pseudo-measurement simulations and bootstrap for the ......s. varet ( cea-dam-dif, ens cachan )...

40
Pseudo-measurement simulations and bootstrap for the experimental cross-section covariances estimation with quality quantification S. Varet 1 P. Dossantos-Uzarralde 1 N. Vayatis 2 E. Bauge 1 1 CEA-DAM-DIF 2 ENS Cachan WONDER-2012 September 25-28 S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 1 / 29

Upload: others

Post on 20-Oct-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

  • Pseudo-measurement simulations and bootstrapfor the experimental cross-section covariances

    estimation with quality quantification

    S. Varet1

    P. Dossantos-Uzarralde1 N. Vayatis2 E. Bauge1

    1CEA-DAM-DIF

    2ENS Cachan

    WONDER-2012 September 25-28

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 1 / 29

  • Motivations: experimental cross-sections

    12 13 14 15 16 17 18 19 200.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    Energy (MeV)

    n2n

    cros

    s se

    ctio

    n

    2555Mn n2n cross section

    EXFOR data

    Available informations:the measurementstheir uncertainty

    → covariance matrix estimation and its inverse

    Example

    Evaluated cross sections uncertainty: generalized χ2 ([VDUVB11])

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 2 / 29

  • Motivations: experimental cross-sections covariances

    HOW?

    Empirical estimator: only one measurement per energy

    cov(Fi, Fj) ≈1n

    n∑k=1

    (F(k)i − F̄i)(F(k)j − F̄j)

    Conventionnal approach: propagation error formula [IBC04],[Kes08]

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 3 / 29

  • Motivations: experimental cross-sections covariances

    HOW?

    Empirical estimator: only one measurement per energyConventionnal approach: propagation error formula [IBC04],[Kes08]

    cov(Fi, Fj) ≈∑

    param. exp. (qk, ql)

    ∂Fi∂qk

    .∂Fj∂ql

    .cov(qk, ql)

    ex. : fission fragments yield, recoil protons yield,

    → the needed informations are rarely available→ linearity assumption

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 3 / 29

  • Motivations: experimental cross-sections covariances

    HOW?

    Empirical estimator: only one measurement per energyConventionnal approach: propagation error formula [IBC04],[Kes08]

    QUALITY OF THE COVARIANCES ESTIMATION?

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 3 / 29

  • Outline

    1 Notations

    2 Experimental covariances estimation: new method

    3 Validation

    4 Quality measure of the obtained estimation

    5 Conclusion

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 4 / 29

  • Notations

    Outline

    1 Notations

    2 Experimental covariances estimation: new method

    3 Validation

    4 Quality measure of the obtained estimation

    5 Conclusion

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 5 / 29

  • Notations

    Notations

    Schematic representation of the experimental cross sections

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 6 / 29

  • Experimental covariances estimation: new method

    Outline

    1 Notations

    2 Experimental covariances estimation: new method

    3 Validation

    4 Quality measure of the obtained estimation

    5 Conclusion

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 7 / 29

  • Experimental covariances estimation: new method

    Pseudo-measurements method

    Given the available information (the measurements and theiruncertainty)

    The idea:

    Repeat the available information in order to artificially increase thenumber of measurements

    The method:

    1 Construction of a regression model h (SVM, polynomial,...)2 Generation of r pseudo-measurements (S(1), ..., S(r)): gaussian

    noise centered on h: N ((h(E1), ..., h(EN))t, diag(σ1, ..., σN))3 Σ̂F: empirical estimator of ΣF4 Diagonal terms are imposed

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 8 / 29

  • Experimental covariances estimation: new method

    Pseudo-measurements method

    Given the available information (the measurements and theiruncertainty)

    The idea:

    Repeat the available information in order to artificially increase thenumber of measurements

    The method:

    1 Construction of a regression model h (SVM, polynomial,...)2 Generation of r pseudo-measurements (S(1), ..., S(r)): gaussian

    noise centered on h: N ((h(E1), ..., h(EN))t, diag(σ1, ..., σN))3 Σ̂F: empirical estimator of ΣF4 Diagonal terms are imposed

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 8 / 29

  • Experimental covariances estimation: new method

    The SVM regression principle [SS04], [VGS97]

    Linear case:Assume Fi = h(Ei) = w.Ei + b with Ei ∈ Rs and w ∈ Rs (here s = 1).The svm regression model is a solution of the constraint optimisationproblem:

    flat function: minimize12‖w‖2

    errors lower than ε: subject to{

    Fi − (w.Ei + b) ≤ ε(w.Ei + b)− Fi ≤ ε

    Non linear case:Find a map of the initial space of energy, (into a higher dimensionnalspace) such as the problem becomes linear in the new space(mapping via Kernel).

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 9 / 29

  • Experimental covariances estimation: new method

    Pseudo-measurements method

    Given the available information (the measurements and theiruncertainty)

    The idea:

    Repeat the available information in order to artificially increase thenumber of measurements

    The method:

    1 Construction of a regression model h (SVM, polynomial,...)2 Generation of r pseudo-measurements (S(1), ..., S(r)): gaussian

    noise centered on h: N ((h(E1), ..., h(EN))t, diag(σ1, ..., σN))3 Σ̂F: empirical estimator of ΣF4 Diagonal terms are imposed

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 10 / 29

  • Experimental covariances estimation: new method

    Pseudo-measurements method

    Σ̂F term at the ith line and jth column, for i and j ∈ {1, ..., N}:

    Cij =σiσjn + r

    n∑k=1

    (F(k)i − h(Ei))(F(k)j − h(Ej))√

    V̂i√

    V̂j

    +σiσjn + r

    r∑k=1

    (S(k)i − h(Ei))(S(k)j − h(Ej))√

    V̂i√

    V̂j

    and

    Cii = σ2i

    where n = 1.

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 11 / 29

  • Experimental covariances estimation: new method

    Number r of pseudo-measurements?

    Constraint on r

    0

    r too small:Σ̂F non invertible

    r too large:Σ̂F diagonal matrix

    r = 0

    Σ̂F invertible Σ̂F non invertible

    no pseudo-measurements r such as Σ̂F invertible

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 12 / 29

  • Validation

    Outline

    1 Notations

    2 Experimental covariances estimation: new method

    3 Validation

    4 Quality measure of the obtained estimation

    5 Conclusion

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 13 / 29

  • Validation

    Toy model

    Goal:Compare Σ̂F with ΣF: real case: ΣF is unknown

    ⇒ we build a toy model with ΣF fixed ⇒ numerical validation

    Toy Model:

    M :=

    M1

    ...MN

    (≡ F) ↪→ NN(mM,ΣM)number of M realisations n = 1, N = 5

    θ =

    [email protected]−3.49−0.67−7.41−2.29

    1CCCCA ΣF =0BBBB@

    9.49 −1.20 2.39 −0.03 0.07−1.20 3.64 −3.21 0.03 −0.092.39 −3.21 5.27 0.48 0.10−0.03 0.03 0.48 6.79 0.010.07 −0.09 0.10 0.01 5.72

    1CCCCA

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 14 / 29

  • Validation

    Pseudo-measurements with the ’Toy Model’

    0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5−20

    −15

    −10

    −5

    0

    5

    10

    Variable (ex : energy)

    Mea

    sure

    men

    ts (e

    x : X

    s)

    SVM regression on the toy model

    mM

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 15 / 29

  • Validation

    Pseudo-measurements with the ’Toy Model’

    0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5−20

    −15

    −10

    −5

    0

    5

    10

    Variable (ex : energy)

    Mea

    sure

    men

    t (ex

    : X

    s)

    SVM regression on the toy model

    mM

    Toy measurement

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 15 / 29

  • Validation

    Pseudo-measurements with the ’Toy Model’

    0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5−20

    −15

    −10

    −5

    0

    5

    10

    Variable (ex : energy)

    Mea

    sure

    men

    t (ex

    : X

    s)

    SVM regression on the toy model

    SVM regressionmM

    Toy measurement

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 15 / 29

  • Validation

    Pseudo-measurements with the ’Toy Model’

    0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5−20

    −15

    −10

    −5

    0

    5

    10

    Variable (ex : energy)

    Mea

    sure

    men

    ts (e

    x : X

    s)

    SVM regression on the toy model

    SVM regressionmMToy measurementr=1 pseudo−measurement

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 15 / 29

  • Validation

    Pseudo-measurements with the ’Toy Model’

    N=5, r = 1 sample of pseudo-measurements

    1 2 3 4 5

    1

    2

    3

    4

    5

    1 2 3 4 5

    1

    2

    3

    4

    5−2

    0

    2

    4

    6

    8

    Real matrix Estimation

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 15 / 29

  • Validation

    5525Mn: (n,2n) cross section

    Values extracted from [MTN11]N=11, r=1, Σ̂F is a 11x11 matrix

    12 13 14 15 16 17 18 19 200.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    Energy (eV)

    Cro

    ss s

    ectio

    n (m

    b)

    SVM modelExperimental cross sectionsPseudo−measurements

    1 2 3 4 5 6 7 8 9 10 11

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11 −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 16 / 29

  • Validation

    5525Mn: total cross section

    Values extracted from EXFOR [EXF]N=399, r=1, Σ̂F is a 399x399 matrix

    0 5 10 15x 106

    2.5

    3

    3.5

    4

    Energy (eV)

    Cro

    ss s

    ectio

    n (m

    b)

    SVM modelExperimental dataPseudo−measurements

    50 100 150 200 250 300 350

    50

    100

    150

    200

    250

    300

    350

    −0.01

    −0.005

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    How far is the estimation from the real matrix?

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 17 / 29

  • Quality measure of the obtained estimation

    Outline

    1 Notations

    2 Experimental covariances estimation: new method

    3 Validation

    4 Quality measure of the obtained estimation

    5 Conclusion

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 18 / 29

  • Quality measure of the obtained estimation

    Estimator quality

    Criterion choice: quality of Σ̂F and/or quality of Σ̂F−1

    ?⇒ distance criterion

    1 Distance between Σ̂F and ΣF: Frobenius norm

    IE(‖Σ̂F − ΣF‖fro) = IE

    N∑

    i=1

    N∑j=1

    |Ĉij − Cij|2 12

    2 Distance between Σ̂F

    −1and Σ−1F : Kullback-Leibler distance [LRZ08]

    KL(Σ̂F,ΣF) = trace((Σ̂F)−1.ΣF)− log(det(Σ̂F−1

    .ΣF))− N

    Criterion estimation → parametric bootstrap

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 19 / 29

  • Quality measure of the obtained estimation

    Bootstrap principle

    F : θF, ΣF: unknown

    (F(1), ..., F(n)) : h, Σ̂F: sample measurements

    (F′(1), ..., F′(n))1, ...,(F′(1), ..., F′(n))B resample measurements

    ̂̂ΣF1 ̂̂ΣFBResampling allows to make statistics on Σ̂F:

    ÎE(Σ̂F), V̂ar(Σ̂F), B̂ias(Σ̂F),...

    Resample strategy:classical: draw with replacement in the initial sample (F(1), ..., F(n))parametric: simulations with a fixed law (here N (h, Σ̂F))

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 20 / 29

  • Quality measure of the obtained estimation

    Estimation of IE(‖Σ̂F − ΣF‖fro) and KL(Σ̂F, ΣF)

    1st case: with r = 0, Σ̂F invertibleUsual parametric bootstrap:(F′(1), ..., F′(n))1, ..., (F′(1), ..., F′(n))B where F′(i) ↪→ N (H, Σ̂F) withH = (h(E1), ..., h(EN))t.ccΣFb term at the ith line and jth column, for i and j ∈ {1, ..., N} and for b = 1, ..., B:

    Cbij =σiσj

    n

    nXk=1

    (F′(k)bi − h(Ei))(F′(k)bj − h(Ej))q bV ′i q bV ′j and C

    bii = σ

    2i

    IE(‖Σ̂F − ΣF‖) ≈1B

    B∑b=1

    ‖̂̂ΣFb − Σ̂F‖KL(Σ̂F,ΣF) ≈

    1B

    B∑b=1

    KL(̂̂ΣFb, Σ̂F)S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 21 / 29

  • Quality measure of the obtained estimation

    Estimation of IE(‖Σ̂F − ΣF‖fro) and KL(Σ̂F, ΣF)

    2nd case: with r = 0, Σ̂F non invertible2 simultaneous parametric bootstraps:(F′(1), ..., F′(n))1, ..., (F′(1), ..., F′(n))B where F′(i) ↪→ N (H, cΣF) et(S′(1), ..., S′(r))1, ..., (S′(1), ..., S′(r))B where S′(i) ↪→ N (H, diag(cΣF))ccΣFb term at the ith line and jth column, for i and j ∈ {1, ..., N} and for b = 1, ..., B:Cbij =

    σiσjn + r

    nXk=1

    (F′(k)bi − h(Ei))(F′(k)bj − h(Ej))q bV ′i q bV ′j +

    σiσjn + r

    rXk=1

    (S′(k)bi − h(Ei))(S′(k)bj − h(Ej))q bV ′i q bV ′j

    and Cbii = σ2i

    IE(‖Σ̂F − ΣF‖) ≈1B

    B∑b=1

    ‖̂̂ΣFb − Σ̂F‖KL(Σ̂F,ΣF) ≈

    1B

    B∑b=1

    KL(̂̂ΣFb, Σ̂F)S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 22 / 29

  • Quality measure of the obtained estimation

    Bootstrap on the ’Toy Model’

    N = 5, n = 1, B = 30, ‖ΣF‖ = 15.6680, r = 1,

    0 2 4 6 8 10 1210

    12

    14

    16

    18

    20

    Index of the 1−sample of measures

    Em

    piric

    al m

    ean

    and

    varia

    nce

    of

    ||C2 F

    − Σ F

    || its

    boo

    tstra

    p es

    timat

    ion

    Empirical mean and variance of||C2F − ΣF|| its bootstrap estimation (B=30).

    ||C2F − ΣF||

    Σb=1B ||C2F

    b − C2F||/B

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 23 / 29

  • Quality measure of the obtained estimation

    Bootstrap on the ’Toy Model’

    N = 5, n = 1, B = 30, ‖ΣF‖ = 15.6680, r = 1,

    0 2 4 6 8 10 1210

    12

    14

    16

    18

    20

    Index of the 1−sample of measures

    Em

    piric

    al m

    ean

    and

    varia

    nce

    of

    ||C2 F

    − Σ F

    || its

    boo

    tstra

    p es

    timat

    ion

    Empirical mean and variance of||C2F − ΣF|| its bootstrap estimation (B=30).

    ||C2F − ΣF||

    Σb=1B ||C2F

    b − C2F||/B

    0 2 4 6 8 10 122

    3

    4

    5

    6

    7

    Index of the 1−sample of measures

    Em

    piric

    al m

    ean

    and

    varia

    nce

    of K

    L an

    d its

    boo

    tstra

    p es

    timat

    ion

    Empirical mean and variance of KL and its bootstrap estimation (B=30).

    KLKL boot

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 23 / 29

  • Quality measure of the obtained estimation

    5525Mn: (n,2n) cross section [MTN11]

    12 13 14 15 16 17 18 19 200.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    Energy (eV)

    Cro

    ss s

    ectio

    n (m

    b)

    SVM modelExperimental cross sectionsPseudo−measurements

    1 2 3 4 5 6 7 8 9 10 11

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11 −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    IE(‖Σ̂F − ΣF‖) ≈ 0.019 IE(KL(Σ̂F)) ≈ 6.834Var(‖Σ̂F − ΣF‖) ≈ 1.2 10−5 Var(KL(Σ̂F)) ≈ 2.351

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 24 / 29

  • Quality measure of the obtained estimation

    5525Mn: total cross section

    0 5 10 15x 106

    2.5

    3

    3.5

    4

    Energy (eV)

    Cro

    ss s

    ectio

    n (m

    b)

    SVM modelExperimental dataPseudo−measurements

    50 100 150 200 250 300 350

    50

    100

    150

    200

    250

    300

    350

    −0.01

    −0.005

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    IE(‖Σ̂F − ΣF‖) ≈ 2.385 IE(KL(Σ̂F)) ≈ 386.36Var(‖Σ̂F − ΣF‖) ≈ 4.3 10−5 Var(KL(Σ̂F)) ≈ 6.19

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 25 / 29

  • Conclusion

    Outline

    1 Notations

    2 Experimental covariances estimation: new method

    3 Validation

    4 Quality measure of the obtained estimation

    5 Conclusion

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 26 / 29

  • Conclusion

    Conclusion

    ΣF estimation

    1 Classical approaches

    X one measurement per energyX experimental informations rarely availableX quite unrealistic assumptions

    2 Our approach:

    X only measurements are neededX quality measure of the estimation

    Estimator quality

    Numerical validation

    Application

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 27 / 29

  • Conclusion

    Conclusion

    ΣF estimation

    Estimator quality

    Estimation of ‖bΣF − ΣF‖ with BootstrapEstimation of KL(bΣF) with Bootstrap

    Numerical validation

    Application

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 27 / 29

  • Conclusion

    Conclusion

    ΣF estimation

    Estimator quality

    Numerical validation

    Toy model

    Application

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 27 / 29

  • Conclusion

    Conclusion

    ΣF estimation

    Estimator quality

    Numerical validation

    Application

    Application to 5525Mn

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 27 / 29

  • Conclusion

    Future work

    New approach

    Optimisation: shrinkage approach (in progress)

    Other approaches

    Kriging: cf poster session

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 28 / 29

  • Conclusion

    References

    Experimental Nuclear Reaction Data EXFOR, http://www.oecd-nea.org/dbdata/x4/.

    M. Ionescu-Bujor and D. G. Cacuci, A comparative review of sensitivity and uncertaintyanalysis of large-scale systems −i: Deterministic methods, Nuclear Science andEngineering 147 (2004), 189–203.

    Grégoire Kessedjian, Mesures de sections efficaces d’actinides mineurs d’intérêt pour latransmutation, Ph.D. thesis, Bordeaux 1, 2008.

    E. Levina, A. Rothman, and J. Zhu, Sparse estimation of large covariance matrices via anested lasso penalty’, The Annals of Applied Statistics 2 (2008), no. 1, 245–263.

    A. Milocco, A. Trkov, and R. Capote Noy, Nuclear data evaluation of 55 mn by the empirecode with emphasis on the capture cross-section, Nuclear Engineering and Design 241(2011), no. 4, 1071–1077.

    A.J. Smola and B. Schölkopf, A tutorial on support vector regression, Statistics andComputing 14 (2004), 199–222.

    S. Varet, P. Dossantos-Uzarralde, N. Vayatis, and E. Bauge, Experimental covariancescontribution to cross-section uncertainty determination, NCSC2 Vienna, 2011.

    V. Vapnik, S. Golowich, and A. Smola, Support vector method for function approximation,regression estimation, and signal processing, Advances in Neural Information ProcessingSystems 9 (1997), 281–287.

    S. Varet ( CEA-DAM-DIF, ENS Cachan ) Experimental covariances WONDER-2012 29 / 29

    NotationsExperimental covariances estimation: new methodValidationQuality measure of the obtained estimationConclusion