to almost-commutative standard model(A.H. Chamseddine and A. Connes, Commun. Math. Phys. 186, 731(1997))

(A.H. Chamseddine and A. Connes, Phys. Rev. Lett. 77, 4868(1995))

- Spectral action through heat-kernel techniques

- Setup Euclidean: Wick-rotate to get Lorentzian signature

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 25 / 31

Page 70: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Spectral Actions

Ostrogradski-type model

χ(z) = (a+ z) θ(1− z), a > 0

Polynomial of the form

P2(p2) = −1

8π2(8a+ 4− 2ap2 +

1

3p4), µ1,2 = 3a∓

√9a2 − 24a− 12

for 2(2 +√

7)/3 < a < (3 +√

15)/2

Profile function

F(E) =24π2

µ2 − µ1(√E2 − µ1θ(E −

√µ1)−

√E2 − µ2θ(E −

õ2))

5 10 15 20E

20

40

60

80

100FHEL

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 26 / 31

Page 71: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Spectral Actions

Ostrogradski-type model

χ(z) = (a+ z) θ(1− z), a > 0

Polynomial of the form

P2(p2) = −1

8π2(8a+ 4− 2ap2 +

1

3p4), µ1,2 = 3a∓

√9a2 − 24a− 12

for 2(2 +√

7)/3 < a < (3 +√

15)/2

Profile function

F(E) =24π2

µ2 − µ1(√E2 − µ1θ(E −

√µ1)−

√E2 − µ2θ(E −

õ2))

5 10 15 20E

20

40

60

80

100FHEL

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 26 / 31

Page 72: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Spectral Actions

Ostrogradski-type model

χ(z) = (a+ z) θ(1− z), a > 0

Polynomial of the form

P2(p2) = −1

8π2(8a+ 4− 2ap2 +

1

3p4), µ1,2 = 3a∓

√9a2 − 24a− 12

for 2(2 +√

7)/3 < a < (3 +√

15)/2

Profile function

F(E) =24π2

µ2 − µ1(√E2 − µ1θ(E −

√µ1)−

√E2 − µ2θ(E −

õ2))

5 10 15 20E

20

40

60

80

100FHEL

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 26 / 31

Page 73: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Causal set theory

Manifold has an underlying discrete structure (partially ordered set)

Order given by causal relation between elements

⇒ Lorentzian signature by design

Credits: Lisa Glaser https://sites.google.com/site/lisaglaserphysics/research/causal-set-theory

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 27 / 31

Page 74: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Causal set theory

Wightman function causal sets

G+(x2) = −i

2π3

∫ ∞0

dξξ2K1(i√x2ξ)

√x2ξg(ξ2)

(S.Aslanbeigi, M.Saravani and R.D. Sorkin, JHEP 1406 (2014) 024)

momentum dependence

g(ξ2) = a+ 4πξ−13∑

n=0

bn

n!Cn∫ ∞

0s4(n+1/2)e−CsK1(ξs)ds

where a, b0, b1, b2, b3, C are numerical constants

Asymptotics g(ξ2) given by

limξ2→∞

1

g(ξ2)= −

2√

ξ4+ ...

limξ2→0

1

g(ξ2)= −

1

ξ2+ ...

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 28 / 31

Page 75: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Causal set theory

Wightman function causal sets

G+(x2) = −i

2π3

∫ ∞0

dξξ2K1(i√x2ξ)

√x2ξg(ξ2)

(S.Aslanbeigi, M.Saravani and R.D. Sorkin, JHEP 1406 (2014) 024)

momentum dependence

g(ξ2) = a+ 4πξ−13∑

n=0

bn

n!Cn∫ ∞

0s4(n+1/2)e−CsK1(ξs)ds

where a, b0, b1, b2, b3, C are numerical constants

Asymptotics g(ξ2) given by

limξ2→∞

1

g(ξ2)= −

2√

ξ4+ ...

limξ2→0

1

g(ξ2)= −

1

ξ2+ ...

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 28 / 31

Page 76: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Causal set theory

Wightman function causal sets

G+(x2) = −i

2π3

∫ ∞0

dξξ2K1(i√x2ξ)

√x2ξg(ξ2)

(S.Aslanbeigi, M.Saravani and R.D. Sorkin, JHEP 1406 (2014) 024)

momentum dependence

g(ξ2) = a+ 4πξ−13∑

n=0

bn

n!Cn∫ ∞

0s4(n+1/2)e−CsK1(ξs)ds

where a, b0, b1, b2, b3, C are numerical constants

Asymptotics g(ξ2) given by

limξ2→∞

1

g(ξ2)= −

2√

ξ4+ ...

limξ2→0

1

g(ξ2)= −

1

ξ2+ ...

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 28 / 31

Page 77: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Causal set theory

Use ρ(m2) to approximate G+ with one massless + continuum of massive modes(M. Saravani, and s. Aslanbeigi, Phys. Rev. D 92, 103504(2015))

G+(t, ~x) = G(t, ~x;m = 0) +

∫ ∞0

dm2ρ(m2)G(t, ~x;m)

ρ(m2) = e−αm2N∑n=0

bnm2n.

The profile function becomes

F(E) = E +N∑n=0

bn

∫ E2

0dm2eαm

2m2n

√E2 −m2

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 29 / 31

Page 78: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Causal set theory

Use ρ(m2) to approximate G+ with one massless + continuum of massive modes(M. Saravani, and s. Aslanbeigi, Phys. Rev. D 92, 103504(2015))

G+(t, ~x) = G(t, ~x;m = 0) +

∫ ∞0

dm2ρ(m2)G(t, ~x;m)

ρ(m2) = e−αm2N∑n=0

bnm2n.

The profile function becomes

F(E) = E +

N∑n=0

bn

∫ E2

0dm2eαm

2m2n

√E2 −m2

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 29 / 31

Page 79: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Causal set theory

Profile function

F(E) = E +N∑n=0

bn

∫ E2

0dm2eαm

2m2n

√E2 −m2

For N = 1, b1 = −(b0 + 1), b0 = 1, α = 1

5 10 15 20E

0.2

0.4

0.6

0.8

1.0

1.2

1.4FHEL

0.1 1 10 100E

1

2

3

4

5DU

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 30 / 31

Page 80: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Causal set theory

Profile function

F(E) = E +N∑n=0

bn

∫ E2

0dm2eαm

2m2n

√E2 −m2

For N = 1, b1 = −(b0 + 1), b0 = 1, α = 1

5 10 15 20E

0.2

0.4

0.6

0.8

1.0

1.2

1.4FHEL

0.1 1 10 100E

1

2

3

4

5DU

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 30 / 31

Page 81: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Conclusions

Unruh temperature unaffected by quantum corrections (geometric effect)

Profile functions not affected in low-energy regime

DU connected to Ds

⇒ obtain Ds through profile function

Negative spectral density related to dynamical dimensional reduction

Opening up of dimensions (Kaluza-Klein) leads to dimensional enhancement Ds

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 31 / 31

Page 82: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Conclusions

Unruh temperature unaffected by quantum corrections (geometric effect)

Profile functions not affected in low-energy regime

DU connected to Ds

⇒ obtain Ds through profile function

Negative spectral density related to dynamical dimensional reduction

Opening up of dimensions (Kaluza-Klein) leads to dimensional enhancement Ds

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 31 / 31

Page 83: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Conclusions

Unruh temperature unaffected by quantum corrections (geometric effect)

Profile functions not affected in low-energy regime

DU connected to Ds

⇒ obtain Ds through profile function

Negative spectral density related to dynamical dimensional reduction

Opening up of dimensions (Kaluza-Klein) leads to dimensional enhancement Ds

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 31 / 31

Page 84: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Conclusions

Unruh temperature unaffected by quantum corrections (geometric effect)

Profile functions not affected in low-energy regime

DU connected to Ds

⇒ obtain Ds through profile function

Negative spectral density related to dynamical dimensional reduction

Opening up of dimensions (Kaluza-Klein) leads to dimensional enhancement Ds

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 31 / 31

Page 85: QG signatures in the Unruh effectcqc/Slides/... · Quantum gravity signatures in the Unruh effect N. Alkofer, G. D’Odorico, F. Saueressig and FV PRD 94, 104055 (2016) Fleur Versteegen

Conclusions

Unruh temperature unaffected by quantum corrections (geometric effect)

Profile functions not affected in low-energy regime

DU connected to Ds

⇒ obtain Ds through profile function

Negative spectral density related to dynamical dimensional reduction

Opening up of dimensions (Kaluza-Klein) leads to dimensional enhancement Ds

Fleur Versteegen QG signatures in the Unruh effect April 25, 2017 31 / 31