project report porthcawl comprehensive school

32
Porthcawl Comprehensive School Lafarge Tarmac “SMART Early Warning System” Team: Andrew Philips (Team Leader) Jack Bevan Curtis Naughton Jasmeen Dawes Tom Parsons Keiren Waring Aneurin Weale Matthew Williams Engineer: Mr Phil Jones Teacher: Mr Richard Lawson March 2014

Upload: tom-parsons

Post on 15-Jul-2015

73 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Project Report Porthcawl Comprehensive School

Porthcawl Comprehensive School Lafarge Tarmac

   

 

 

“SMART  Early  Warning  System”  

Team: Andrew Philips (Team Leader)

Jack Bevan

Curtis Naughton

Jasmeen Dawes

Tom Parsons

Keiren Waring

Aneurin Weale

Matthew Williams

Engineer: Mr Phil Jones

Teacher: Mr Richard Lawson

March 2014

Page 2: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

2      

Contents

 Contents ..................................................................................................................................... 1  Executive Summary ................................................................................................................... 3  Introduction ............................................................................................................................... 4  Analysis of Problem .................................................................................................................. 5  Research into Existing Technologies ........................................................................................ 6  

Capacitance  Sensing  ...........................................................................................................................  6  

Analog  Devices  ...................................................................................................................................  6  

Ultrasonic  range  finder  ......................................................................................................................  7  

Data Processing ......................................................................................................................... 8  Procedure ................................................................................................................................. 11  

Initial  Meeting  ..................................................................................................................................  11  

Research  ...........................................................................................................................................  11  

About  Tarmac  ...................................................................................................................................  12  

Site  visit  ............................................................................................................................................  13  

Final  Solution  ....................................................................................................................................  16  

Design Development ............................................................................................................... 17  Hardware  ..........................................................................................................................................  17  

Python Scripts .......................................................................................................................... 19  Prototype  Testing  .............................................................................................................................  24  

Results, Discussion and Evaluation ......................................................................................... 26  Environmental  Benefits  ....................................................................................................................  26  

Development  Costs  ..........................................................................................................................  27  

Cost  Benefits  ....................................................................................................................................  28  

Health  and  Safety  .............................................................................................................................  28  

Wider  Scope  of  Project  .....................................................................................................................  29  

Conclusion ............................................................................................................................... 30  Appendix ................................................................................................................................. 31    

   

Page 3: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

3      

Executive  Summary    

In  the  world  of  business,  orders  must  be  fulfilled  in  a  timely,  efficient  and  cost  effective  manner.  This  is  equally  true  in  the  field  of  engineering.  Business  success  can  be  me  made  or  broken  on  the  strength  of  a  having  a  company  reputation  of  making  deliveries  on  time.  If  orders  are  fulfilled  quickly  then  costs  can  also  be  controlled  and  savings  can  be  passed  on  to  customers.  This  project  will  investigate  ways  in  which  the  manufacture  and  delivery  of  asphalt  can  be  maintained  and  made  robust  to  ensure  customer  satisfaction.  

In  Asphalt  manufacture,  lime  stone  is  quarried,  crushed  and  mixed  with  Bitumen  and  stone  dust  to  make  a  solid  and  robust  construction  material  for  the  laying  of  roads  and  motorways.  In  the  case  of  Lafarge  Tarmac  at  Cornelly,  the  stone  is  quarried  on  site.  The  bitumen  it  is  mixed  with  is  supplied  from  a  refinery  in  Birkenhead  and  stored  in  four  50,000  litre  tanks.  The  stone  is  mixed  with  the  bitumen  as  the  product  is  required.  Clearly,  the  supply  of  stone  is  in  abundance  thanks  to  the  onsite  quarry.  However,  the  bitumen  supply  must  be  more  closely  monitored  to  ensure  a  constant  amount  is  on  site  to  meet  the  orders  received.  Currently,  this  level  is  monitored  by  engineers  on  site.  This  is  a  laborious  and  time  consuming  process  which  takes  manpower  that  could  be  usefully  employed  elsewhere.  A  better  solution  would  be  an  automatic  system  that  could  alert  on  site  engineers  that  supplies  are  being  depleted  so  orders  could  be  made  on  time.  This  would  ideally  take  the  form  of  an  alert  being  sent  to  the  engineers  wherever  they  are  instead  of  valuable  staff  being  limited  to  a  small  radius  around  the  tanks.  

This  project  will  outline  the  design,  prototyping  and  testing  of  a  low  cost  automatic  level  warning  system  that  will  notify  staff  of  low  bitumen  levels  via  SMS  text  message.  This  will  aim  to  deliver  improvements  in  efficiency,  cost  saving  and  will  also  provide  environmental  benefits  through  a  small,  low  cost  and  easily  implemented  unit.  

   

Page 4: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

4      

Introduction    

In  order  to  maximise  cost  savings  and  ensure  that  highest  customer  service  levels  are  maintained  on  the  company’s  Asphalt  plants,  “full  loads”  of  bitumen  must  be  ordered  and  delivered  on  time.  Predicting  how  much  to  order  and  when  is  currently  an  art  form  and  needs  to  be  turned  into  a  science  if  costly  “part  loads”  are  to  be  eliminated.  Reducing  the  number  of  part  loads  is  a  key  performance  indicator  for  the  asphalt  business  and  this  system  will  help  reduce  cost  and  improve  safety  at  our  sites.  

The  project  aim  was  to  design  and  build  a  working  prototype  system  to  monitor  and  predict  the  usage  of  bitumen  in  bitumen  storage  tanks  such  that  an  automated    SMS  text  message  will  be  generated  and  sent    to  the  site  manager  (or  his/her  deputy)  alerting  him/her    of  the  need  to  re-­‐order  a  “full  load”  of  bitumen  on  a  given  date.    

In  addition,  a  monthly  spreadsheet  will  also  be  generated  from  that  system  showing,  bitumen  ordered,  dates  and  times  plus  cost  savings  as  compared  to  historical  data  in  the  previous  financial  year  which  include  costly  and  unwanted  part  loads.  Additional  features  in  the  software  and  reporting  will  also  be  required  and  these  will  be  discussed  with  the  team  throughout  the  project  execution.  

   

Page 5: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

5      

Analysis  of  Problem    

Scope:  To  design  and  manufacture  a  scaled  working  system  to  carry  out  the  following  functions:  

1. Monitor    fluid  level  in  a  vertical  cylindrical  tank  and  predict  the  usage  to  a  pre-­‐determined  level.  

2. At  that  pre-­‐determined  level,  an  alarm  will  be  triggered  sending  a  signal  to  a  PC  which  in  turn  

   will  send  out  an  SMS  text  message  to  the  site  managers’  mobile  phone.  The  message  will  be    

  sent  only  between  the  hours  of  06:00am  and  18:00pm,  Mon-­‐Sat,  50  weeks  p.a.  The  message  

   will  advise  the  manager  to  re-­‐order  a  full  load  of  fluid  (bitumen)to  maintain  stock  levels,  

  protect  plant  availability  and  customer  service  levels.  

3. In  any  event,  a  text  message  will  be  sent  if  no  bitumen  has  been  ordered  within  any  single  

  24  day  period  as  a  quality  requirement  to  refresh  the  stock  

4. A  monthly  spreadsheet  will  also  be  required  (in  Excel  format)  illustrating  how  many  loads    

  were  flagged  up  via  text  message  during  any  particular  calendar  month  showing  the  total    

  cost  of  those  loads  both  in  month  and  cumulative  timescales.  

5. The  same  spreadsheet  will  also  be  required  to  show  the  cost  saving  of  not  having  to  order  

  part  loads  in  the  month/year  (using  2012  historical  data  for  reference).    

4No.Bitumen  Tanks50,000L  Capacity  Each

To  Asphalt  Plant

Full

Refill

Empty

Level  indication  to  PC

SMS  text  message  to  manager  to  re-­‐order  bitumen

(At  pre-­‐ determined  level)  

Text  message Produce  monthly  Spreadsheet  showing  savings

EESW  2013

   

Page 6: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

6      

Research  into  Existing  Technologies  

 

Capacitance  Sensing    

Sensor  Technics  

With  over  20  years  of  extensive  experience  in  the  development  and  manufacture  of  unique  optical  and  MEMS  sensor  solutions,  our  brand  portfolio  includes  strong  and  highly  specialised  brands.  We  serve  custom  development  and  manufacturing  at  14  sites  around  the  world.  

 

Analog  Devices  Analog  Devices  offers  the  world’s  first  high-­‐precision,  fully  integrated  Capacitance-­‐to-­‐Digital  Converters  (CDC),  that  address  the  complex  and  difficult  signal  processing  challenges  of  direct  capacitance-­‐to-­‐digital  conversion.  The  award-­‐winning  Capacitance-­‐to-­‐Digital  Converter  (CDC)  technology  enables  high  accuracy  capacitance  sensing  for  Industrial,  Automotive,  and  Consumer  applications.  

 

http://www.sensortechnics.com/en/products/liquid-­‐level-­‐sensors-­‐and-­‐switches/capacitive-­‐level-­‐sensors/clc/  

 

http://www.analog.com/en/analog-­‐to-­‐digital-­‐converters/capacitance-­‐to-­‐digital-­‐converters/products/index.html?gclid=CIGd2LS9yboCFfHItAodDXoAcw#Capacitive_to_Digital_Converters  

Page 7: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

7      

   

Ultrasonic  range  finder    Ultrasonic  sensors  (also  known  as  transceivers  when  they  both  send  and  receive,  but  more  generally  called  transducers)  work  on  a  principle  similar  to  radar  or  sonar  which  evaluates  attributes  of  a  target  by  interpreting  the  echoes  from  radio  or  sound  waves  respectively.  Ultrasonic  sensors  generate  high  frequency  sound  waves  and  evaluate  the  echo  which  is  received  back  by  the  sensor.  Sensors  calculate  the  time  interval  between  sending  the  signal  and  receiving  the  echo  to  determine  the  distance  to  an  object.  

This  technology  can  be  used  for  measuring  wind  speed  and  direction  (anemometer),  tank  or  channel  level,  and  speed  through  air  or  water.  For  measuring  speed  or  direction  a  device  uses  multiple  detectors  and  calculates  the  speed  from  the  relative  distances  to  particulates  in  the  air  or  water.  To  measure  tank  or  channel  level,  the  sensor  measures  the  distance  to  the  surface  of  the  fluid.  Further  applications  include:  humidifiers,  sonar,  medical  ultrasonography,  burglar  alarms  and  non-­‐destructive  testing. Systems  typically  use  a  transducer  which  generates  sound  waves  in  the  ultrasonic  range,  above  18,000  hertz,  by  turning  electrical  energy  into  sound,  then  upon  receiving  the  echo  turn  the  sound  waves  into  electrical  energy  which  can  be  measured  and  displayed.  

 

The  technology  is  limited  by  the  shapes  of  surfaces  and  the  density  or  consistency  of  the  material.  Foam,  in  particular,  can  distort  surface  level  readings  

Page 8: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

8      

 

 

 

 

Data  Processing  i) Database  to  look  up/  convert  raw  data  into  usable  data  

Polyspot  -­‐  PolySpot's  information  management  solutions  can  be  used  to  extract  and  enrich  raw  data,  so  that  these  data  can  be  used  by  and  distributed  to  users.  

Universal  and  long-­‐term  connectivity  -­‐  Connectivity  with  the  various  applications  that  a  company  uses  is  essential  for  raw  data  collection.  With  a  library  of  over  100  application  connectors,  ‘PolySpot  Silo  Breaker’  can  easily  be  connected  to  the  majority  of  market-­‐standard  content  (DMS,  CMS,  WCMS,  DBMS,  web,  RSS),  guaranteeing  long-­‐term  access  from  a  single  point  to  all  of  a  company's  applications.  

From  raw  data  to  enriched  information  -­‐  Freshly-­‐produced,  out-­‐of-­‐context  data  is  neither  useful  nor  meaningful.  PolySpot  has  developed  conversion  and  semantic  enrichment  modules  to  standardise  and  contextualise  raw  data  to  produce  information  that  can  

Page 9: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

9      

instantly  be  used  by  a  range  of  different  search  services.  In  order  to  combine  high  information  availability  and  maximum  indexing  versatility,  PolySpot  has  developed  a  unique  architecture,  capable  of  managing  a  variety  of  processes  in  both  synchronous  and  asynchronous  mode.  

Shared  and  distributed  information  -­‐  Enriched  information  is  distributed  via  a  range  of  different  search  services,  each  of  which  is  capable  of  providing  users  with  all  available  information  from  a  single  interface.  PolySpot's  enterprise  search  applications  can  be  adapted  to  suit  business-­‐specific  requirements,  with  unrivalled  configuration  and  display  options  (simple  search  interface  configuration,  relevance  fine-­‐tuning,  specific  settings  based  on  the  user's  profile  and  context)  and  intelligent  searching  and  browsing  functions  (auto-­‐complete,  spelling  suggestion,  thesaurus/ontology  integration,  property-­‐based  browsing,  multi-­‐view  management,  alerts,  collaborative  functions,  etc.).  

ii) Automatically  generate  a  text  based  on  information  

Text  Local  -­‐  Easily  text  important  information,  offers  &  alerts.  Attach  pictures,  files,  web-­‐links  &  surveys.  

Text  local  help  over  102,383  businesses  send  up  to  40  million  messages  per  month.  Over  the  last  seven  years,  Textlocal  have  been  at  the  forefront  of  business  mobile  messaging.  Our  in-­‐house,  award  winning,  technical  team  like  nothing  better  than  to  innovate  and  build  tools  optimized  for  delivery  on  mobile  phones  that  meet  real  business  needs.  We  deal  with  businesses  every  day.  We  know  the  challenges  you  face  and  we  understand  your  needs.  

Our  emphasis  is  on  efficiency,  integration  and  ease  of  use.  Our  Messenger  platform  has  been  built  with  this  in  mind,  along  with  some  really  useful  added  extras  such  as  tracking,  surveys,  attachments,  ticketing,  analytics,  campaign  management  tools  and  much  more.  

Our  ethos  encompasses  a  complete  dedication  to  exceeding  customer  expectations,  and  this  has  been  highly  commended  by  industry  experts.  The  awards  have  just  kept  coming.  We  have  been  listed  as  a  Media  Momentum  top  20  fastest  growing  digital  agency  across  Europe  for  the  last  three  years,  won  a  Chamber  Business  Award  for  innovation,  a  DMA  Honours  award  for  marketing  Innovation  and  also  shortlisted  for  the  best  marketing  services  company.  This  adds  to  our  collection  including  Global  Messaging  Award  for  our  exceptional  messaging  infrastructure,  and  Digital  and  Media  Entrepreneurs  of  the  year.  

Our  ever  growing  staff  base  is  made  up  of  passionate,  dedicated  people  who  believe  completely  in  how  Textlocal  can  revolutionise  the  communication  structure  of  any  business.  As  the  awards  keep  coming  in  and  our  customers  remain  extremely  satisfied,  we  know  Textlocal  is  an  exciting  company  to  be  involved  with  on  any  level.  

   

Page 10: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

10      

Twilio  SMS  -­‐  Send  &  receive  SMS  with  twilio  messaging  

Global  Text  Messaging  API  -­‐  Build  apps  that  send  and  receive  SMS  using  phone  numbers  and  short  codes,  perfect  for  businesses  and  organisations.  The  API  enables  users  to  communicate  with  their  app  and  send  messages  when  they  wish.  

Build  Intelligent  Communications  -­‐  Twilio  lets  you  use  standard  web  languages  to  build  SMS  and  voice  applications.  We’re  connected  to  carrier  networks  globally  and  expose  them  to  you  via  a  clean,  powerful  web  API.  So  bring  your  favorite  programming  language,  a  web  server,  and  build  the  next  generation  of  communications  with  us.  

Cloud  Powered  -­‐  We’re  built  in  the  cloud.  Our  API  is  always  available,  continuously  upgraded  and  auto-­‐scales  to  meet  your  needs.  When  you  move  your  communications  to  the  cloud,  there  are  no  tricky  VPNs  to  configure  or  SMPP  binds  to  manage.  Just  send  us  your  message  via  HTTP,  and  we’ll  deliver  it  anywhere  in  the  world.    

Page 11: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

11      

Procedure    

Initial  Meeting  We  first  met  Mr  Phil  Jones  at  the  Introduction  meeting  in  Bridgend  where  he  announced  himself  as  our  Engineer.  Phil  introduced  himself  and  the  company  that  he  was  involved  in  which  was  ‘Lafarge  Tarmac’.  He  then  went  on  to  explain  in  more  detail  what  kind  of  company  Lafarge  was  and  the  sort  of  work  that  they  are  involved  in.  After  explaining  some  details  about  the  company,  Phil  moved  onto  the  task  in  hand  which  was  the  project  to  be  given  to  and  developed  by  our  team.  He  gave  us  the  definition  of  the  problem  and  helped  us  to  visualise  this  by  giving  us  information  sheets  and  diagrams.  Phil  then  explained  in  more  detail  the  type  of  solution  they  were  looking  for  and  why  this  solution  was  required.  We  then  began  to  discuss  the  problem,  thinking  of  and  writing  down  key  features  that  the  possible  solution  must  include  and  how  we  could  go  about  developing  these  solutions.  After  a  lengthy  discussion,  we  felt  quite  confident  on  the  project  and  thought  that  a  suitable  solution  was  quite  possible  and  therefore  were  looking  forward  to  working  with  Phil  and  Lafarge.  Since  the  initial  discussion,  we  have  kept  in  touch  with  Phil  regularly  with  him  attending  our  meetings  at  least  once  a  month.  With  the  purpose  of  these  visits  being  to  see  the  progress  and  development  of  the  project  first-­‐hand  and  in  order  to  give  us  any  data,  information  or  advice  that  we  may  have  requested  in  order  to  help  with  the  completion  of  the  task.  Research  into  level  monitoring  

Research  Through  the  course  of  seeking  the  best  solution  for  the  project,  a  large  amount  of  research  was  conducted  by  the  team  members  into  the  different  types  of  systems  currently  in  use  for  measuring  levels  of  fluids,  sending  text  messages  and  processing  data.  Many  of  these  were  ruled  out  as  either  too  expensive  or  too  difficult  to  make.  

   

Page 12: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

12      

About  Tarmac  Lafarge  Tarmac  is  the  UK's  leading  supplier  of  aggregates  and  asphalt.  They  combine  industry-­‐leading  innovation  with  an  unrivalled  supply  and  distribution  network  that  includes  over  100  quarries,  70  dedicated  asphalt  plants  and  70  recycling  operations.  Their  products  meet  the  highest  standards  of  sustainability  and  performance,  as  you  would  expect  from  a  market  leader.  They  are  responsibly  sourced  and  certified  to  BES  6001.  

Their  range  of  'Ultimate'  aggregate  and  asphalt  solutions  have  been  designed  to  meet  the  daily  challenges  faced  by  construction  professionals.  These  specialist  solutions  help  their  customers  deliver  outstanding  results  in  shorter  timescales,  even  when  faced  with  challenging  requirements  or  difficult  site  conditions.  

Asphalt    (also  known  as  bitumen),  is  a  sticky,  black  and  highly  viscous  liquid  or  semi-­‐solid  form  of  petroleum.  It  may  be  found  in  natural  deposits  or  may  be  a  refined  product;  it  is  a  substance  classed  as  a  pitch.  Until  the  20th  century,  the  term  asphaltum  was  also  used.    

The  primary  use  (70%)  of  asphalt/bitumen  is  in  road  construction,  where  it  is  used  as  the  glue  or  binder  mixed  with  aggregate  particles  to  create  asphalt  concrete.  Its  other  main  uses  are  for  bituminous  waterproofing  products,  including  production  of  roofing  felt  and  for  sealing  flat  roofs.    

The  terms  asphalt  and  bitumen  are  often  used  interchangeably  to  mean  both  natural  and  manufactured  forms  of  the  substance.  In  American  English,  asphalt  (or  asphalt  cement)  is  the  carefully  refined  residue  from  the  distillation  process  of  selected  crude  oils.  Outside  the  United  States,  the  product  is  often  called  bitumen.  Geological  terminology  often  prefers  the  term  bitumen.  Common  usage  often  refers  to  various  forms  of  asphalt/bitumen  as  "tar",  such  as  at  the  La  Brea  Tar  Pits.  Another  term,  mostly  archaic,  refers  to  asphalt/bitumen  as  "pitch".  The  pitch  used  in  this  mixture  is  sometimes  found  in  natural  deposits  but  usually  made  by  the  distillation  of  crude  oil.  

Naturally  occurring  asphalt/bitumen  is  sometimes  specified  by  the  term  "crude  bitumen".  Its  viscosity  is  similar  to  that  of  cold  molasses  while  the  material  obtained  from  the  fractional  distillation  of  crude  oil  [boiling  at  525  °C  (977  °F)  is  sometimes  referred  to  as  "refined  bitumen".  

Page 13: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

13      

At  the  site,  we  were  briefed  about  the  company’s  health  and  safety  guide,  which  is  a  prime  concern  of  Lafarge  Tarmac.  Lafarge  Tarmac  is  keen  to  play  an  active  part  in  the  community  and  encourage  schools  and  other  interested  groups  to  visit  their  sites  and  gain  firsthand  knowledge  of  their  industry.  However,  quarries  and  other  areas  such  as  asphalt  plants  and  recycling  depots  can  be  dangerous.  During  the  visit,  the  group  had  to  stay  together  under  the  supervision  of  a  guide  provided  by  the  company.    

Site  visit  We  were  invited  to  visit  the  Quarry  to  see  the  Bitumen  tanks  in  their  location  and  to  see  the  kind  of  environment  in  which  they  the  system  would  be  installed.    

 

This  was  a  potentially  hazardous  environment  which  meant  we  had  to  have  a  safety  lesson  and  then  were  issued  with  protective  clothing  and  equipment.  

Page 14: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

14      

 

When  we  went  out  into  the  quarry,  we  were  taken  to  the  Bitumen  tanks  in  the  minibus  with  a  safety  car  escort  and  were  shown  how  the  bitumen  was  loaded  in  to  the  tanks  as  there  was  a  delivery  taking  place  at  the  time.  

 

Page 15: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

15      

We  were  then  taken  up  to  the  top  of  the  10m  tall  tanks  to  see  where  the  sensor  could  be  installed.  

From  here  we  were  taken  around  the  entire  quarry  site  and  shown  how  Lafarge  Tarmac  first  quarries  the  limestone,  treats  the  stone  and  finally  turns  it  into  asphalt  that  can  be  sent  all  over  the  area  for  use  in  making  roads.  

   

Page 16: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

16      

Final  Solution  The  solution  we  decided  on  as  a  team  was  to  use  an  ultrasonic  transmitter/receiver  unit  with  a  Raspberry  Pi  computer.  This  combination  gives  the  following  benefits:  

• The  chosen  sensor  is  very  low  cost.  We  obtained  ours  from  the  internet  for  approximately  £2  

• The  Raspberry  Pi  is  a  low  cost  computing  option.  Approximately  £25.  • The  software  code  that  we  have  implemented  is  very  flexible  and  can  be  changed  

easily  to:  o Change  the  message  that  is  sent  o Change  the  number  of  recipients  o Change  the  number  of  massages  sent  o Change  the  depth  at  which  the  message  is  triggered  

• The  device  can  be  implemented  any  number  of  times  across  the  site  with  very  small  amounts  of  set  up  or  reconfiguration  

   

Page 17: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

17      

Design  Development    

Once  the  technology  and  implementation  had  been  decided  on  we  had  to  build  the  system  to  test  it  on  a  small  scale  in  the  laboratory.  The  equipment  had  been  ordered  from  the  internet  and  the  software  code  was  being  written.  While  this  was  being  done,  the  hardware  had  to  be  constructed  in  order  to  test  the  software  was  working  correctly.  The  software  and  the  hardware  were  then  put  together  to  check  the  system  worked  and  then  put  through  a  period  of  testing  to  ensure  consistent  operation.  

Hardware  The  sensor  unit  was  a  basic  unit  with  ultrasonic  transmitter  and  receiver  built  onto  a  circuit  board  with  a  small  amount  of  circuitry  (an  oscillator  and  timing  circuits  to  make  the  ultrasonic  sound  waves  that  are  sent  by  the  transmitter).  

 

This  small  circuit  board  then  required  a  small  amount  of  circuitry  to  make  it  work  with  the  raspberry  pi.  This  circuit  was  a  small  interface  system  to  ensure  that  the  voltage  provided  by  the  raspberry  pi  was  correct  to  drive  the  sensor  and  the  signal  supplied  by  the  sensor  was  correct  for  the  pi  to  be  able  to  understand.  

This  circuit  was  first  constructed  on  a  prototyping  board  to  ensure  correct  operation.  

 

Page 18: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

18      

Once  this  circuit  was  tested  and  could  be  seen  to  work  reliably  it  was  soldered  onto  strip  board  to  make  the  contacts  more  secure  and  resilient.  

 

This  circuit  could  then  be  mounted  in  a  case  to  protect  the  more  sensitive  parts  of  the  circuit  from  damage.  The  sensor  was  interfaced  to  the  Raspberry  Pi  by  using  a  temporary  general  input  output  break  out  board  (GPIO  board).  This  is  a  temporary  measure  and,  because  of  the  nature  of  the  Pi,  these  contacts  could  be  made  directly  to  the  computer  board  by  soldering.  However,  this  would  be  a  final  solution  and  not  for  development.    

 

Page 19: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

19      

Python  Scripts  The  software  program  script  for  the  Raspberry  Pi  was  written  in  Python  code.  This  is  the  main  programming  language  for  the  raspberry  pi  and  is  becoming  more  popular  among  programmers  in  many  areas  of  computing.  

The  following  section  outlines  the  Python  programme  that  was  created  for  this  project.  Unfortunately  the  formatting  has  not  been  retained  –  this  was  lost  when  exporting  the  programme  file  from  the  Pi.  This  formatting  would  have  taken  the  form  of  indenting  different  parts  of  the  program  in  order  to  group  sections  of  the  code  together.  

Some  annotation  is  included  in  the  text  in  the  form  of  comments.  These  comments  are  preceded  by  a  hash  icon  (#).  This  is  the  standard  way  that  programmers  annotate  software  to  keep  track  of  their  code.  The  hash  sign  tells  the  program  to  ignore  that  line  as  it  is  not  part  of  the  program.  Annotation  has  been  added  in  the  boxes  on  the  right  of  the  page.  

Ultrasonic  distance  measure:  

import  time  

import  RPi.GPIO  as  GPIO  

 

def  measure():  

   #  This  function  measures  a  distance  

   GPIO.output(GPIO_TRIGGER,  True)  

   time.sleep(0.00001)  

   GPIO.output(GPIO_TRIGGER,  False)  

   start  =  time.time()  

   while  GPIO.input(GPIO_ECHO)==0:  

       start  =  time.time()  

   while  GPIO.input(GPIO_ECHO)==1:  

       stop  =  time.time()  

   elapsed  =  stop-­‐start  

   distance  =  (elapsed  *  34300)/2  

   return  distance  

def  measure_average():  

   distance1=measure()  

   time.sleep(0.1)  

Functions  such  as  the  General  Purpose  Input  Output  library  must  be  allocated  to  this  program.  

This  section  of  the  code  is  how  the  Pi  is  able  to  measure  distance.  

The  Ultrasonic  unit  transmits  a  pulse  of  high  frequency  sound  waves  (GPIO  Trigger  True)  and  then  starts  a  timer.  The  timer  is  stopped  when  the  echo  is  detected  at  the  sensor.  

This  equation  then  takes  the  recorded  time  and  mulitplies  it  by  the  speed  of  sound  in  air.  This  is  approximately  34300  cm/s.  This  number  is  then  divided  by  two  in  order  to  find  the  distance  from  the  sensor  to  the  surface  of  the  liquid  –  not  the  total  path  length  the  sound  wave  has  travelled.  

Page 20: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

20      

   distance2=measure()  

   time.sleep(0.1)  

   distance3=measure()  

   distance  =  distance1  +  distance2  +  distance3  

   distance  =  distance  /  3  

   return  distance  

 

 

#  Main  Script  

#  Use  BCM  GPIO  references  

#  instead  of  physical  pin  numbers  

GPIO.setmode(GPIO.BCM)  

#  Define  GPIO  Pins  to  use  on  Pi  

GPIO_TRIGGER  =  23  

GPIO_ECHO        =  24  

print  "Ultrasonic  Measurement"  

#  Set  pins  as  output  and  input  

GPIO.setup(GPIO_TRIGGER,GPIO.OUT)    #  Trigger  

GPIO.setup(GPIO_ECHO,GPIO.IN)            #  Echo  

#  Set  trigger  to  False  (Low)  

GPIO.output(GPIO_TRIGGER,  False)  

try:  

   while  True:  

       distance  =  measure_average()  

       print  "Distance  :  %.1f"  %  distance  

       time.sleep(1)  

 

#trigger  SMS1  when  distance  is  greater  than  40  cm  

if  distance  >  40:  

This  section  of  the  code  takes  three  measurements  of  the  distance  and  then  takes  anmean  average  of  the  results.  This  helps  in  making  the  measurement  more  accurate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This  section  of  the  code  begins  to  define  the  levels  at  which  the  alarms  will  be  raised.  This  will  be  short  distances  set  for  our  model  but  this  can  be  adjusted  very  easily  for  any  size  of  tank  or  silo.  

 

Page 21: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

21      

               sms  

except  KeyboardInterrupt:  

   #  User  pressed  CTRL-­‐C  

   #  Reset  GPIO  settings  

   GPIO.cleanup()  

def  SMS(  

Code  to  send  SMS  

#  Import  required  libraries  

import  urllib            #  URL  functions  

import  urllib2          #  URL  functions  

#  Define  your  message  

message  =  'Refill  bitumen  tank  number  1  -­‐  Cornelly  Quarry'  

#  Set  your  username  and  sender  name.  

username  =  '[email protected]'  

sender  =  'Porthcawl  EESW  Team  

#  Your  unique  hash  is  available  from  the  docs  page  

#  https://control.txtlocal.co.uk/docs/  

hash  =  '86cee22e249d8e18f09bd0b7bed6821ea6c72cf1'  

#  Set  the  phone  number    

numbers  =  ('447855272195')  

#  Set  flag  to  1  to  simulate  sending  

#  To  send  real  message  set  this  flag  to  0  

test_flag  =  1  

values  =  {'test'        :  test_flag,  

                   'uname'      :  username,  

                   'hash'        :  hash,  

                   'message'  :  message,  

                   'from'        :  sender,  

CTRL-­‐C  is  the  standard  code  to  interrupt  a  program  that  is  running.  In  this  case  it  is  also  being  used  to  reset  the  inputs  and  outputs  of  the  Pi.  

 

This  section  of  the  code  will  send  the  message  to  amobile  phone  via  the  internet  service  “text  local”.  This  service  was  selected  as  it  enables  remote  and  automatic  log  in  using  the  provided  “Hash  Code”  

 

The  service  requires  a  administrator  to  maintain  control  of  the  system  so  our  teacher,  Mr  Lawson  has  signed  in  with  his  details,  

This  is  the  Hash  code  provided  by  the  website  

This  script  can  send  text  messages  to  individual  phones  or  a  group  of  phones  numbers  if  required.  This  is  where  the  phone  number(s)  to  be  used  is  entered.  

 

As  text  messages  cost  money  to  send  (10p)  then  we  have  included  the  ability  to  simulate  sending  a  text  for  testing  the  system  and  to  keep  costs  to  a  minimum  during  development.  

Page 22: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

22      

                   'selectednums'  :  numbers  }  

 

url  =  'http://www.txtlocal.com/sendsmspost.php'  

postdata  =  urllib.urlencode(values)  

req  =  urllib2.Request(url,  postdata)  

print  'Attempt  to  send  SMS  ...  '  

try:  

   response  =  urllib2.urlopen(req)  

   response_url  =  response.geturl()  

   if  response_url==url:  

       print  'SMS  sent!'  

except  urllib2.URLError,  e:  

   print  'Send  failed!'  

   print  e.reason  

 

 

#  Import  required  libraries  

import  urllib            #  URL  functions  

import  urllib2          #  URL  functions  

#  Define  your  message  

message  =  'URGENT!  –  Level  Low:  Refill  bitumen  tank  number  1  -­‐  Cornelly  Quarry'  

#  Set  your  username  and  sender  name.  

username  =  '[email protected]'  

sender  =  'Porthcawl  EESW  Team’  

#  Your  unique  hash  is  available  from  the  docs  page  

#  https://control.txtlocal.co.uk/docs/  

hash  =  '86cee22e249d8e18f09bd0b7bed6821ea6c72cf1'  

#  Set  the  phone  number  you  wish  to  send  

The  program  will  print  progress  messages  on  the  screen  and  confirmation  that  the  text  has  been  sent.  This  is  mainly  for  the  development  stage  as  during  main  use  the  screen  will  not  be  required.  

 

 

 

 

It  will  tell  us  if  the  send  has  failed  or  succeeded.  This  works  even  in  simulated  test  mode.  

 

 

 

This  section  of  the  program  is  a  copy  and  repeat  of  the  previous  section.  This  was  the  easiest  way  to  enable  us  to  send  different  messages  at  different  times.  This  is  difficult  to  see  here  as  the  indent  formatting  did  not  keep.  

Page 23: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

23      

#  message  to.  

numbers  =  ('447855272195')  

#  Set  flag  to  1  to  simulate  sending  

#  To  send  real  message  set  this  flag  to  0  

test_flag  =  1  

values  =  {'test'        :  test_flag,  

                   'uname'      :  username,  

                   'hash'        :  hash,  

                   'message'  :  message,  

                   'from'        :  sender,  

                   'selectednums'  :  numbers  }  

url  =  'http://www.txtlocal.com/sendsmspost.php'  

postdata  =  urllib.urlencode(values)  

req  =  urllib2.Request(url,  postdata)  

 

print  'Attempt  to  send  SMS  ...  '  

try:  

   response  =  urllib2.urlopen(req)  

   response_url  =  response.geturl()  

   if  response_url==url:  

       print  'SMS  sent!'  

except  urllib2.URLError,  e:  

   print  'Send  failed!'  

   print  e.reason  

 

 

   

Though  a  repeated  part  of  the  program,  this  is  a  key  part  of  the  operation.  This  function  can  be  replicated  for  different  distances  within  the  tank  allowing  early  warning  messages  to  be  sent,  emergency  low  level  messages  or  test  messages.  

 

This  function  could  be  expanded  by  the  company  at  any  point  and  very  easily  to  enable  the  system  to  become  more  flexible  depending  on  changing  needs.  

Page 24: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

24      

Prototype  Testing  The  prototype  system  was  tested  on  a  small  scale.  The  site  where  this  system  would  normally  be  used  is  a  very  dangerous  environment.  The  sensor  would  have  to  be  set  up  inside  the  bitumen  tank  and  the  bitumen  is  held  at  a  very  high  temperature  to  make  sure  it  remains  liquid.  This  raises  the  possibility  that  the  sensor  would  not  work  properly  in  his  environment  but  this  is  impossible  for  us  to  test  within  the  scope  of  this  project.  

So,  to  test  the  concept  of  the  system  we  built  a  scale  model  of  the  bitumen  tank  on  site,  scaled  the  trigger  thresholds  in  the  software  and  constructed  a  mount  to  hold  the  sensor  unit  at  the  top  of  the  tank.  After  much  discussion  we  finally  selected  our  equipment  to  use  for  our  testing  and  display  model.  The  first  step  in  building  our  model  was  ordering  the  equipment.  Some  of  the  equipment  used  was  sourced  or  built  in  school.  For  example  the  casing  for  our  raspberry  pi  was  found  and  then  modified  in  order  to  hold  the  pi  and  keep  it  safe.  The  casing  for  the  ultrasonic  sensor  was  also  modified  to  hold  the  sensor.  

We  then  used  a  high  speed  drill  to  cut  a  hole  for  the  tap.  We  did  this  by  drilling  lots  of  holes  close  together  and  then  pushing  the  plastic  out.  We  chose  to  do  it  this  way  as  it  had  the  lowest  risk  of  the  plastic  splitting  as  we  were  cutting.  We  then  put  the  tap  in  place  making  sure  to  use  the  gaskets  provided  to  stop  the  risk  of  leaking.  The  piping  was  then  attached.  We  also  added  stickers  to  the  tanks  to  make  them  look  more  realistic.  We  have  also  used  a  bubble  machine  in  order  to  make  the  liquid  look  like  its  hot.  

To  start  we  needed  a  container  to  hold  x  amount  of  (material)  so  before  building  an  actual  physical  model  a  design  was  first  created  to  replicate  the  specification  given.  

First  purely  the  cylinder  and  base  were  created  with  the  measurements  of  (insert  dimensions)  and  volume  of  (insert  volume)  as  shown  in  fig  1.  

 

Secondly  the  lid  was  designed  the  original  design  was  to  cover  the  entire  top  surface  as  shown  in  fig  2.  However  later  design  proved  that  due  to  the  use  of  sonar  as  the  method  of  measurement  it  was  better  to  have  a  half  covered  surface  to  avoid  any  echo  or  at  least  

Page 25: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

25      

avoid  most  to  give  more  reliable  results  when  measuring  the  volume  of  liquid  in  the  container.  

The  final  result  with  the  sonar  device  is  as  shown  in  fig  3.      

 

Using  this  rig,  the  tank  was  filled  and  drained  many  times.  First  the  rig  was  tested  with  the  test  flag  set  in  the  software.  This  meant  that  the  levels  could  be  monitored  and  the  computer  would  signal  that  a  text  message  would  be  sent.  Once  this  was  working  successfully,  the  test  flag  could  be  removed  and  so  the  system  would  send  real  text  messages  over  the  internet.  This  was  first  done  for  members  of  the  team  and  our  teacher.  Then  we  attempted  to  send  a  series  of  texts  to  our  Engineer,  Mr  Jones  by  simply  changing  the  water  level  in  the  test  tank.  This  was  a  great  success  and  showed  that  the  system  was  reliable  in  sending  the  messages.  

The  only  problem  we  encountered  at  this  stage  was  that  occasionally,  the  system  would  send  two  or  three  text  messages  in  a  row  instead  of  a  single  text.  The  reason  for  this  is  unknown  but  the  problem  of  sending  too  many  text  messages  is  better  than  not  sending  any.  

 

   

Page 26: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

26      

Results,  Discussion  and  Evaluation   The  benefits  of  this  system  being  implemented  in  the  Tarmac  company  are  broad  and  far  reaching.  This  section  will  aim  to  summarise  the  main  points  that  will  benefit  the  company.  

Environmental  Benefits  As  the  bitumen  used  is  ordered  and  so  delivered  from  Birkenhead,  this  obviously  has  an  impact  on  the  environment  as  a  whole.  The  tanker  lorries  that  deliver  the  bitumen  to  site  have  to  travel  231  miles  (371  km)  on  their  journey  from  Birkenhead  to  Cornelly  Quarry.  This  is  an  unavoidable  journey  but  still  causes  a  significant  CO2  contribution  to  atmospheric  pollution.  The  following  table  shows  how,  on  average  vehicles  contribute  to  global  warming  with  CO2  emissions:  

 Bitumen  is  delivered  in  25  tonne  loads  by  large  tanker  trucks.  Depending  on  the  size  of  the  truck  and  engine  being  used,  the  CO2  produced  is  generally  between  3.0  and  3.9  kg/tonne/km.  

If  we  take  an  average  pollution  rate  of  3.4  kg/tonne/km  then  we  can  calculate  the  pollution  per  journey  as  follows:  

 

This  will  be  consistent  for  the  371  km  journey  so  will  generate:  

Total  kg  per  journey     =  371  km  x  3.4  kg/km  

      =  1,261  kg  of  CO2  per  journey  

Although  the  tanker  will  have  unloaded  the  25  tonnes  of  liquid  at  Cornelly,  the  return  journey  must  also  be  factored  in  as  this  is  an  inevitable  part  of  the  process.    

 

Page 27: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

27      

Total  kg  per  delivery     =  1,261  x  2  

      =  2,523  kg    

 

It  is  estimated  by  the  company  that  unnecessary  part  loads  are  ordered  on  average  10  times  each  year.  This  is  the  type  of  journey  that  is  caused  by  poor  level  control  and  so  the  type  of  pollution  our  system  will  aim  to  eliminate.  So  the  total  unnecessary  CO2  generated  per  year:  

 

Total  CO2  per  year     =  2,523  kg  x  10  

      =  25,230  kg  CO2  per  year  

This  is  a  very  large  amount  of  pollution  that  could  be  reduced  very  simply  by  implementing  our  device.  

 

Development  Costs    

The  costs  of  developing  this  system  were  actually  very  small.  The  Raspberry  Pi  computer  generally  retails  for  about  £25.  The  Ultrasonic  transceiver  costs  approximately  £2.  The  cases  and  hardware  were  surplus  to  requirements  and  so  were  free  to  the  project  though  normally  they  would  cost  less  than  £10  in  total.  The  actual  cost  to  create  this  system  in  a  form  that  could  be  used  therefore  is  about  £40  in  total.  

However,  there  were  more  costs  involved  in  development  than  merely  constructing  the  system.  The  test  rig  and  tanks  were  the  single  biggest  expense.  These  alone  cost  £136.  This  seems  like  a  very  large  expenditure  when  compared  to  the  rest  of  the  system  but  it  was  considered  important  to  have  a  test  system  that  was  similar  in  shape  and  scale  dimensions  to  the  actual  storage  tanks  on  site.  

The  text  messaging  service  used,  “Text  Local”  is  a  py  per  use  service.  It  is  free  to  register  and  gain  an  account.  This  account  even  comes  with  £10  of  free  text  messages.  As  testing  continued,  we  began  to  run  out  of  text  messages.  We  contacted  the  text  service  providers  and  explained  the  idea  behind  the  EESW  scheme  and  they  agreed  to  provide  us  with  a  further  50  text  message  credits  with  the  offer  of  more  if  this  did  not  prove  sufficient.  

   

Page 28: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

28      

Cost  Benefits    

The  cost  benefits  to  this  system  are  very  significant.  These  benefits  can  be  outlined  as  follows:  

A  full  tank  of  bitumen  delivered  from  Birkenhead  is  25  tonnes  at  £550  per  tonne.  

This  means  that  each  tanker  load  costs  £13,750.  

If  a  part  load  is  required,  these  loads  are  15  tonnes.    However,  the  cost  of  this  delivery  is  still  £13,750.  Effectively  the  company  is  charged  a  premium  if  the  tanker  is  not  full.  It  is  therefore  in  the  companies  best  interest  to  ensure  that  only  full  loads  are  being  ordered.  

Each  time  this  happens,  although  the  tanker  is  delivering  10  tonnes  less  than  normal,  the  company  is  still  charged  for  these  10  missing  tonnes  at  £550/tonne.  So  the  company  pays  £5,500  for  bitumen  it  does  not  receive.    

As  mentioned  above,  this  is  estimated  to  happen  currently  approximately  10  times  each  year.  This  equates  to  £5,500  per  tank.  Cornelly  has  4  tanks  so  this  could  be  as  much  as  £22,000  per  site.  

Cornelly  also  has  smaller  tanks  than  other  sites  in  the  company.  Some  quarry  sites  have  100  tonne  tanks  instead  of  50  tonnes  tanks.  This  will  therefore  increase  the  amount  of  wasted  journeys  and  money.  

The  cost  benefits  are  also  more  widespread  than  straight  forward  purchasing.  The  fact  that  the  system  will  be  automatic  enables  an  engineer  to  be  redeployed  elsewhere  on  site  instead  of  having  to  monitor  tank  levels.  This  will  help  the  site  to  run  more  efficiently  and  more  productively.  

The  increased  productivity  and  efficiency  will  also  enable  the  company  to  maintain  better  relationships  with  their  clients  and  will  be  able  to  fulfil  more  orders  more  quickly  and  will  therefore  help  to  grow  their  business  and  reputation.  

 

Health  and  Safety    

This  system  also  delivers  safety  benefits.  Each  time  the  lorry  driver  discharges  a  tanker  load  of  bitumen,  he  is  exposed  to  liquids  held  at  temperatures  in  excess  of  120  oC.  This  means  he  must  wear  special  safety  clothing  and  runs  the  risk  of  accidental  spills.  He  is  also  exposed  to  the  fumes  and  gases  given  off  by  such  a  dangerous  and  volatile  substance.  

 

Page 29: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

29      

Wider  Scope  of  Project    

By  the  time  this  project  had  been  finished  and  tested  to  prove  it  worked,  we  began  to  realise  the  full  potential  of  this  project.  While  this  has  been  demonstrated  to  be  a  huge  benefit  to  Lafarge  Tarmac  in  the  remote  monitoring  of  Bitumen  level,  it  could  be  used  anywhere  a  level  in  a  container  needs  to  be  monitored.  

For  example,  any  liquid,  not  just  bitumen,  could  be  monitored.  This  could  include  any  type  of  fluid  required  in  manufacturing,  chemicals  in  industrial  plants,  ingredients  in  food  manufacturing,  petrol/diesel  levels  in  mass  storage  tanks  or  petrol  stations  or  water  in  swimming  pools.  The  list  of  liquids  that  could  be  measured  is  literally  endless.  

As  this  system  is  ultrasonic,  it  does  not  necessarily  have  to  be  a  liquid  to  be  measured.  This  would  work  equally  well  in  a  farms  grain  silo,  a  bread  factory’s  flour  silo  or  building  sites  for  monitoring  sand  or  cement  powder  in  the  construction  industry.  

This  could  also  be  a  very  important  way  of  helping  people  in  developing  countries.  For  example,  this  device  could  be  installed  in  a  drinking  water  well  and  could  alert  people  of  falling  water  levels  so  that  help  can  be  sought  or  contingency  plans  could  be  put  in  place.  

   

Page 30: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

30      

Conclusion    

The  unit  designed  fulfilled  the  design  brief  in  operation.  It  has  proved  able  to  detect  the  level  of  liquid  within  a  large  tank  with  a  high  degree  of  accuracy.  It  has  also  proved  to  be  reliable  and  issued  at  least  one  text  message  each  time  the  liquid  threshold  levels  were  reached.  Occasionally  more  than  one  SMS  was  transmitted  but  as  previously  mentioned  this  was  not  seen  as  an  issue  as  the  message  would  still  have  got  through  to  the  engineer.  

The  greatest  area  of  success  which  we  did  not  originally  intend  to  be  so  great  was  the  proven  cost  saving  that  this  small  unit  could,  and  will  achieve.  These  are  complimented  by  huge  savings  in  environmental  factors  such  as  CO2  output  and  the  benefit  to  the  perception  of  the  company  by  clients  and  competitors.  

As  previously  mentioned  this  project  has  the  potential  to  help  wider  industry  and  is  not  just  limited  to  bitumen  monitoring  in  the  manufacture  of  asphalt.  As  a  team,  we  have  designed,  developed  and  delivered  a  robust  solution  to  a  very  challenging  problem.  This  design  has  been  built  and  tested  and  has  shown  that  it  can  work  reliably.    

The  main  limitation  of  the  system  developed  so  far  is  that  it  cannot  at  present  be  installed  on  site.  For  this  to  take  place  it  would  have  to  be  formally  tested  for  Electromagnetic  Compatibility,  safety  testing  and  would  need  to  be  ruggedized  to  make  sure  it  will  withstand  the  harsh  environments  on  site.  

However,  this  would  be  a  relatively  small  investment  and  as  such,  this  device  has  shown  that  it  can  provide  very  substantial  cost  saving,  enormous  environmental  benefits  and  can  be  used  in  many  different  situations.  

   

Page 31: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

31      

Appendix    

The  following  appendix  shows  examples  of  the  systems  that  were  used  to  ensure  the  work  was  completed  in  an  orderly  and  timely  manner.  

Page 32: Project Report Porthcawl Comprehensive School

Porthcawl  Comprehensive  School   March,  2014  

32      

Action  Log  This  spreadsheet  shows  an  early  example  of  the  progress  log  that  was  used  to  keep  track  of  tasks  within  the  team  and  to  keep  our  Engineer  informed.