qcd phase boundary and the critical point b. mohanty (1), x.f. luo (2,3), h.g. ritter (3) and n. xu...

18
Nu Xu 1/18 CBM Discussion, Tsinghua University, China, November 2 – 4, 2009 QCD Phase Boundary and the Critical Point B. Mohanty (1) , X.F. Luo (2,3) , H.G. Ritter (3) and N. Xu (3) (1) VECC, Kolkata, 700064, India (2) Modern Physics Department, University of Science and Technology, Hefei, China (3) Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Many Thanks to the Organizers!

Upload: derrick-barrett

Post on 25-Dec-2015

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

QCD Phase Boundary and the Critical Point

B. Mohanty(1), X.F. Luo(2,3), H.G. Ritter(3) and N. Xu(3)

(1) VECC, Kolkata, 700064, India(2) Modern Physics Department, University of Science and Technology, Hefei, China(3) Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Many Thanks to the Organizers!

Page 2: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 2/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

nuclei

hadron gas

CSC

quark-gluon plasma

TE

Baryon Chemical Potential

Tem

per

atu

re Ea

rly U

niv

ers

e

1 23

2 TE

RHIC, FAIR1 Tini TC

LHC, RHIC3

Phase BoundaryFAIR, NICA, CSR

The QCD Phase Diagram and High-Energy Nuclear Collisions

Quarkyonic

Page 3: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

yr. 10 11 12 13 14 15 16 17 18 19 20 21

Timeline of QCD and Heavy Ion Facilities

Spin

STAR FGT

BES

RHIC-II

STAR HFT

EIC (meRHIC, eRHIC)

US

LR

P

FAIR CBM K300

LHC

NICA

Oth

ers

RH

IC

Spin Heavy Ion R&D Future programs

J-PARC (50 GeV p+A)

JLab (12 GeV upgrade)

Nu X

u, Se

ptem

ber 2

009

Page 4: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 4/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

STAR Physics Focus

1) At 200 GeV top energy - Study medium properties, EoS - pQCD in hot and dense medium

2) RHIC beam energy scan - Search for the QCD critical point - Chiral symmetry restoration

Polarized p+p program - Study proton intrinsic properties

Forward program - Study low-x properties, search for CGC - Study elastic (inelastic) processes (pp2pp) - Investigate gluonic exchanges

Structure of Nucleon

Structure of Cold Nuclear Matter

Structure of the Hot Matter

Partonic degrees of freedom & QCD

Page 5: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 5/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

HFT

TPC

FGT

STAR Detectors: Full 2π particle identification!

EMC+EEMC+FMS(-1 ≤ ≤ 4)TOF

DAQ1000

HLT

Page 6: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 6/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

Outline

(1) Introduction

(2) Recent results from RHIC

(3) A proposal: using high moments for locating the possible QCD critical point

(4) Summary and Outlook

Page 7: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 7/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

Search for Local Parity Violation in High Energy Nuclear Collisions

The separation between the same-charge and opposite-charge correlations.

- Strong external EM field- De-confinement and Chiral symmetry restoration

L or B

Voloshin, PR C62, 044901(00).

STAR; arXiv: 0909.1739 (PRL); 0909.1717 (PRC).

cos φα + φβ − 2ΨRP( )

Parity even observable

Page 8: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 8/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

Search for Local Parity Violation in High Energy Nuclear Collisions

Topological transitions have never been observed directly (e.g. at the level of quarks in DIS). An observation of the spontaneous strong parity violation would be a clear proof for the existence of such physics.

Animation by Derek Leinweber

Chiral Magnetic Effect:

Kharzeev, PL B633 260 (2006).Kharzeev, Zhitnitsky, NP A797 67(07).Kharzeev, McLerran, Warringa, NP A803 227(08).Fukushima, Kharzeev, Warringa, PR D78, 074033(08).

Page 9: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 9/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

First Observation of

STAR Preliminary

Λ 3H →3H e + π +

STAR Preliminary

First observation of an anti-hypernucleus

To be submitted to Science magazine

200 GeV Au+Au collisions at RHIC

Page 10: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 10/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

Low pT (≤ 2 GeV/c): hydrodynamic mass orderingHigh pT (> 2 GeV/c): number of quarks ordering s-quark hadron: smaller interaction strength in hadronic medium light- and s-quark hadrons: similar v2 pattern

=> Collectivity developed at partonic stage!

Partonic Collectivity at RHIC

STAR: preliminaryPHENIX: nucl-ex/0604011

QM

09: arXiv 0907.2265

Page 11: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 11/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

The QCD Critical Point- LGT prediction on the transitiontemperature TC is robust.

- LGT calculation, universality, andmodels hinted the existence ofthe critical point on the QCD phasediagram* at finite baryon chemicalpotential. - Experimental evidence for eitherthe critical point or 1st order transition is important for ourknowledge of the QCD phase diagram*.

* Thermalization has been assumed

M. Stephanov, K. Rajagopal, and E. Shuryak, PRL 81, 4816(98); K. Rajagopal, PR D61, 105017 (00)

http://www.er.doe.gov/np/nsac/docs/Nuclear-Science.Low-Res.pdf

Page 12: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 12/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

(II) At the CP at finite value of μB, the power of the correlation length of the system is proportional to the order of the moments:

Susceptibilities and High MomentsM. Cheng et al., arXiv: 0811.1006

(I) Susceptibilities from the lattice QCD calculationsμB=0

Increase of the non-Gaussian fluctuation at the critical point

M. Stephanov, PRL 102, 032301(09)

χ2X =

1

VT 3δNX

2

χ 4X =

1

VT 3δNX

4 − 3 δNX2 2

[ ]

χ 4X /χ 2

X ⇒ κ X

δN( )2∝ξ 2, δN( )

3∝ξ 4.5 δN( )

4− 3 δN( )

2 2

∝ξ 7

Page 13: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 13/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

Observables: χq, χS

Event by Event:

1. net-proton Kurtosis Kp(E)2. two proton correlation function C2(E)3. ratio of the d/p4. ratio of K/p M. Cheng et al., PRD79, 074505(09);arXiv:0811.1006

F. Karsch, INT, 08 M. A. Stephanov, PRL102, 032301(09)€

Kp =Np

4 − 3 Np2 2

Np2

Page 14: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 14/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

Basics on Skewness and Kurtosis

Mean:

Variance:

Skewness:

Kurtosis:

s(Gaussian) = κ(Gaussian)=0, Probe of non-Gaussian fluctuation.

M = N

σ 2 = N − N( )2

s =N − N( )

3

σ 3

κ =N − N( )

4

σ 4− 3

s < 0 s > 0

Page 15: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 15/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

Random Sources and Critical Point(1) The sum of independent thermal

sources is also a random thermal source. The multiplicity distribution is Possion and follows the CLT.

(2) In the absence of CP, it can be shown:

(3) Energy and centrality (volume) dependence of the non-Gaussian behavior => Critical Point!

(4) Extract thermodynamic properties of the medium!

Random thermal source i

κ ∗σ 2 = const. ∝χ 4

χ 2

T 2

s∗σ = const. ∝χ 3

χ 2

T

Δp = N p( ) − N p ( )

Latti

ce r

esul

ts

Page 16: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 16/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

Higher Moments Analysis (BES)STAR Preliminary, QM09

1) Higher moments are more sensitive to QCD critical point related fluctuation.

2) The 4th moment, Kurtosis, is directly related to the corresponding thermodynamic quantity: susceptibility of conserved quantum numbers such as Baryon number and strangeness.

QM

09: arXiv 0907.4542

Page 17: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

Nu Xu 17/18CBM Discussion, Tsinghua University, China, November 2 – 4, 2009

κσ2 vs. Collision Energy2 2

1 1

* / [1/ ]k k

i ii i

κ σ σ κ

- Energy and centrality dependence of κσ2

- Flat results from models without the CP

MC data

Page 18: QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, 700064, India (2)Modern Physics

QCD Phase Boundary and the Critical Point

Summary1) Beam energy scan (BES) at RHIC is an

important/necessary step forward for exploring the QCD phase diagram with high-energy nuclear collisions

2) LGT predicts a spike at finite value of μB indicating the existence of CP

3) κ×σ for net-protons are consistent with unity for the beam energy range: √sNN = 200 - 62.4 -19.6 GeV at RHIC. Other conventional observables should also be studied.

B. Mohanty(1), X.F. Luo(2,3), H.G. Ritter(3) and N. Xu(3) (1) VECC, Kolkata, 70064, India (2) Modern Physics Department, University of Science and Technology, Hefei, China (3) Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, 94720 CA, USA