properties of high-intensity euv & soft-x radiation plasma sources · 2017-02-15 · 1 sergey...

29
1 Sergey V. Zakharov 12+ , Vasily S. Zakharov 123 , Peter Choi 1 1 EPPRA sas, Villebon sur Yvette, France 2 NRC Kurchatov Institute , Moscow, Russia 3 KIAM RAS , Moscow, Russia + also with UCD, Dublin, Ireland and JIHT RAS, SRC TRINITI, Moscow, Russia Properties of High Properties of High - - Intensity Intensity EUV & EUV & Soft Soft - - X Radiation Plasma Sources X Radiation Plasma Sources

Upload: others

Post on 31-May-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

1

Sergey V. Zakharov 12+,

Vasily S. Zakharov 123, Peter Choi 1

1 EPPRA sas, Villebon sur Yvette, France2 NRC Kurchatov Institute , Moscow, Russia3 KIAM RAS , Moscow, Russia+ also with UCD, Dublin, Ireland

and JIHT RAS, SRC TRINITI, Moscow, Russia

Properties of HighProperties of High--Intensity Intensity EUV & EUV & SoftSoft--X Radiation Plasma SourcesX Radiation Plasma Sources

Page 2: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

2

Sn, Xe… High Energy Density plasma(Te=20-40eV) radiates in EUV range

LPP & DPP

Sources for EUV LithographySources for EUV Lithography

NOWNOWEUV for EUV for HVMHVMbeyond 16 nmbeyond 16 nm

1r kNAλ

Diffraction restrictsDiffraction restrictsthe resolutionthe resolution

λλ 13.5nm 13.5nm 6.Xnm6.Xnm(h(hνν=92eV =92eV 185eV)185eV)

δλδλ//λλ 2%2%

• For HVM: >> 200 W of in-band power at IF within < 3mm2sr etendue• For mask inspections ABI→AIMS→APMI : 30 → >100 W/mm2·sr

The optics is made of The optics is made of multimulti--layer layer mirrorswith reflection efficiency ~70%with reflection efficiency ~70%

Page 3: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

3

EUV Brightness Limit for EUV Source EUV Brightness Limit for EUV Source

Spherical model of tin plasma EUV

source

The radiation self-absorption limits the in-band EUV radiance from the plasma, and

the etendueconstraint limits the usable power at IF of a conventional single

unit EUV sourceDetailed spectra from tin plasma with radius R=100 μm and ne=1019 cm-3

RMHD scan for tin plasma optimized

by radius, temperature and density [AL10]

10-5

10-4

10-3

10-2

10-1

100

101

102

10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2

R=0.04m mR=0.08m mR=0.16m mR=0.31m mR=0.625mmR=1.25m mR=2.5m mR=5mm

EUV

Rad

ianc

e, M

W/m

m2

sr

E ffective Depth (rho2*r), g2/cm3

tin

0

0.05

0.1

0.15

10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2

R=0.04m mR=0.08m mR=0.16m mR=0.31m mR=0.625mmR=1.25m mR=2.5m mR=5mm

Spec

tral E

ffici

ency

(Peu

v/Pr

ad)

E ffective Depth (rho2*r), g2/cm5

tin

Z* Scan

g2/cm5

L ≈ 1.1(W/mm2 sr)·τ(ns)·f(kHz)

Page 4: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

4

EUV Brightness Limit at Higher Temperature EUV Brightness Limit at Higher Temperature

• The intensity upper Planckian limit of a single spherical optically thick plasma source in Δλ/λ=2% band around λ=13.5nm

• Source with pulse duration τ and repetition rate f yields the time-average radiance L =I·(τ f)

• The spectral efficiency has the maximum at T≈22eVL ≈ 1.1(W/mm2sr)·τ(ns)·f(kHz)

• For instance, at τ =20ns L = 22 (W/mm2 sr)/kHz.

0

1

2

3

4

5

6

7

8

9

10

10 11 12 13 14 15 16 17 18

Tin line emission spectra

5 eV10 eV15 eV20 eV25 eV30 eVtin

.

)/(72/2 2

)(924

2

11srmmMWhcI

ee eVTThc

−≈

Δ=

λ

λλλ

0

1

2

3

4

5

6

7

8

9

10

10 11 12 13 14 15 16 17 18

Tin line emission spectra

20 eV30 eV40 eV50 eV60 eV

Non-LTELTE

Page 5: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

5

ns-order CO2 laser(main pulse)

sub-ns Nd:YAG laser(pre-pulse)

Target Chamber

Beam splitter

Collector Mirror

Sn Droplet Target

EUV / 13.5nm

Combined Combined Nd:YAGNd:YAG -- COCO22 Laser SystemLaser System

Page 6: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

6

Tin plasma density at EUV maximum

0

0.1

0.2

0.3

0.4

0.5

0.6

-10 0 10 20 30 40 50 60Po

wer

, MW

Time, ns

in-band EUV emission

LPP EUV Source LPP EUV Source under CO2- laser or combined pulse

The maximum EUV brightness is up to15 W/mmThe maximum EUV brightness is up to15 W/mm22 srsr kHzkHz

Time-integratedEUV source image

critical-layer instability

R(cm)

Z(cm

)

-0.05 0 0.05 0.1

0.05

0.1

0.15

Qeuv(J/ccm)

1.10E+041.05E+041.00E+049.56E+039.07E+038.59E+038.11E+037.63E+037.15E+036.67E+036.19E+035.71E+035.22E+034.74E+034.26E+033.78E+033.30E+032.82E+032.34E+031.86E+031.37E+038.93E+024.11E+02

-7.00E+01

Time-Integrated

Frame 001 ⏐ 14 Oct 2011 ⏐ ZSTAR - code output, cell values

R(cm)

Z(cm

)

-0.05 0 0.05 0.1

0.05

0.1

0.15

DENS(g/ccm)

1.0E-038.4E-047.1E-046.0E-045.1E-044.3E-043.6E-043.0E-042.6E-042.2E-041.8E-041.5E-041.3E-041.1E-049.2E-057.8E-056.6E-055.5E-054.7E-053.9E-053.3E-052.8E-052.4E-052.0E-05

t= 1.9548E+01 ns

Frame 001 ⏐ 14 Oct 2011 ⏐ ZSTAR - code output, cell values

R(cm)

Z(cm

)

-0.05 0 0.05 0.1

0.05

0.1

0.15

DENS(g/ccm)

5.0E-033.7E-032.7E-032.0E-031.5E-031.1E-038.2E-046.1E-044.5E-043.4E-042.5E-041.8E-041.4E-041.0E-047.5E-055.5E-054.1E-053.0E-052.2E-051.7E-051.2E-059.1E-066.8E-065.0E-06

t= 2.5826E+01 ns

Frame 001 ⏐ 14 Oct 2011 ⏐ ZSTAR - code output, cell values

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-10 0 10 20 30 40 50 60

Pow

er, M

W

Time, ns

in-band EUV emission

CO2-laser0.2 J/pulse

w/o prepulse

CO2-laser 0.2 J/pulse

with psNdYAGprepulse

R(cm)Z(

cm)

-0.05 0 0.05 0.1

0.05

0.1

0.15

Qeuv(J/ccm)

3.00E+042.83E+042.65E+042.48E+042.30E+042.13E+041.96E+041.78E+041.61E+041.43E+041.26E+041.09E+049.13E+037.39E+035.65E+033.91E+032.17E+034.35E+02

-1.30E+03-3.04E+03-4.78E+03-6.52E+03-8.26E+03-1.00E+04

Time-Integrated

Frame 001 ⏐ 15 Oct 2011 ⏐ ZSTAR - code output, cell values

Page 7: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

7

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60

Con

vers

ion

Effic

ienc

y, %

Pulse duration, ns

200mJ w/out prepulse200mJ with 6mJ ps prepulse200mJ with 5mJ ns prepulse

100mJ w/o and with ns prepulse(EUVA)100mJ with 6mJ ps prepulse400mJ with 6mJ ps prepulse800mJ with 6mJ ps prepulse

Main pulse: CO2-laser 0.1-0.8 J/pulse, 10,15,30,50ns fwhm, 200μm focal spotPre-pulse laser (if applied): Nd:YAG 5 mJ 1-10ns pulse, 40μm spot size

or Nd:YAG 6 mJ 10-100 ps pulse, 40μm spot size

Conversion Efficiency of COConversion Efficiency of CO22--laserlaseron pulse duration, with & w/out pre-pulses

Target:Liquid tin droplet of 40μm diameteror20μm for 100mJ (EUVA)

Conditions:different focal positions;different time delay between pre- & main-pulse CE depends strongly on laser intensity and target irradiation conditions

CE maximum of 3% can be reached at laser energy (200mJ) in a combined ps-ns pulse

Page 8: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

8

Laser Assisted Vacuum Arc (LAVALaser Assisted Vacuum Arc (LAVA--lamp)lamp)

Dischargecapacitance 0.4 μFinductance 19 nHvoltages 3 – 6 kVenergies 1.8 – 7.2 Jcurrent 20 kA at 4.5 kV

Trigger laser:wavelength 1064 nmbeam diameter 3 mmfocal lens 30 cm energy 5 – 50 mJ(varied by means of rotatable half-wave plate and polarizing beam splitter)

High-current discharge between two rotating electrodes covered with a thin liquid Tin or Galinstan film is triggered by local laser ablation of electrode material.

Details are presented in the posters : S26 V.S. Zakharov, Larissa Jushkin, S.V. Zakharov et al S30 Isaac Tobin, Larissa Juschkin, Vasily S. Zakharov et al

CA

Laser

Page 9: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

9

Comparison of measured and Z* modellingComparison of measured and Z* modellingdischarge current and in-band EUV emission

tin

Page 10: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

10

5 10 15 20 25

05000100001500020000250003000035000400004500050000

o.4

o.3

o.2

o.1

Wavelength (nm)

pressure (m

bar)

Inte

nsity

(arb

. uni

ts)

t

optical streak photograph

300 350 400 450 500 550

5

10

15

20

25 Irradiance Linear Fit of Data1_phcm2s

Irran

dian

ce E

17 p

h/cm

2/s

Stored energy (mJ)

-100 -50 0 50 100 150 200 250

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

23.5kV 23.2kV 22.7kV 21.5V 20.8kV 19.5kV

Phot

odio

de s

igna

l (V)

Time (ns)

EUV emission

Capillary Capillary DischargeDischarge EUV SourceEUV SourceEXPERIMENT: discharge glow & EUV emission

EUV spectrum

Page 11: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

11

Power sourceCharge energy 0.2 – 0.5 JCurrent 5 - 10 kAPulse ~10-20 ns

Capillary ∅ 1.6 mmdimension: L = 12-18 mm

Various electrode geometries

Gas: 0.02-2 Torr gradient He;

Xe, N2, Ar, Kr,, … admixtures(for narrow-band radiation source)

Experimental set up

Example ofsimulatedgeometry

capillaryEnergy storagecapacitor bank

EUV

Capillary discharge dynamics & emission features:

E-beam, plasma channelling (ε>>1)

Volumetric MHD compression (skin depth >>plasma diameter)

Highly ionized ions (fast electrons)

Capillary discharge dynamics & emission features:

E-beam, plasma channelling (ε>>1)

Volumetric MHD compression (skin depth >>plasma diameter)

Highly ionized ions (fast electrons)

High Brightness EUV High Brightness EUV Plasma Plasma SourceSourcepulsed capillary discharge

Page 12: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

12

Electron beam in the HC capillary discharge

⇒ run-away electrons

⇒ electric field drops deeper into HC

⇒ e-beam concentration (ɛ >>1)

⇒ e-beam-gas ionization

⇒ ionization wave

In the first few nanoseconds, run-away electrons from the hollow cathode generate a tight ionized channel (< 200μm diameter) in the gas

HollowHollow--cathode Capillary Dischargecathode Capillary Dischargemodelling: triggering by fast electrons

Hollowcathode

Anodeca

pilla

ry

capi

llary

together with Markov M.B. et al, KIAM RAS

Page 13: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

13

Capillary Capillary DischargeDischarge EUV SourceEUV SourceZ*-code modelling: resistive regime

-5

-4

-3

-2

-1

0

1

2

0 20 40 60 80 100

Dis

char

ge c

urre

nt, k

A

Time, ns

In the resistive regime of capillary discharge, the high joule dissipation in the tight conductive channel produced by hollow cathode electron beam creates an efficient mechanism of plasma heating and EUV or soft X-ray emission.

Also, fast electrons increase the ionization degree of heavy ion (Xe,…) plasma increasing eo ipso EUV yield.

-6-5-4-3-2-1 0 1 2 3 4

0 5 10 15 20 25 30 35 40

disc

harg

e cu

rren

t, kA

time, ns

I, kA

Inductive regime Resistive regime

19kV charge 1.2 nF capacitor

23kV charge1.9 nF capacitor

Nitrogen asbuffer gas

Page 14: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

14

Ne=2-3 ⋅1017cm-3, Te=25-40eV.

R(cm)

Z(cm

)

0 0.5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4 Qeuv(J/ccm)

1.0E+009.7E-019.4E-019.1E-018.8E-018.5E-018.2E-017.9E-017.6E-017.3E-017.0E-016.7E-016.3E-016.0E-015.7E-015.4E-015.1E-014.8E-014.5E-014.2E-013.9E-013.6E-013.3E-013.0E-01

Time-integrated

Cathode

Anode

capi

llary

capi

llary

Frame 001 ⏐ 13 Oct 2010 ⏐ ZSTAR - code output, cel

EUV source cross-section

0

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100

Pow

er, M

W

Time, ns

EUV emissionin 2% @ 13.5nm

496mJ storedenergy

Calculated in-band EUV emission

0.885 W/kHz

The traced along the axis, EUVintensity at 13.5nm wavelength 15.3 W/eV mm2 sr per kHz

R (cm )

Z(cm

)

0 0.5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4 Ne(Av)

1.0E-078.2E-086.7E-085.5E-084.5E-083.7E-083.0E-082.5E-082.0E-081.6E-081.4E-081.1E-089.0E-097.4E-096.1E-095.0E-094.1E-093.3E-092.7E-092.2E-091.8E-091.5E-091.2E-091.0E-09

t= 3 .3 1 1 4 E + 0 1 ns

C athode

Anode

capi

llary

capi

llary

F ram e 0 0 1 ⏐ 1 2 O ct 2 0 1 0 ⏐ Z S T AR - code output, cel

3D volumetric compression

Capillary Capillary DischargeDischarge EUV SourceEUV Sourcedynamics & EUV emission

Page 15: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

15

Energy scan calculated

(in 2% band)

Optimizationby gas mixture pressure

EUV source scan by stored electrical energy

0

200

400

600

800

1000

0 5 10 15 20 25 30

In-b

and

EUV

ener

gy p

er s

hot,

uJ

Pressure, a.u.

885μJ/shot

496mJ storedenergy

0

200

400

600

800

1000

200 250 300 350 400 450 500 550 600In-b

and

EUV

ener

gy p

er s

hot,

uJ

Stored energy, mJ

Resistive regime

Capillary Capillary DischargeDischarge EUV SourceEUV SourceZ*-code modelling: source optimization

Page 16: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

16

To produce the maximum EUV light power the double condition is required: + fast electrons have the energy of few keV to produce the highly charged ions + plasma has the temperature sufficient for the excitation of required transitions

EUV Emission of Highly Charged EUV Emission of Highly Charged XeXe IonsIons- from plasma with fast electrons

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

12.5 13 13.5 14 14.5

Xe XIXe XXIII 3%@6keVXe XXIII 5%@6keV

Xe XXIII 3%@12keVXe XXIII 5%@12keV

Te=30eV

0

0.02

0.04

0.06

0.08

0.1

12.5 13 13.5 14 14.5

Xe XI @ 33 eVXe XXI @ 80eV + 2% 3keV

Xe XXII @ 80eV + 2% 3keVXe XXIII @ 80eV + 2% 3keVXe XXIV @ 80eV + 2% 3keV2%

Te=80eV

Page 17: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

17

EUV Emission of Highly Charged EUV Emission of Highly Charged XeXe IonsIons- from e-beam triggered discharge plasma

5 10 15 20 25

05000100001500020000250003000035000400004500050000

o.4

o.3

o.2

o.1

W avelength (nm)

pressure (mbar)

Inte

nsity

(arb

. uni

ts)

0

.1r)

in

EUV MeasurementCapillary discharge. VUV spectrograph data

Bright EUV emission in 2% band at 13.5 nm can be achieved from highly charged xenon ions in plasma with small percentage of fast electrons

Page 18: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

18

Focusing Effect ObservationFocusing Effect Observation

75cm75cmSourceSource

1

32

Scanned signal profile

-8 -6 -4 -2 0 2 4 6 80

500

1000

1500

2000

2500Data: 130 mmModel: LorentzChi^2/DoF = 3606.02R^2 = 0.99 y0 -80.04 ±17.95xc -0.25 ±0.02w 1.93 ±0.08A 6711.24 ±234.59

EUV

band

(Zr f

ilter

)AXU

V si

gnal

(mV)

radial distance (mm)

EUV band (Zr filter) radiation beam profile at 130mm from collimator exit

HWHM

0 100 200 300 400 500 6000

1

2

3

4

angle = tan-1(1.8/400) = 0.26 degreesolid angle = 6.36 e-5 steradian

radi

al d

ista

nce

(mm

)

axial distance from end of collimator (mm)

measured half width Linear fit of Data

)(f1n 12

2e2 ω

ωω

−=

δn =|1-n|<<1;δn ~ 0.01÷0.05 (in solid matter) and δn = 0.0000…. (in plasma) for EUV range

How it is possible in geometrical optics? Know - How

Page 19: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

19

WaveWave--guiding Refractive Structure guiding Refractive Structure

)sin(nN

αδθ

⋅= refractions are requiredΔθ

θ α

δn

)( ndld )( n

dld rrr rrr

r∇=⎥⎦

⎤⎢⎣⎡ light trajectory equation

Refractive Structure: e-beam exited Kielwasser-waves, k ≤ rD-1

Focussing : analytical ( )dzn

nkz

z

r

kk

r∫ +−≈− 2

2

02

2

5.0125.0)(

δ

δθθ

0

200

400

600

800

1000

1200

1400

1600

0 50000 100000 150000 200000 250000 300000 350000

rk

zk

TrajectoriesTrajectories

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 50000 100000 150000 200000 250000 300000 350000

dr/d

z

zk

tg(angle)tg(angle)

numerical

Page 20: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

20

Multiplexer Multiplexer 4 4 ::- spatial multiplexing

All 4 sources aligned to a pointwithout use of any solid optical collector

25 mm

Z= 7 mm  Z= 50 mm

Z= 0 mm @ Cross Over

4 sources operating individually with common power control

Page 21: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

21

Etendue of a single source is E1 ≈ S· α2

IN FAR-FIELD the etendue of 4 equivalent sources is E4FF ≈ 4S· (α+β)2 ≈ 16 E1

IN NEAR-FIELD the declination due to β can be corrected and the etendue of 4 equivalent sources is E4NF ≈ 4S· α2 ≈ 4 E1

S1+S2(source image)

Facet mirror

Source S1

α

α

α

α

α

α

α

β

α+β

Source S2

EUV

Multiplexer Multiplexer 44: : Optical SchematicOptical Schematicstatic combination of source beams to one

Page 22: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

22

Overlapping of 4 suitably appertured Gaussian beamat a given flatness of 2% or 0.2%

An efficiency with flatness of 0.2% is of 22%.

MultiplexerMultiplexer44: : - 4-beams flatness optimization

0.98

0.98

0.980.98

0.98

0.98

0.98

0.9810.981

0.981

0.981

0.981

0.981

0.9 8

20.9

82

0.9820.

982

0.98

2

0.982

0.98

30.

983

0.983

0.983

0.98

3

0.983

0.984

0.984

0.984 0.9840.

9 84

0.9840.984

0.985

0.985

0.985 0.985

0.985

0.985

0.986

0.98

6

0.986

0.986

0 .98

6

0.986

0.987

0.987

0.9870.987

0.987

0.987

0.9 88

0.98

8

0.988

0.9 8

80.

988

0.988

0.98

90.

989

0.989

0.98

9

0.989

0.989

0.99

0.99

0.99

0.990.9 9

0.99

0.99

1

0.991 0.991

0.991

0.991

0.99

2

0.9920.992

0.992

0.992

0.9930.993

0.993

0.99

3

0.993

0.993

0.9940.994

0.994

0.99

4

0.994

0.9950.99 5

0.995

0.99

5

0.995

0.99

6

0.996

0.996

0.99

6

0.996

0.997

0.99

7

0.997

0.997

0.997

0.998

0.998

0.99

8

0.998

0.999

0.999

0.999

0.999

0.999

0.999

0.999

x(sig)

y(si

g)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

f

10.9990.9980.9970.9960.9950.9940.9930.9920.9910.990.9890.9880.9870.9860.9850.9840.9830.9820.981

a= 1.0180E+00 s= 1.3924E+00

Frame 001 ⏐ 09 Aug 2010 ⏐ Z-ray - code output, cell values

0.99

8

0.998

0.99

8

0.998

0.9982

0.99

82

0.9982

0.9982

0.9982

0.9984

0.9984

0.99

84

0.9984

0.9984

0.9986

0.9986

0.9986

0.9986

0.9986

0.99

88

0.9988

0.9988

0.9988

0.9988

0.99

88

0.99

9

0.999 0.999

0.99

9

0.999

0.999

0.9992

0.9992

0.9992

0.9992

0.9992

0.9992

0.99

94

0.99

94

0.9994

0.9994

0.9996

0.9996

0.99

96 0.99

96

0.9998

0.99

98

0.9998

x(sig)

y(si

g)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

f

10.99980.99960.99940.99920.9990.99880.99860.99840.9982

a= 1.0180E+00 s= 1.3924E+00

Frame 001 ⏐ 09 Aug 2010 ⏐ Z-ray - code output, cell values

2%0.2%

Page 23: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

23

Gadolinium Plasma Emitting at 6.x nm Gadolinium Plasma Emitting at 6.x nm

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

5 10 15 20 25 30

50 eV60 eV70 eV80 eV90 eV

100 eV110 eV120 eV130 eV140 eV150 eV

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

5 10 15 20 25 30

50 eV60 eV70 eV80 eV90 eV

100 eV110 eV120 eV130 eV140 eV150 eV

• Ion populations

Ion charge Ion charge

Rel

ativ

e po

rtio

n

Ne=1019 cm-3 Ne=5x1020cm-3

Ion distribution spreads and average charge drops as density increases →→ for LPP very high temperature may be necessary

Page 24: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

24

Gadolinium EmissionGadolinium Emissionlow temperature regime

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

6 6.2 6.4 6.6 6.8 7 7.2 7.4

Line emission spectra

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

6 6.2 6.4 6.6 6.8 7 7.2 7.4

Inte

nsity

, a.u

Inte

nsity

, a.u

Ne=1019 cm-3

Ne=5x1020 cm-3

Gd10+ - Gd18+

are taken into account

Almost 1 million transitions in total

More intensive emission is from4f-4d transitions

(4d94f m –4d104fm-1)

Te=60 eV

Ne=1019 cm-3, 5x1020 cm-3

Page 25: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

25

0

500

1000

1500

2000

2500

3000

3500

4000

6.5 6.6 6.7 6.8 6.9 7

Efficiency in NonEfficiency in Non--equilibrium equilibrium GdGd PlasmaPlasmalow temperature regime

Ne=1019 cm-3, Te=50 eVSE @ 6.68 nm of 0.6% bandwidth 6.3%SE @ 6.68 nm of 2% bandwidth 17.5%

Ne=1019 cm-3, Te=60 eVSE @ 6.68 nm of 0.6% bandwidth 5.3%SE @ 6.68 nm of 2% bandwidth 18.5%

Ne=5x1020 cm-3, Te=60 eVSE @ 6.68 nm of 0.6% bandwidth 5.9%SE @ 6.68 nm of 2% bandwidth 16.8%

Wavelength, nm

Inte

nsity

, MW

/eV

x cm

2x

sr

Spectral modeling400 micron spherical Gd target

Det

aile

d ca

lcul

atio

ns w

ith a

bsor

ptio

n

200

400

600

800

1000

1200

1400

1600

6.5 6.6 6.7 6.8 6.9 7

10000

20000

30000

40000

50000

60000

70000

6.5 6.6 6.7 6.8 6.9 7

Optimizedoptical

throughput

Page 26: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

26

ZETA ZETA →→ ZZ* * RMHD Code RMHD Code →→ ZZ* * BME BME →→ ZZ++

multi-physics model

DischargeDischargeplasmaplasma

simulationsimulationin real in real

geometrygeometryLaserLaser

plasmaplasma

Data output:r,z,v,Te,i ,ρ,E,B,Z,Uω, etc;visualization

RMHD ( 2D, 3D ) with: • spectral multigroup radiation transport in nonLTE;

• nonstationary, nonLTE ionization; • sublimation – condensation;• energy supply (electric power, laser)• etc

TABLESnonLTE atomic &

spectral data(Te,ρ,U)

EMHD or 3D PIC with:ionization of weekly ionized

plasma, discharge triggering

Spectral postprocessing

Heat flux postprocessing

Page 27: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

27

Black-box Modelling Engine (Z*BME) is integrated into a specific computation environment to provide a turn-key simulation instrument, which does not require knowledge of numerical computation. It has been adapted to simulate DPP and LPP radiation sources in a realistic geometry.

Z*BME has been installed:

in EUVA, Japan in University College Dublin, Ireland in Czech Technology University, Prague

A number of joint simulations of EUV radiation sources with Z* -code of Cymer, Bochum University, Xtreme Tech, FOM, EUVA, UCD, Bruker has been performed in frameworks of collaborations and FACADIX, MoreMoore, Medea+, FIRE projects

ZZ* * BlackBlack--box Modeling Enginebox Modeling Engine

Page 28: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

28

plasma dynamics spectral radiation transportnon-equilibrium atomic kinetics with fast electrons transport of fast ions/electronscondensation, nucleation and transport nanosize particles.

• Modelling is essential in parametric scans in radiation source optimization, in fast particles and debris generation to solve current EUVL source problems as well as extending their application.

Next Generation Modelling ToolsNext Generation Modelling Toolsknowledge transfer in FP7 IAPP project

• FIRE - European FP7 Industry-Academia Partnerships and Pathways project

• The FIRE project aims to substantially redevelop the Z* code to Z+ to include improved atomic physics models and full 3-D plasma simulation of

Page 29: Properties of High-Intensity EUV & Soft-X Radiation Plasma Sources · 2017-02-15 · 1 Sergey V. Zakharov 12+, Vasily S. Zakharov 123, Peter Choi 1 1 EPPRA sas, Villebon sur Yvette,

29

AcknowledgementsAcknowledgementsEPPRA SAS, Villebon/Yvette, France Raul Aliaga-Rossel

Keldysh Institute of Applied Mathematics RAS, Moscow, Russia Vladimir G. Novikov,

Andrey V. Berezin, Mikhail B. Markov, Alex Yu. Krukovskiy

Joint Institute of High Temperatures RAS, Moscow, Russia Valentin P. Smirnov

SRC TRINITI, Moscow, Russia Vladimir M. Borisov

University College Dublin - School of Physics, Dublin, Ireland Gerry O’Sullivan, Padraig Dune, Emma Sokel, John White

Czech Technical University in Prague Miroslava Vrbova, Pavel Vrbov

EUVA, Manda Hiratsuka, Japan Georg Soumagne

RWTH Experimental Physics, Aachen, Germany Larissa Juschkin

TRINITY College Dublin Isaac Tobin, James Lunney

EUV LITHO, Inc Vivek Bakshi

Sponsors - EU & French Government ANR- EUVILFP7 IAPP