proyecto diseÑo 2^k.docx

37
PROYECTO: ANÁLISIS EXPERIMENTAL LA EFICACIA DE LA DISOLUCIÓN DEL ANTIÁCIDO, ALKA - SELTZER DISEÑO FACTORIAL 2^K

Upload: tunene0125

Post on 29-Nov-2015

36 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: PROYECTO DISEÑO 2^K.docx

EXPERIMENTAL

LA EFICACIA DE LA DISOLUCIÓN DEL ANTIÁCIDO, ALKA - SELTZER

DISEÑO FACTORIAL 2^K

Page 2: PROYECTO DISEÑO 2^K.docx

29

DISEÑO FACTORIAL 2K

EFICIENCIA DE LA DISOLUCIÓN DEL ANTIÁCIDO, ALKA-SELTZER

DEINER BOLAÑO BARRIAGA2011116009

KEVIN BRUZÓN GRANADOS2011116076

ANDREA IGLESIAS PARDO2011116013

OLIVER PATIÑO GALLO2011116079

OSCAR OSPINO AYALA2011116052

ESTADISTICA IIIFACULTAD DE INGENIERÍA

UNIVERSIDAD DEL MAGDALENASANTA MARTA

2013-II

Page 3: PROYECTO DISEÑO 2^K.docx

29

RESUMENSe desea analizar los factores que afectan al tiempo de disolución de un ALKA-SELTZER, para determinar las condiciones óptimas en las que este producto pueda tener una mayor eficiencia, que se refleja en su rápida efervescencia, lo cual busca ofrecer al cliente un producto más satisfactorio.

Este trabajo sigue la directriz de un diseño experimental 2^k, las características del experimento se realizó con tres factores, es decir, 2^3. Además crítica los supuestos mencionan más adelante. El uso de herramientas como Excel y Statgraphics para revisar los resultados y responder a las preocupaciones planteadas por los miembros de este grupo para esta investigación

Inicialmente identificado y seleccionado los tres factores, cada uno con dos niveles para el experimento los cuales eran, la temperatura del líquido 1 ° C y 25 ° C, el tipo de líquido se tomó como agua y agua azucarada y la cantidad del fluido que era 150 ml y 250 ml.

ABSTRACYou want to analyze the factors affecting the dissolution time of a ALKA SELTZER order to determine the optimum conditions in which this product can achieve greater efficiency which will be reflected in its rapid effervescence, which seeks to provide customer a more satisfactory product.

This work follows the experimental design guideline 2 ^ k even more precisely the characteristics of the experiment was performed with three factors, i.e., 2 ^ 3. Moreover reviewed the assumptions mention later. Using tools such as Excel and Statgraphics to review the results and answer the concerns raised by the members of this group for this research

Initially identified and selected three factors, each with two levels for the experiment, which were the liquid temperature 1 ° C and 25 ° C, the type of liquid was taken as water and sugar water and the amount of fluid which was 150ml and 250ml.

Page 4: PROYECTO DISEÑO 2^K.docx

29

ContenidoINTRODUCCIÓN..................................................................................................................4

OBJETIVOS...........................................................................................................................5

GENERAL..........................................................................................................................5

ESPECÍFICOS...................................................................................................................5

PLANTEAMIENTO DEL PROBLEMA................................................................................6

MARCO TEÓRICO...............................................................................................................8

DISEÑO FACTORIAL GENERAL...........................................................................8

DISEÑO FACTORIAL GENERAL 2^K...................................................................9

MATERIALES UTILIZADOS PARA LA TOMA DE MUESTRAS Y ANALISIS............10

EXPERIMENTACIÓN.........................................................................................................10

FACTORES DEL DISEÑO.................................................................................................11

ELECCIÓN DEL TAMAÑO DE LA MUESTRA....................................................12

ANALISIS DE RESULTADOS...................................................................................16

ANALISIS DE VARIANZA......................................................................................17

MODELO DE REGRESIÓN...................................................................................18

VALIDACIÓN DEL MODELO.................................................................................19

SUPUESTO DE NORMALIDAD:.......................................................................19

SUPUESTO DE HOMOCEDASTICIDAD:........................................................20

Factor A........................................................................................................................20

Factor B........................................................................................................................21

Factor c.........................................................................................................................21

SUPUESTO DE INDEPENDENCIA:.....................................................................21

DIAGRAMA DE PARETO:.....................................................................................22

GRÁFICA DE EFECTOS PRINCIPALES:...........................................................23

GRÁFICA DE INTERACCIÓN:..............................................................................23

GRÁFICA DE SUPERFICIE DE RESPUESTA ESTIMADA:.............................24

GRÁFICA DE CONTORNO:..................................................................................24

Page 5: PROYECTO DISEÑO 2^K.docx

29

PUNTO ÓPTIMO.................................................................................................................25

CONCLUSION.....................................................................................................................26

RECOMENDACIONES......................................................................................................27

Page 6: PROYECTO DISEÑO 2^K.docx

29

INTRODUCCIÓN

El hombre desde la antigüedad siempre ha tenido la necesidad de realizar experimentos. Las formas de experimentación del hombre primitivo eran muy aleatorias, ya que, dependían en gran porcentaje de la naturaleza, lo cual generaba demasiada variabilidad en los resultados.Los experimentos en la industria moderna son más complicados que los que eran desarrollados en el pasado, porque son muchos los factores que son susceptibles de controlarse y que afectan a la calidad de los productos, de aquí que son muchas las combinaciones de dichos factores que se deben probar para obtener resultados válidos y consistentes.El diseño de experimentos surge como herramienta de apoyo en el área de la Investigación, estudio de métodos y mejoramiento de procesos, entre otros puntos que involucran estudio y análisis en la Industria. Resulta necesaria para el Ingeniero Industrial la toma de decisiones que permitan optimizar los procesos que se están llevando a cabo basándose en la calidad y en la mejor utilización de los recursos, es por esto, que el Diseño Experimental aparece como instrumento para la identificación de principios y factores basándose en métodos estadísticos. Para llevar a cabo el procedimiento anterior, se realizan experimentos o pruebas con la intención de que al hacer modificaciones en algunos de los factores sea posible detectar, resolver, simplificar o minimizar los problemas de calidad y funcionamiento en un proceso dado.Una vez asimilado lo que es y conocer la utilidad he importancia de lo que es un diseño de experimentos para la investigación, la cual conlleva una mejora continua en las industrias, pasamos a indicar que busca nuestro problema de investigación y que resultados se esperan de dicha investigación para finalmente concluir e informar las recomendaciones respectivas.Para nuestro caso el experimento que iniciamos nos permitirá analizar diversos factores que influyen en el tiempo de disolución de un Alka-Seltzer para poder determinar las condiciones ideales del uso de esta pastilla y así poder disminuir dicho tiempo, para así poder volver a este producto más competitivo en el mercado y poder incrementar sus ventasLos tres factores que para nuestra investigación y desarrollo del experimento tienen mayor influencia y aportan al desarrollo de éstos son: la temperatura del líquido, el tipo de líquido en el que se va a disolver la pastilla y además la cantidad de líquido que se va a utilizar.

Page 7: PROYECTO DISEÑO 2^K.docx

29

OBJETIVOS

GENERAL

Establecer por medio de un estudio exhaustivo, en que condiciones se puede obtener más rápido la disolución del antiácido efervescente, ALKA-SELTZER con el fin de minimizar el tiempo de espera de los consumidores a la hora de necesitarlo, aumentando así su eficacia.

ESPECÍFICOS

Utilizar los conceptos adquiridos acerca del análisis de un diseño factorial 2k además de los múltiples recursos ofrecidos por el diseño experimental el cual ha adquirido vital importancia en la Industria, investigación y procesos de Ingeniería.

Aplicar los conocimientos de las clases a problemáticas reales para identificar la utilidad de la estadística y el diseño experimental como herramienta para las soluciones de esta.

Evidenciar por medio de las herramientas obtenidas del Diseño Experimental, los factores más significativos que influyen en el tiempo de disolución del antiácido.

Page 8: PROYECTO DISEÑO 2^K.docx

29

PLANTEAMIENTO DEL PROBLEMA

El Alka Seltzer es un medicamento reconocido en gran parte del mundo gracias a su efectividad en cuanto al mejoramiento de las molestias gástricas ocasionales relacionadas con híper-acides. Con el tiempo dicho producto ha disminuido sus ventas debido múltiples factores, uno de ellos es la alta competencia existente en el segmento de los antiácidos, ya que muchos consumidores han encontrado en otros productos como sal de frutas lua, más satisfacción en cuanto al alivio y la rapidez en la que se disuelve. Muchos clientes toman la decisión de comprar este tipo de producto con base en la rapidez de disolución, ya que este factor es uno de los más importante de este medio; pasando a un segundo plano su efectividad en el alivio de la acides estomacal. Esta situación ha provocado que el Alka- Seltzer haya disminuido sus ventas. Muchos clientes cometen el error de consumir estos productos en condiciones inadecuadas o menos optimas; como se ve en muchas ocasiones al tomar el agua de la nevera a temperaturas muy bajas, el cual es un factor muy importante en el tiempo de disolución; además al seguir siempre ese mito, el cual dice que la tableta se disolverá más rápido en agua natural dejando a un lado la alternativa de ingerir este medicamento en otros tipos de líquidos como lo son los jugos naturales o refrescos y ay quienes dicen que el Alka-Seltzer debe prepararse en un máximo de agua de ¼ de la altura del baso promedio. Con el paso del tiempo se ha aprendido que para el estudio de un proceso o sistema en particular, los Investigadores en cualquier campo pueden basarse en el estudio realizado a partir del diseño experimental. Ya que será el diseño experimental la herramienta que utilizaremos para desarrollar nuestro problema, se hace netamente necesario conocer y tener claro el concepto de “experimento”, debido a que gracias a éste podremos estudiar y posteriormente concluir situaciones que finalmente nos permitan la toma acertada de decisiones. Definimos al experimento como “el momento de la investigación científica en la que se ponen en práctica las teorías y las hipótesis de modo tal de observar los resultados de las mismas.

En este caso, nuestro problema se enfatiza en determinar las condiciones ideales para disminuir el tiempo de disolución de un Alka-Seltzer; ahora bien, para poder determinar lo anteriormente planteado se estudiará el tiempo de disolución a partir de la interacción de los tres factores que se identificaron como los más influyentes en la variable de salida, los cuales fueron: la temperatura del líquido, el tipo de líquido en el que se va a disolver la pastilla y además la cantidad de líquido que se va a utilizar. Aplicando lo

Page 9: PROYECTO DISEÑO 2^K.docx

29

anterior a un diseño de experimentos tenemos en este caso que las variables serían:TABLA 1. Variables de entrada y salida del experimento.

VARIABLE DE SALIDA TIEMPO DE DISOLUCION DEL ALKA SELTZER

VARIABLES DEENTRADA

Cuantitativa Temperatura del líquido en (°C)

Cuantitativa Cantidad del líquido en (ml)Cualitativa Tipo de liquido

Con el proceso anterior se busca implantar la combinación más adecuada de los factores ya mencionados, todo esto con el fin de hacer uso del diseño experimental, el cual nos permitirá optimizar la información generada acerca del proceso de disolución. Nuestra problemática en términos generales puede resumirse en determinar cuáles de los factores mencionados no está siendo correctamente utilizado, generando así un aumento en el tiempo de disolución, lo cual genera molestia entre algunos consumidores ocasionando así una disminución clara de sus ventas.

Page 10: PROYECTO DISEÑO 2^K.docx

29

MARCO TEÓRICO

Normalmente es más eficiente estimar el efecto de las variables simultáneamente. Cada diseño experimental contiene entonces un grupo de experimentos. Sin embargo, el diseño elegido debe investigar las inquietudes con el conocimiento actual del problema y cuya iluminación consideramos un avance significativo.Por ejemplo 2 investigadores de la misma competencia enfrentados a un mismo problema partirán, en general, de distintos puntos, avanzando por caminos diferentes y aun así podrán llegar a la misma solución. El diseño de experimentos no busca reglas dogmáticas para la solución de problemas, ni mucho menos uniformidad, sino la convergencia en las respuestas.La convergencia hacia el resultado se producirá más rápidamente y con más seguridad si dispone de:

Métodos eficientes de diseño de experimentos, que le permitan obtener respuestas a sus preguntas que no sean ambiguas y lo menos afectadas por errores experimentales.

Análisis de sensibilidad de los datos, que indiquen lo que puede deducirse razonablemente de la hipótesis en vigor y de pie a nuevos pensamientos a considerar.En cualquier investigación es de mayor importancia: (1) definir claramente los objetivos de estudio que se va a llevar a cabo; (2) asegurarse de que todos los interesados en el estudio están de acuerdo con esos objetivos; (3) estar conforme en los criterios que determinarán que los objetivos se han alcanzado, y (4) tener previsto que, si los objetivos cambian, todas las partes interesadas lo conozcan y se pongan de acuerdo en los nuevos objetivos y criterios (véase box 1988)

DISEÑO FACTORIAL GENERALLos resultados del ANOVA para 2 factores pueden ser extendidos a un caso general en donde a son los niveles del factor A, b son los niveles del factor B, c son los niveles del factor C, y así sucesivamente, los cuales pueden ser arreglados en un experimento factorial, en el cual el numero de replicas es n. los diseños factoriales son ampliamente utilizados en experimentos en los que intervienen varios factores para estudiar el efecto conjunto de estos sobre una variable de salida. Existen excepciones del diseño factorial general que resultan importantes porque se usan ampliamente en el trabajo de investigación, y por qué constituyen la base para otros diseños de gran valor práctico.El diseño factorial fraccionario 2 k-p se usa en experimentos de escrutinio para identificar con rapidez y de manera eficiente el subconjunto de factores que son activos, y para obtener alguna información sobre la interacción. En

Page 11: PROYECTO DISEÑO 2^K.docx

29

muchos casos examinar los factores activos con más detalle se hace posible en estos diseños.

DISEÑO FACTORIAL GENERAL 2^KEl más importante de los casos especiales ocurre cuando se tienen k factores, cada uno con 2 niveles. Estos niveles pueden ser cuantitativos como sería el caso de 2 valores de temperatura presión o tiempo. También pueden ser cualitativos como sería el caso de 2 maquinas, 2 operadores. Los niveles se especifican como: “superior” e “inferior” de un factor, o quizás para indicar la presencia o ausencia del mismo.Una réplica completa de tal diseño requiere que se recopilen 2 x 2 x….x 2=2^k observaciones y se conoce como diseño general 2^k.Se supone que:

Los factores son fijos. Los diseños son completamente aleatorios, es decir, el orden de ejecución. Se satisface la suposición usual de normalidad.

El diseño 2^k es particularmente útil en las primeras fases del trabajo experimental, cuando es probable que haya muchos factores por investigar. Lo que conlleva un menor número de corridas con las cuales pueden estudiarse k factores en un diseño factorial completo.Debido a que solo hay 2 niveles por factor, debe suponerse que la respuesta es aproximadamente lineal en el intervalo de los niveles elegidos de los factores.

DISEÑO 23

Suponga que se encuentran en estudio tres factores A, B Y C. cada uno con 2 niveles. Este diseño se conoce como diseño factorial 23 y las o combinaciones de tratamientos pueden representarse gráficamente por medio de un cubo.Existen en realidad 3 notaciones distintas que se usan ampliamente para las corridas en el diseño 2k

La primera es la notación “+.-“llamada “geométrica”. La segunda consiste en el uso de las letras minúsculas para identificar las

combinaciones de tratamientos. Ese utilizan dígitos de 1 y 0 para denotar los niveles alto y bajo del factor

respectivamente.

Page 12: PROYECTO DISEÑO 2^K.docx

29

Tabla 1.

MATERIALES UTILIZADOS PARA LA TOMA DE MUESTRAS Y ANALISIS

Termómetro Beaker Probeta Agua Azúcar Hielo Cronometro Alka-seltzer

EXPERIMENTACIÓN

En la evaluación experimental realizada por nuestro grupo decidimos estudiar los factores que influyen en el tiempo de efervescencia del Alka Seltzer. Se consideraron los siguientes factores: temperatura del líquido donde se disuelve, la cantidad de este y la composición del líquido ya sea natural o dulce.

Se escogió la temperatura porque se considere que pude alterar o influir en el tiempo de disolución del Alka-seltzer. Este factor varia cada ves que el producto se va a ser consumido por lo que se eligieron dos temperaturas de líquido que son comunes en el consumo diario las cuales son 25°c y 1°c. Un ejemplo palpable de esta situación es la temperatura a la cual sale el agua de los grifos (Aprox. 25°c) y la temperatura en la que se encuentra el agua al salir del refrigerador (Aprox. 1°c).

La cantidad del líquido se eligió como factor para aprobar o desmentir el mito de, que a mayor cantidad de líquido más rápido se disolverá la tableta de medicamento. Se tomaron como referencia dos medidas del líquido;

Page 13: PROYECTO DISEÑO 2^K.docx

29

150ml, ya que es la medida que se asemeja a los 3 dedos que por lo general se aconseja verter en el recipiente en el que se va a consumir el líquido. Y los 250ml que por lo general es la capacidad que los vasos pueden almacenar.

En la composición del líquido se eligió el dulce y neutro (natural). La mayoría de los jugos y refrescos son endulzados con azúcar, es por esto que se endulzo el agua con azúcar ya que es el endulzante mas común en la sociedad y es el mas asequible Después de haber determinado los factores y adecuar el lugar en el que se tomaron los datos, el cual fue el laboratorio de óptica de la universidad del magdalena, se procedió a realizar el diseño del experimento con el apoyo del software STATGRAPHICS para aleatorizar las corridas y posteriormente validar la adecuación del modelo por medio de los supuestos y reducir el efecto de los factores perturbantes.Para la recopilación de los datos se comenzó midiendo el volumen (150ml o 250ml) del tipo de líquido (dulce o neutro) en la probeta y vertiéndolo posteriormente en el beaker; luego en este recipiente se llevaba al líquido a la temperatura deseada (25°c o 1°c) para la prueba. Para que la temperatura de 1°c no tuviera fluctuaciones el vaso se introdujo en una cava llena de hielo. Luego de tener el líquido en las condiciones deseadas se procedió a introducir la tableta de Alka Seltzer en el recipiente y tomar el tiempo que demorara la tableta del medicamento en desaparecer completamente del líquido.

FACTORES DEL DISEÑO

FACTORES NIVEL DEL FACTORBAJO ALTO

Temperatura (°C) 1 25Cantidad (ml) 150 250Tipo de agua Dulce NeutroTABLA 2.Como observamos en la tabla anterior las pruebas que se hicieron fueron sometidas a dos niveles para cada factor, por tanto durante la toma de datos se regularon cada uno de ellos y se tomaron aleatoriamente haciendo las respectivas combinaciones.Antes de presentar los datos codificados, calcularemos la cantidad de replicas necesarias para nuestro experimento.

ELECCIÓN DEL TAMAÑO DE LA MUESTRA

Page 14: PROYECTO DISEÑO 2^K.docx

29

Inicialmente se hizo un análisis de varianza simple para encontrar la diferencia significativa mínima que fue utilizado para hallar el número de réplicas y el tamaño de la muestra a utilizar en nuestro diseño. Para hacer el ANOVA simple tomamos como factor la temperatura evaluamos 3 niveles, dos que utilizamos de forma fija en el diseño y uno intermedio para tener una mayor certeza del comportamiento del tiempo de disolución en diferentes tipos de temperaturas, Como se muestra a continuación:

Análisis de varianza de un factor

Temperatura   1 12 25Observaciones 1 120 92 38

2 140 80 363 101 88 454 105 85 32,5

 TOTAL   116,5 86,25 37,875Con;

α N a N

0,05 12 3 4

Luego con ayuda de Excel hicimos el ANOVA simple, que nos arrojó los siguientes resultados:

Análisis de varianza de un factor

RESUMEN        Grupos Cuent

aSuma

Promedio Varianza

Columna 1 4 466 116,5 312,333333Columna 2 4 267 86,25 25,5833333Columna 3 4 151,5 37,875 27,7291667

Ho: Las medias de los tratamientos son iguales.H1:Al menos un par de las medias de los tratamientos es diferente.

ANÁLISIS DE VARIANZA

Origen de las variaciones

Suma de cuadrados

Grados de libertad

Promedio de los cuadrados

F Probabilidad

Valor crítico para F

Entre grupos

12654,2917

2 6327,14583 11,2384083

0,00357382

4,25649473

Dentro de 5066,937 9 562,993056      

Page 15: PROYECTO DISEÑO 2^K.docx

29

los grupos 5             Total 17721,22

9211        

Ahora con el ANOVA, podemos concluir que existe diferencia significativa pues Fo>Fc, por lo que afirmamos que no existe evidencia estadística de que al menos un par de las medias de los tratamientos es diferente, por lo que no se rechaza la Ho.Luego hallamos la diferencia utilizando LSD:Encontramos el valor que LSD:

tα/2,N-a

2,262157163

LSD 318,3946933

Comenzamos buscando la diferencia de las medias de los tratamientos de una con respecto a otra y comparamos con el valor de LSD:y1-y2 30,25 > 1310,4291

6mínima diferencia de significancia

y1-y3 78,625 > 1310,42916

significancia

y2-y3 48,375 > 1310,42916

significancia

Luego comenzamos hallar los valores de las réplicas que se van a utilizar en el diseño, utilizando la diferencia significativa más pequeña, teniendo en cuenta que los niveles del factor A, corresponde a 3, pero el del factor B corresponde a 2, D es la diferencia mínima significativa del ANOVA simple hecha y la varianza es el MSE del error localizada en el ANOVA:a=3 (Niveles del factor. Temperatura (°C))b=2 (Niveles del factor. Cantidad del liquido (ml))B 2

A 3n 4N 12

Obtenemos la tabla para los distintos valores de n:

Page 16: PROYECTO DISEÑO 2^K.docx

29

Utilizamos las formulas:

Para hallar los valores de B, utilizamos la tabla de curvas de operaciones característica en el análisis de varianzas para factores fijos descritas en el libro diseños y análisis de experimentos (Montgomery); con V=2, alfa 0,05 y hallando el valor B según φ y V2 de cada renglón, los resultados obtenidos se muestran a continuación junto con el hallazgo hecho en la grafica de curvas:

ELECCION DEL TAMAÑO DE LA MUESTRA

φ^2 Φ V1=grados de libertad del numerador

V2=grados de libertad del error

β

2 2,438029628

1,21901481

2 6 0,7

3 3,657044443

1,82852222

2 12 0,38

4 4,876059257

2,43802963

2 18 0,057

Page 17: PROYECTO DISEÑO 2^K.docx

29

Por último utilizamos el valor de n que nos proporcionan el valor de β más pequeña, que para nuestro caso es n=4. Es decir haremos 4 ensayos en el diseño, correspondiendo 1 experimento y 3 replicas. Según lo que se calculo se procedió a realizar el diseño del experimento con el apoyo del software STATGRAPHICS para aleatorizar las corridas y posteriormente validar la adecuación del modelo por medio de los supuestos y reducir el efecto de los factores perturbantes. Ya que fue calculado el numero de replicas que se deben realizar en el experimento se mostrará la tabla donde están consignados los datos en segundos el tiempo de disolución del antiácido.

TEMPERATURA (°C)

DULCE NEUTRO

CANTIDAD DEL AGUA (ml)150 250 150 250

1 120 140 101 105140 158 103 104157 150 130 115153 146 125 113,3

25 48 57 34 3249 55 36 3156 61 32 3254 63 34 30

ANALISIS DE RESULTADOSComo estamos trabajando nuestro experimento con un diseño factorial 2k se hace necesario codificar los datos para realizar los pertinentes cálculos, realizar el diseño como tal y finalmente concluir en base a ello, lo anterior se ejemplifica en la siguiente tabla:

CORRIDAS

A B C REPLICASI II III IV

1 -1 -1 -1 120 153 140 1572 1 -1 -1 48 49 56 543 -1 1 -1 140 158 150 1464 1 1 -1 57 61 63 555 -1 -1 1 101 125 130 1036 1 -1 1 34 36 32 347 -1 1 1 105 104 115 113,3

Page 18: PROYECTO DISEÑO 2^K.docx

29

8 1 1 1 30 32 31 32En la tabla anterior están consignados los datos en segundos del tiempo de disolución del antiácido al cual se le extrajo la muestra para realizar los análisis pertinentes, como se puede observar cada factor fue divido en dos niveles alto y bajo donde el primero se identifica con un signo + mientras que el segundo con un signo menos, lo anterior se realizo con el fin de poder codificar los datos y realizar el diseño factorial 2k, como se dijo anteriormente.

ATAMIENTO VALOR

A B AB C AC BC ABC

1 570 -1 -1 1 -1 1 1 -1A 207 1 -1 -1 -1 -1 1 1B 594 -1 1 -1 -1 1 -1 1Ab 236 1 1 1 -1 -1 -1 -1C 459 -1 -1 1 1 -1 -1 1Ac 136 1 -1 -1 1 1 -1 -1Bc 437,3 -1 1 -1 1 -1 1 -1Abc 125 1 1 1 1 1 1 1CONTRASTES

  -1356,3 20,3 15,7 -449,7 85,7 -85,7 5,7

EFECTOS   -84,76875

1,69166667

1,3083333

-37,475 7,1416667

-7,141667

0,475

SUMA CUADRADOS

  57485,928

12,8778125

7,7028125

6319,6903

229,51531

229,51531

1,015313

A partir de la tabla anterior se puede observar que los factores A y C, tienen efectos realmente mayores con respecto a lo demás, dándonos esto un indicio de que factores serán significativos en la experiencia.

TRATAMIENTO

EFECTOS S.C. CONTRIBUCION %

A -84,76875 57485,92781

89,4218166

B 1,69166667

12,8778125 0,02003199

AB 1,30833333

7,7028125 0,01198205

C -37,475 6319,690313

9,83054827

Page 19: PROYECTO DISEÑO 2^K.docx

29

AC 7,14166667

229,5153125

0,35702087

BC -7,14166667

229,5153125

0,35702087

ABC 0,475 1,0153125 0,00157936Total 64286,2446

La columna etiquetada como contribución porcentual mide la contribución porcentual de cada uno de los términos del modelo a la suma de cuadrados total. La contribución con frecuencia es una guía aproximada pero efectiva de la importancia relativa de cada término del modelo.

ANALISIS DE VARIANZAAnálisis de Varianza para TIEMPO DE DISOLUSION

Fuente Suma de Cuadrados

Gl Cuadrado Medio

Razón-F

Valor-P

A:TEMPERATURA 57485,9 1 57485,9 742,03 0,0000B:CANTIDAD 12,8778 1 12,8778 0,17 0,6871C:TIPO DE AGUA 6319,69 1 6319,69 81,57 0,0000AB 7,70281 1 7,70281 0,10 0,7552AC 229,515 1 229,515 2,96 0,0981BC 229,515 1 229,515 2,96 0,0981ABC 1,01531 1 1,01531 0,01 0,9098Error total 1859,32 24 77,4716Total (corr.) 66145,6 31

La tabla ANOVA nos muestran cuales factores son significantes en nuestro experimento, en este caso podemos notar que los factores que demuestran tener significancia son TEMPERATURA y TIPO DE AGUA, pues el valor P no es mayor que nuestro nivel de significancia que corresponde al 5%, confirmando y ratificando lo arrojado por los efectos.

MODELO DE REGRESIÓN

Coef. de regresión para TIEMPO DE DISOLUSIONCoeficiente Estimado

Page 20: PROYECTO DISEÑO 2^K.docx

29

Bo 86,3844A:TEMPERATURA -42,3844B:CANTIDAD 0,634375C:TIPO DE AGUA -14,0531AB 0,490625AC 2,67812BC -2,67812ABC 0,178125

y=86 ,3844−42,3844 x1+0,634375x 2−14,0531 x3+0,490625x 1x 2+2,67812x 1x 3−2,667812x 2x 3+0,178125 x1 x2 x3

Teniendo en cuenta que los factores que resultaron significativos fueron el A: TEMPERATURA y el C: TIPO DE AGUA en el modelo de regresión anterior se pueden omitir los factores e interacciones que son insignificantes, resaltando que uno de los factores significativos esuna variable categórica quedando así dos modelos de regresión, uno correspondiente al nivel bajo de esta que es cuando toma el valor de -1 y otro al nivel alto que es cuando toma el valor de +1.

Para el nivel bajo de la variable categórica.

y=86 ,3844−42,3844 x1+14,0531

Para el nivel alto de la variable categórica.

y=86 ,3844−42,3844 x1−14,0531

VALIDACIÓN DEL MODELO

A través del software STATGRAPHICS se valido la adecuación del modelo por medio de los supuestos.

SUPUESTO DE NORMALIDAD:

Ho: Los datos provienen de una distribución normal.

Page 21: PROYECTO DISEÑO 2^K.docx

29

H1: Los datos no provienen de una distribución normal.

Gráfica de Probabilidad Normal para Residuos

-23 -13 -3 7 17residuos

0,1

1

5

20

50

80

95

99

99,9

po

rcen

taje

Por medio de la anterior grafica de probabilidad podemos decir que no hay evidencia estadística de que los datos no se distribuyen normalmente, por lo que no se rechaza la Ho. Y se concluyen que los datos tomados del tiempo de disolución provienen de una distribución normal.

SUPUESTO DE HOMOCEDASTICIDAD:

Factor AHo: La varianza de las medias de los tratamientos son iguales.H1: Al menos un par de varianzas de las medias de los tratamientos es diferente.

Page 22: PROYECTO DISEÑO 2^K.docx

29

Gráfica de Residuos para TIEMPO DE DISOLUSION

-25

-15

-5

5

15

25re

sid

uo

1 25

Factor B

150 250

Gráfica de Residuos para TIEMPO DE DISOLUSION

-25

-15

-5

5

15

25

resi

du

o

Page 23: PROYECTO DISEÑO 2^K.docx

29

Factor c

DULCE NEUTRO

Gráfica de Residuos para TIEMPO DE DISOLUSION

-25

-15

-5

5

15

25

resi

du

o

Gracias a la graficas anteriores de HOMOCEDASTICIDAD para cada uno de los factores, podemos decir que no existe evidencia estadística de que al menos un par de varianzas de los tratamientos de los factores es diferente, por lo que no se rechaza la Ho.

SUPUESTO DE INDEPENDENCIA:Ho: Los residuos se comportan de manera independiente.H1: Los residuos no se comportan de manera independiente.

DULCENEUTRO

Gráfica de Residuos para TIEMPO DE DISOLUSION

0 10 20 30 40número de ejecución

-25

-15

-5

5

15

25

resi

du

o

Del anterior diagrama se concluye que no hay evidencia estadística de que los residuos no se comportan de manera independiente, por lo que no se rechaza la Ho.

DIAGRAMA DE PARETO:

Page 24: PROYECTO DISEÑO 2^K.docx

29

Diagrama de Pareto Estandarizada para TIEMPO DE DISOLUSION

0 5 10 15 20 25 30Efecto estandarizado

ABC

AB

B:CANTIDAD

AC

BC

C:TIPO DE AGUA

A:TEMPERATURA +-

Por medio del diagrama de PARETO podemos conocer de un modo grafico el nivel de significancia que poseen los factores dentro del experimento.Gracias a este podemos saber que el factor más significante es la temperatura (factor A), el segundo más significante es el tipo de agua (factor C), y también podemos concluir que las interacciones de los factores BC, ABC, AC, AB y el factor C (cantidad) no son significantes, por tal motivo no son muy relevantes.

GRÁFICA DE EFECTOS PRINCIPALES:

Page 25: PROYECTO DISEÑO 2^K.docx

29

TEMPERATURA

1 25

CANTIDAD

150 250

TIPO DE AGUA

DULCE NEUTRO

Gráfica de Efectos Principales para TIEMPO DE DISOLUSION

44

64

84

104

124

144

TIE

MP

O D

E D

ISO

LU

SIO

N

En este diagrama podemos ver el efecto que producen los diversos factores en el tiempo de efervescencia del ALKA-SELTZER. Gracias a esta podemos corroborar nuestra anterior conclusiones sobre el factor A, pues al pasar del nivel bajo al nivel alto de temperatura el tiempo de disolución disminuye con una trayectoria mayor con respecto a los demás factores, por otra parte notamos que el factor B (cantidad de agua), no producen un cambio significante en nuestra variables de respuesta pues en la grafica observamos que el segmento que genera al pasar del nivel bajo al nivel alto es de inclinación irrelevante, por último es evidente que el factor C (tipo de agua) es significante pues al aumentar de su nivel bajo al nivel alto el tiempo de disolución disminuye, como lo vemos en la grafica al ver un segmento inclinado con pendiente negativa..

GRÁFICA DE INTERACCIÓN:

Page 26: PROYECTO DISEÑO 2^K.docx

29

AB

1 25

-

-

+

+

AC

1 25

-

-

+

+

BC

150 250

--

+ +

Gráfica de Interacción para TIEMPO DE DISOLUSION

0

30

60

90

120

150

TIE

MP

O D

E D

ISO

LU

SIO

N

En la grafica anterior podemos notar que no hay interacción o cruzada entre los factores, por lo que verificamos lo dicho anterior por medio del diagrama de PARETO.

GRÁFICA DE SUPERFICIE DE RESPUESTA ESTIMADA:

Superficie de Respuesta EstimadaTIPO DE AGUA=-1,0

-1 -0,6 -0,2 0,2 0,6 1

TEMPERATURA

-1-0,6

-0,20,2

0,61

CANTIDAD

0

40

80

120

160

TIE

MP

O D

E D

ISO

LU

SIO

N

Esta grafica nos muestra que la superficie de respuesta estimada no se muestra curva debido a que lasinteracciones no presentan un nivel de significancia alto en el desarrollo del estudio.

GRÁFICA DE CONTORNO:

Page 27: PROYECTO DISEÑO 2^K.docx

29

64,080,096,0112,0128,0144,0

Contornos de la Superficie de Respuesta Estimada TIPO DE AGUA=-1,0

-1 -0,6 -0,2 0,2 0,6 1TEMPERATURA

-1

-0,6

-0,2

0,2

0,6

1

CA

NT

IDA

D

TIEMPO DE DISOLUSION0,016,032,048,064,080,096,0112,0128,0144,0160,0

La grafica de contornos de la superficie de respuesta corresponde a los resultados arrojados por la TABLA ANOVA, y no presenta una tendencia curva dado que no se presentaron interacciones significantes.Así como la grafica de superficie de respuesta no muestra una curva, en la presente grafica de contornos de la superficie de respuesta estimada sucede lo mismo, las interacciones entre los factores no se muestran con una curvatura marcada debido a que no son significativas en el modelo.Optimizar RespuestaMeta: minimizar TIEMPO DE DISOLUSION

Valor óptimo = 31,25

PUNTO ÓPTIMOOptimizar RespuestaMeta: minimizar TIEMPO DE DISOLUSION

Valor óptimo = 31,25

Factor Bajo Alto Óptimo

TEMPERATURA

-1,0 1,0 1,0

CANTIDAD -1,0 1,0 1,0TIPO DE -1,0 1,0 1,0

Page 28: PROYECTO DISEÑO 2^K.docx

29

AGUA

CONCLUSION

Como se mencionó al inició del documento el diseño estadístico de experimentos se convierte en la forma eficaz de hacer pruebas en los procesos, ya que, esta nos proporciona estrategias y recursos para alcanzar de manera eficiente y eficaz de dichos procesos a mejores condiciones de operación. En términos generales hemos podido entender al diseño de experimentos como la herramienta que nos otorga las facultades para determinar cuáles son las pruebas y cómo se deben realizar, para obtener datos que al analizarlos estadísticamente nos permita la obtención de conclusiones y la toma de decisiones que permitan mejoras en el desempeño del proceso con el mínimo costo.

Siguiendo lo anteriormente planteado fue posible para el grupo realizar todos los pasos pertinentes para poder realizar un análisis coherente y objetivo para proponer posibles soluciones con el fin minimizar el tiempo de disolución de un ALKA SELTZER.

Después de haber realizados el análisis de los distintos datos, gráfica y anova se pudo observar que el tipo de agua y la temperatura del tipo de líquido afectan significativamente con la disminución del tiempo de disolución; cabe resaltar que la temperatura tiene una alta incidencia en el tiempo de efervescencia de este medicamento a diferencia del tipo de agua si bien incide en el caso que se está estudiando no es tan significante con respecto a la temperatura. Con respecto al volumen del agua se pudo observar que no hay evidencia estadística que este factor incida significativamente en nuestra variable respuesta (tiempo de disolución).

Page 29: PROYECTO DISEÑO 2^K.docx

29

RECOMENDACIONES

Después de haber realizado el análisis pertinente a través de la recopilación de los datos con un diseño 2k, se pudo obtener cuales eran las condiciones mas optimas para lograr minimizar el tiempo de disolución del antiácido del ALKA-SELTZER. Las condiciones mas apropiadas para lograr la meta son:

Factor Bajo Alto ÓptimoTEMPERATURA -1,0 1,0 1,0CANTIDAD -1,0 1,0 1,0TIPO DE AGUA -1,0 1,0 1,0

Teniendo en cuenta el resultado anterior, es propio recomendar a los productores de este fármaco que incluyan en las indicaciones del empaque y en sus campañas publicitarias, que para una rápida disolución del AlkaSeltzer se debe introducir en un recipiente con las siguientes condiciones:

Utilizar como liquido base agua potable común. Un volumen de agua aproximado de 250 ml. Que la Temperatura del agua sea aproximadamente de 25º C.

BIBLIOGRAFÍA

Page 30: PROYECTO DISEÑO 2^K.docx

29

Diseño y Análisis de Experimentos. Douglas C. Montgomery. Grupo Editorial Iberoamérica. 2002.

Ronald E. Walpole (1992). Probabilidad y Estadística

ANEXOS