project apollo task msc/trw - nasa€¦ · project apollo task msc/trw a.-50 apollo mission ti,...

142
TRW NOTE NO. 70-FMT-819 PROJECT APOLLO TASK MSC/TRW A-50 APOLLO MISSION 11 I TEAJECTORY RECONSTi3UCTiON AND POSTFLIGHT ANALYSIS VOLUME 1 16 MARCH 1970 > /3 3 / (CODE1 g 5 E IPAGESI I:! ICATEGORYJ 10 WASA CR OR TUX OR AD NLIMBPRJ I Prepared for MISSION PLANNlNG AND ANALYS!S DIVIS13N MS. N N ED - SP .-- AC EC RA I; T C E b! T ER Hut'blON, iE/';AS NAS 9-8165 NATIONAL AERGNKJT~CS AND SFACE AD.911NISTRATION REPRODUCEDBY US DepartmtofCmmem Naiwnal Technical lltormalnn Seme Spnnfldd Wrginia 22161 https://ntrs.nasa.gov/search.jsp?R=19700014995 2020-05-22T04:32:56+00:00Z

Upload: others

Post on 21-May-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

TRW NOTE NO. 70-FMT-819

PROJECT APOLLO T A S K MSC/TRW A - 5 0

APOLLO M I S S I O N 1 1 I T E A J E C T O R Y RECONSTi3UCTiON A N D POSTFLIGHT A N A L Y S I S

VOLUME 1

16 MARCH 1970

> /3 3 / (CODE1

g

5

E IPAGESI I : !

ICATEGORYJ

1 0

WASA CR OR TUX OR AD NLIMBPRJ

I

Prepared for MISSION PLANNlNG AND ANALYS!S DIVIS13N

MS. N N ED - SP .-- AC EC RA I; T C E b! T ER Hu t ' b lON, iE/';AS

NAS 9-8165

NATIONAL AERGNKJT~CS AND SFACE AD.911 NISTRATION

REPRODUCEDBY U S DepartmtofCmmem

Naiwnal Technical lltormalnn S e m e Spnnfldd Wrginia 22161

https://ntrs.nasa.gov/search.jsp?R=19700014995 2020-05-22T04:32:56+00:00Z

TRW NOTE NO. 70-FMT-819

PROJECT APOLLO T A S K MSC/TRW A.-50

APOLLO MiSSION TI, TRAJECTORY .RECONSTRUCTION A N D P O S T F L I G H T A N A L Y S I S

V O L U M E 1

16 MARCH 1970

Prepared for

NATIONAL AERONAUTICS AND STACE ADMifNISTRATiON MANNED SPACECRAFT CENTER

MISSION PLANNING AND ANALYSIS DIVISION

N P S 9-81 66

W’ 48 3 %c,k,,.,Cc c >A’ Approved by 9 6? Ah-*=+ Approved by

W. P. Gircd, Manager MSC/TRW Task A-50

J. E. Alexander, Menager Guidance and Control Systems Department

Approved by 5K.z3qw& Approved by H . L. Moore, Manager MSC/TRW Task A-50 Project Manager

D. G. Saile, Assistant

Guidance and Perforrncnce Mission Trajectory Control Program

Approved by Pg@L/v, Approved by yc>>- R. I? Parten, Chief Mission Planning Support Office NASA Manned Spacecraft Center

R. K 1 Petersburg, Mana Systems Evaluation Department

FOREWORD

This r epor t i s submitted t o t h e NASA Manned Spacecraf t Center i n

accordance with MSC/TRWTask A-50 Contract NAS 9-8166.

contains t h e p o s t f l i g h t ana lys i s performed i n conjunct ion wi th t h e

ApoIIo I1 mission and i s issued as supplernent one t o t h e A p o l l o 11 Mission

B e p i - t (XASA/f.ISC Report MSC-09171, Nov. '1969) .

T h i s r epor t

The r epor t i s i ssued i n two volumes. Volume I contains details of

the ana lys i s and r e s u l t s obtained, inc luding appendixes. Vo lume I1

contains a l i s t i n g of t h e 45-day b e s t es t imated t r a j e c t o r y (BET) f o r t h e

Apollo I1 mission i n the NASA Apollo Trajectory (NAT) format. The list- ing i s n o t g e n e r d l y d i s t r ibu ted b u t i s a v a i l a b l e from NASA/MSC upon

request . Requests should be made to:

NASA/MSC Computations and Analysis Division Centra l Metric Data File Code ED-5, B u i l d i n g 12 , Roon 133 Houston, Texas 7 7058

iii

Page Intentionally Left Blank

TABLE OF CONTENTS

7.1 TN'i'RODUCTION AND STJNMARY

7.1.1 A p o l l o 11 Mission

7.1.2 P o s t f l i g h t Analysis

7.2 ORBIT ANALYSIS

7.2.1 Methods of Reconstniction

7.2.2

7.2.3

CSM Best. Estimate of Tra jec tory

LM Best Estimate o f Tra jec tory

7.2.3.1 D e s cent Phzse T r a j e c t o r i e s

7.2.3.2 Rendezvous T r a j ectories

7.3 ONBOARD T U C K I N G DATA ANALYSIS

7.3.1 In t roduct ion

7.3.2 Onboard Measurements

7 . 3 . 3 Evaluation of Onboard Tracking Data

7.4.1 Descent Trajec tor ies

7-, 4.2 Landing P,&r Velocity Residuzls

7.4.3

REFERENCES

Lunar Surface Alti tude Along Groundtrack

APPENDIX A

APPENDIX B

APPEhTDIX c

APPENDIX D

Page

7-1

7-1

7-1

7-7

7-7

7-8

7-9

7-10

7-15

7-15

7-16

7-16

7-63

7-63

7-65

7-75

R- 1

A- 1

B- 1

c-1

D-L

V

Page intentionally Left Blank

LIST OF TABLES

Page

7.1 7.2

7.3

7.4 7.5

7.6 7.7 7.8

7.9

7.10

7.11

7.12

Apol lo 11 Sequence of. Events

Descent and Rendezvous Mzneuver Summary for Apollo 11

Matchpoint Comparisons of T r a j e c t o r i e s Produced with

Apollo Mission 11 BET S m ~ 2 r y

Summary of Rendezvous Radar Residual S t a t i s t i c s

Rendezvous Radar Only Solution Residual Sta t i s t ics

Summary of VHF Ranging Residual S t a t i s t i c s

Sulmnary of Sextant Residual S t a t i s t i c s

the R2 and L1 Lunar P o t e n t i a l Models

Comparison of Rendezvous Radar Noise Estimates with

Comparison of VHF Ranging and Sextant Noise Estimates

LM Landing S i t e Coordinates

Spec i f i ca t ion Requirements

r.7ith Spec i f i ca t ion Kequiremen.ts

Landing Radar Velac i ty Residual Statistics

7 -3

7 -4

7 -12 7-14

7-18.

7-28

7 -33

7-39

7-61

7 -61

7-67

7-68

vii

Page Intentionally Left Blank

LIST OF ILLUSTRATIOXS

Page

?-la

7-lb

Relative Motion of the Ut €or Apollo I1 Descent -

Rela t ive Xotion of the LM for Apollo 11 Rendezvous -

Tracking Dat2 (Onbcsrd and C-round Eased) Timeline

Rendezvous R a d a r Angle Residual S t a t i s t i c s

Rendezvous Radar Range and Range R a t e Residual

DOT t o Landing (CSM Centered)

Ascent to Docking (CSM Centered)

for Apol lo 11 Descent and Rendezvous 7-2

7-3a

7-3b

7-4 Rendezvous Radar Residuals ( I n s e r t i o n to CSI)

7-5 Rendezvous Radar Residuals (CSI t o CDH) 7-6 Rendezvous Radar Residuals (CDH t o PI) 7-7 Rendezvous R a d a r Shaft Noise 2s a Function of Averzge-

7-8 Rendezvous R a d a r Trunnion Noise as a Function of

Statistics

Range

Average Range

Range 7-9 Rendezvous Radar Eange Noise as a Function of Average

7-10 VHF Ranging Residuals ( D O 1 t o PDI) 7-11 VHF Ranging Residuals (CST t o CDR)

7-12 VRF Ranging Residuals (CDH to PI)

7-13

7-14 VXF Ranging Residual Stat is t ics

7-15 Sextant Residuals (DO1 t o PDI)

7-16 Sextant Residuals ( Inse r t ion t o CSI)

VHF Ranging Noise as a Function of Average Range

7-17 Sextant Residuals (CST to CDH)

, 7-18 Sextant Residuals (CDR’ t o TPI)

7-19

7-20 Sextant Residual Statistics

7-21

Sextant Angular ‘Random Noise as a Function of Average Range

Out-of-Plane Component of LM P o s i t i o n Rela t ive t o CSM

Dif fe rences Between Position Components of Relative

(DO1 to PDI)

T r a j e c t o r i e s (DO1 t o PDL) 7-22

7 -5

/ -6 - 7-13

7-19

7-20

7-21 7 -23 7 -25

7-30

7-31

7-32

7-34

7-35

7-36

7-37

7 -38

7 -41

7 -42

7-43

7-44

7-45

7-46

7-47

7-48

LIST OF TABLES

7.1 7.2

7.3

7 * 4 7.5 7.6 7.7

7.8 7.9

7.10

7.11

7.12

Apollo 11 Sequence of. Events

Descent and Rendezvous Maneuver Summary f o r Apollo 11

Matchpoint Comparisons of T r a j e c t o r i e s Produced w l t h

Apollo Mission 11 BET S u m m a y

Summary of Rendezvous Radar Residual S t a t i s t i c s

Rendezvous Radar Only Solu t ion Residual S t a t i s t i c s

Summary of VHF Ranging Residual Stat is t ics

Sulmnary of Sextant Residual Statistics

Comparison of Rendezvous Radar Noise Estimates with Spec i f i ca t ion Requirements

Comparison of VHF Ranging and Sextant Noise Estimates with Specification Requirements

LEI Landing S i t e Coordinates

Landtng Radar Velacity Residual S t a t i s t i c s

the R2 and L1 Lunar Potential Models

Page

7 -3

7 -4

7-12 7-14

7-18

7-28 7-33

7-39

7-61

7 -61

7 -67

7-68

vii

LIST OF ILLUSTPATTONS (cont)

7-23

7-24

7-25

7-26

7-27

7-26

7-29

7-30 7-31 7-32

5-33 7-34

7-35

7-36

7-37

Differences Befween Ve lcc i ty Components of Relative Trajectories (DO1 t o PDI)

Differences Between P o s i t i o n Components of Relative Trajectories (Insertion t o CST)

Differences Between Veloci ty Components of Relative Trajectories ( Inser t lo r ! t o CSZ)

Out-of-Plane Component of Df P o s i t i o n Relative t o CSM ( I n s e r t i o n t o CSI) Out-of-Plane Component of U4 Position Relative t o

CSEl (CST t o TPF) Differences Between Position Coinponents Of Relative Trajectories (CSI t o QF)

Differences Between Velocity Components of Relative Trajectories (CSI to TPF)

LEI Landing Site Coordinates

Landing Radar X-Anteima Velocity Residuals (BET #3)

Landing Rsdar Y-Antema Veloci ty Residuals (BET #3)

Landing Ikdar Z-Antenna Veloci ty Iiesiduals (BET %3) Landing Radar X-Antenna Veloci ty Residuals

Landing R2dar Y-Antenna Veloc i ty Residuals

Landing Radar Z-Antenna Velocity Residuals

Surhce Alt i tucte Along Ground Track

(OnhoardlMSFN H-S)

(Onb card / M S W H-S )

(Chi% oerd /MSFT? H- S )

7-38.2 GroEndtrack of LR Range Beam Piercepoint 7-38.1

7-38.3

7-39 1

Al t i t ude of U4 During LR Range Sampling

Page

7 -49

7-51

7-52

7-53

7-54

7-55

7 - 5 8

' 7-66

7-69

7 -70

7-72

7-72

7-73

7-74

7-77

7-79

7-83 7-85

7-81

7.0 APOLLO MISSION 11 TRAJECTORY RECONSTRUCTION

AND POSTFTJGHT ANALYSIS

7 . 1 INTRODUCTION A~TD SUMZ.IARY

7 . 1 . 1 Apollo 11 H s s i o n

The P.po110 I1 mission was launched froin t h e Kennedy Space Center at

13:32:00 (hrs:min:sec) Greenwich Mean Time on 26 J u I y 1969. Apoilo I1

was t h e t h i r d manned luna r mission and t h e f i r s t t o a t tempt and accomplish

a landing on the luna r surface.

i n Table 7.1.

A summary of t h e major events i s presented

The descent phase of t h e m i s s i o n was i n i t i a t e d during t h e t h i r t e e n t h

revolu t ion of t he moon a t approximately looh- 07m Ground Elapsed Time

(GET).

approximately 102h45m GET. The lunar module (LM) success fu l ly landed on t h e luna r sur face a t

L

The rendezvous phase began wi th ascent i g n i t i o n during t h e 25th CSM h m revolution and ended with docking a t 128 03 GET. A sumnary of the CSEl

and LM maneuvers performed during descent and rendezvous i s presented i n

Table 7.2 and a graphical representa t ion of these phases of t h e mission

which dep ic t s t he motion of t h e LM relative t o t h e CSM i s shown i n

Figures 7-la and 7-lb.

7.1.2 P o s t f l i g h t Analysis

The ob jec t ive of the pos t f l i gh t a n a l y s i s rgck w a s , i n genera l , t o

generate t r a j e c t o r y parameters and da ta f o r the comnand and serv ice modu1es

(CSM) and U-1 from S-IVB/CSE separat ion t o t h e end of mission. As i n t h e

Apollo r r iss ions 9 and 10, a prel iminary t r a j e c t o r y was generated from t h e

bes t availabIe RTCC vectors .

was then concentrated on recons t ruc t ion of t h e two per iods of f l i g h t fro2

I;M/CSM undocking t o LM touchdown (descent phase) and from LM ascent t o

LM/CSM docking (rendezvous).

The buIk of t h e p o s t f l i g h t anaLysis e f f o r t

The KTCC vec to r s used t o genera te t h e prel iminary NAT (NASA A p o l l o

Trajectory) are summarized i n Appendix A .

were generated us ing RTCC SS2 ( i n c l i n a t i o n cons t ra ined) solution vectors r a t h e r than SSl (no - a priori) s o l u t i o h vec to r s .

Most of the lunar t r a j e c t o r i e s

Unlike t h e Apol lo 10

7 -1

SS2 vec to r s which w e r e constrained t o the pre-LOl1, rev 18, and rev 29

planes, The A p o l l o 11 SS2 vectors were constrained on a rev t o rev basis.

Each SS2 vector contained two revs of d a t a and was constrained t o the SS1 so lu t ion p lane of one of these two revs (except ions existed a t maneuvers).

This technique prevented the accumulatinn of a large e r r o r fn t h e out-of-

plane component of position. The lunar p o t e n t i a l model used i n the

generat ion of the preliminary NAT and for propagation of RTCC vectors

was the Boeing R 2 model defiaed in Appendix 5. .

Tine final NAT was produced by updating t h e prel iminary NAT to inc lude

reconstruct ions of critical maneuvers f o r which telemetered acce le ra t ion

d a t a was available an6 t o reflect t h e r e s u l t s of t he t r a j e c t o r y reconstruc-

tion efforts perforxed on the descent and rendezvous periods of the mission.

These reconstructions will be discussed i n d r t e i l i n the following sec t ions .

In general , t he postflight ana lys i s was accomplished without difficulty.

Coincldent with the trajectory reconstruction activities, analyses were

performed to determine the quality of the onboard tracking data (ulr rendezvous radar, CSN sextant, CSM V€iF ranging, and TX landing radar).

The results of t hese analyses are also included in this r epor t .

Table 7.1 ApoI10 11 Sequence of Events

Range Zero

IrLsertion

Translunar I n j e c t i o n Ignition

S- IVS / CS >I S e p 2 rat ion

First Docking

Spacecraft Ejec t ion

M2dcourse Correction 81 Lunar Orhi t I n s e r t i o n #l . Lunar O r b i t Insertion f 2

Undocking

CSX Separat ion

Descent Orbi t I n s e r t i o n

Powered Descent I n i t i a t i o n

Touch dobn

L i f t o f f

C o c l l i p t i c Sequence Initiaticn

Constant D i f f e r e n t i a l Height . Terminal Phase I n i t i a t i o n

Terminal Phase Finalization Second Decking

Final Separat ion

Trznsear th I n j e c t i o n

Yidcourse Correction 82

W S ? f Separation

Eotry I n t e r f a c e

GET E:m:s

oo:oo:oo OO:il:49.3

.02 : 44 :16,2

03 :17 :04.6

03 :24:03 . 1 04 : 16: 59.1

26:44:58.7

7 5 : 4 9 : 5 0 . 4

80:11:36.8

100:12 :oo 100 : 39 : 52.9

101 :36 :14

102 :33 :05.2

1-02 : 4 5 : 3 9.9

124 : 22 :OO. 8 125 : 19 : 36

126:17:49.6

127 :03 :51.8

127: 46: 09.8 128 :03: 00

130 : 30 : 01

135 :23 : 42.3

150:29:57.4

194:49:12.7

195:03:05,7

Gm d:h:in:s

16 :13 :32 :@O

16 :13 :43 :49.3

16 :16 :16 : 16.2

16 :16 :49 : 04.6

16: l6:56:03,1

16:17:48:59.1 .

17 :16 :16 :58 ,i 19 :17 :21: 50.4

1 9 : 2 1 : 4 3 : 3 6 . 8

2 0 : 1 7 : 4 4 : 0 0

20 :18 : 11 : 52 .9

20:19 :08 :I5

20 : 20 :05 :05.2

20 : 20 :17 : 39.4

21 : 17 :54 :@O. 5 21:18:5l: 36

21:19:49:49.6

21:20-:35 :S1.8

21: 21:ia:og. 8 21 :21:35 : 00

22:00:@2:07

22:@&:55 : 4 2 . 3

22:20:01: 57.4

24 : 16 : 21 : 12.7

25:02:35:05.7

rl rl

0 d 4 0

2 k 0 w h k (d E 5 cn F-l aJ

W el

rn a w

o\

A 0

0 e 0 0 4

..

..

0

N .

‘R cn F)

‘0 0 4,

..

cn U

\

5 U

2 0 H

2 PI

w cn

m rl m

0 z

m hl

0 N

In N rl

..

..

a ?? r;! a

ul N rl

v: U d \

3

H rn V

e rl m

0 z

fl m rr)

W .. .. I- N rl

co cn . 0 \o .. rn N d

rn W d : 3

E PI E-,

0 0 0 0 0 0 0 N m U U 43 N

v 4 3!\08W Nl HOT38 Nl 4

(W) 33NW 3AILVT3Y ?V3ILtIXh

7-6

7.2 ORBIT ANALYSIS

7.2.1 Methods of Reconstruction

The HOPE Program was used as t h e b a s i c o r b i t deterinination too l .

The program u t i l i z e s a weighted least squares d i f f e r e n t i a l co r rec t ion

technique t o r eg res s on a l a rge set of p a r m e t e r s .

handling two vehic les , and can use both ground based and onboard t rack-

i n g data .

burn option which models t h e Apollo i n e r t i a l measurement u n i t and uses

telemetered acce le ra t ion da ta t o r econs t ruc t maneuvers.

It is capable of

An a d d i t i o n a l capabi l i ty is the IGS ( Iner t ia l Guidance System)

The o r b i t determinat ion was accomplished using f o u r b a s i c f i t tech-

niques.

a)

These techniques are described as fol lows:

MSFN free f l i g h t - regression on t h e state vec to r over f r e e f l i g h t i n t e r v a l s as defined by spacecraft maneuvers using MSFN data.

b) MSE” I G S - regress ion on the state vec to r using, a t maximum, one revolu t ion of MSFN d a t a and incorpora t ing the spacecrafc maneuvers which had t e l e n e t r - coverage by means of t h e HOPE IGS burn model.

Onboard f r e e f l i g h t - r eg res s ion on the state victor over free f l i g h t i n t e r v a l s using a v z i l a b l e onboard t racking d a t a to . cor rec t the LN t r a j e c t o r y wi th r e spec t t o a fixed CSM t r a j e c t o r y (MSFN f i t s ) .

c)

d) Onboard IGS - regression on t h e state v e c t o r using avail- a b l e onboard d a t a t o c o r r e c t the LM tra’jectory wi th r e spec t t o 2 f ixed CSM t r a j ec to ry and incorpora t ion of t h e Di maneu-Jer Ghich had te lemetry coverage)by means of t h e HOPE IGS burn model.

More accura te t r a j e c t o r i e s a re usua l ly produced wi th techniques (b) and

(d) s i n c e they t a k e advantage of longer t racking d a t a arcs.

i s important i n descent and rendezvous t r a j e c t o r y recons t ruc t ion s i n c e

the t racking i n t e r v a l s between sone maneuvers are too s h o r t t o produce

a r ep resen ta t ive t r a j e c t o r y over t he whole segment.

This f a c t o r

1

As a result of the analysis of var ious l u n a r p o t e n t i a l models con-

I t a ined i n Reference 7, and on t h e b a s i s of improved observa t ion r e s idua l s

and propagation cha rac t e r i s t i c s , the L1 model (Langley Node1 1) w a s used

7-7

i n the orbit analysis .

mented by a C33 term.

c h a r a c t e r i s t i c s of t h e L1 over t h e R2 model.

Appendix 3.

This model i s b a s i c a l l y the Boeing R2 model aug-

Table 7.3 shows improvements i n propagation

Both models are def ined i n

The t r a j e c t o r i e s for both Apollo II veh ic l e s during descent and rendezvous were recons t ruc ted using the methods summarized above. The

d a t a used i n these r econs t ruc t ion actlvities pr imar i ly included low

speed MSFN, high speed MSFN, rendezvous radar , VHF ranging, and sex tan t

data. Telemetered a c c e l e r a t i o n data were used t o reconstruct maneuvers

where ava i l ab le and app l i cab le .

during t h e descent and rendezvous per iods.

ing da ta arcs (which w e r e a v a i l a b l e over t h e per iods of i n t e r e s t ) as a

func t ion of ground e lapsed t i m e .

the t ransmit t ing (two-way) MSFN s t a t i o n and t h e numbers represent t h e

number of observations upon which final f i t s w e r e based.

s t a t i o n s operated i n t h e dua l mode (simultaneous t racking of both t h e CSM

and the LM).

Table 7.2 lists the maneuvers perforired

Figure 7-2 shows the t rack-

I n Figure 7-2, the s o l i d ba r s represent

Note t h a t some

The following paragraphs descr ibe t h e t r a j e c t o r i e s which w e r e used

as t h e f i n a l BET for both vehic les .

7.2.2 CSM Best Estimate of Trajectory

The t r a j e c t o r i e s for t h e CSM lunar revolu t ions 13, 14, 25 and 26

w e r e reconstructed fron low speed MSFN t r ack ing da ta compacted t o a ra te

of two samples p e r minute o r , i n the case of s t a t i o n s opera t ing i n the

dua l mode, one sample every 36 ‘seconds. The d a t a used are summarized

i n Figure 7-2. The quan t i ty of d a t a obtained for revolu t ions 13 and 26

w a s good. Because of t h e p a r t i a l d a t a arcs from some s t a t i o n s on revo-

lutions 14 and 25, t h e d a t a quantity i n these revs could only b e r a t e d

as fair.

enhanced t h e geometry of t h e active t racking network conf igura t ion a d

cont r ibu ted to t he q u a l i t y of a l l t h e f i t s .

Inclusion of data f r o n a southern henisphere station (Ascension)

Two reconstruct ion techniques w e r e used t o obta in t h e CSM BET’S. The

MSFN IGS f i t technique was used on revolution 13 because of t he presence

of telemetered a c c e l e r a t i o n d a t a from the CSM sepa ra t ion burn performed

7-8

i n t h e MSFN d a t a arc.

25 and 26) were obtained from MSW f r e e f l i g h t fits.

BET's f o r the remaining o r b i t s o f ' i n t e r e s t (14,

. In general, t he CSN BET'S were of good q u a l i t y . This is i l l u s t r a t e d

to some extent by t h e good pos i t ion and v e l o c i t y comparisons between

r evo lu t ions (Table 7.4) and by the r e s i d u a l statistics l i s t e d f o r each

f i t i n Appendix B. These s ta t is t ics (s tandard dev ia t ion of .1 to .25

cycles per second) compare very trelL with Apollo 8 (standard devia t ions

betk7een - 3 and .6 cycles per second) and Apol lo 10 (standard devia t ions

between .2 and .4 cycles p e r second). A por t ion of t h i s inprovenent nay

be a t t r i b u t e d t o t h e b e t t e r f i t produced by t h e L1 lunar p o t e n t i a l model.

Table 7.4 contains a s m a r y o f t h e f i n a l BET's giving f i t type

(technique), d a t a interval, NAT t r a j e c t o r y i n t e r v a l , and p o s i t i o n and

v e l o c i t y d i f f e rences a t matchpoints between segments.

7.2.3 Df Best E s t i m a t e of Trajectory

A major por t ion of the p o s t f l i g h t ana lys i s e f f o r t . w a s d i r e c t e d towards

recons t rucz ion of t he trajectories from undocking t o laDding and f rom

l i f t o f f through rendezvous. A. discuss ion of t h e o r i g i n and q u a l i t y of t h e

f i n a l t ra j ec t o r i e s i s included in the following paragraphs.

7.2.3.1 Descent Phase Tra jec tor ies

The descent phase was reconstructed i n t h r e e segments; undocking to

DOI, D O 1 to PDI, and PDI t o Touchdorm. The BET f o r undocking t o D O 1 was

obta ined froin a MSFN f ree f l i g h t f i t based cpon t h e e n t i r e d a t a arc from

revo lu t ion 13.

CSPf s i n c e f i v e s t a t i o n s were t racking t h e LM.

( s m a r i z e d i n Appendix B) compare well wi th the MSFN resfdual ststistics

obta ined from t h e CSM f i t s . Note from Figure 7-2, which shows t h e t rack-

i n g history, t h a t t h e t racking s t a t i o n geometry w a s good.

The quan t i ty of data vas considerably b e t t e r than for t h e

Residual s tz t is t ics

The BET for the per iod fromDOI to PDI was obtained from an onboard

free f l i g h t f i t based on CSM sex tan t and VHF ranging d a t a taken p r i o r to

FDI. VHF ranging observat ions and 13 sex tan t s igh t ings . Data q u a l l t y i s

discussed more thoroughly i n Sect ion 7 . 3 used as t he r e fe rence t r a j e c t o r y was t h e revolu t ion 1 4 BET d iscussed i n

paragraph 7.2.2.

As can b e seen i n Figure 7-2 the d a t a quan t i ty was good, wi th 18

The CSEI trajectory which was

7-9

The BET for the powered descent segment of t h e f l i g h t was o r i g i n a l l y

based on a f i t obtained from low speed ElSFN d a t a taken from revo lu t ion 1 4 a c q u i s i t i o n of s i g n a l t o touchdown.

fit was modified to fo rce t h e landing p a i n t t o coincide with t h e

cu r ren t best estimate of landing s i t e location.

obtained from this descent t r a j e c t o r y (BET 413) were .6358' la t i tude , 23.4938' longitude, 2nd -8557 f e e t a l t i t u d e (referenced t o t h e mean

lunar rad ius) .

Reference 10 as the b e s t estimate ( l a t i t u d e .647 and longi tude

23. 505c, determined from p o s t f l i g h t photo reduct ion) .

The t r a j e c t o r y obtained from this

Landing s i t e parameters

These f i g u r e s compare well with t h e va lue pu3l ished i n 0

Since the BET #3 was constrained t o impact 2 des i r ed landing site, A sub- t h e q u a l i t y of the t r a j e c t o r y a t PDI is not t h e besf ava i l ab le .

sequent reconstruct ion using a combination of onboard p lus h igh speed

MSFN d a t a i s discussed i n Sec t ion 7.4 of t h i s r epor t .

of h igh speed d a t a from acqu i s i t i on of signal t o l a d i n g and relative

t racking d a t a obtained p r i o r t o PDI produces a cons i s t en t and continuous

representa t ion of t h e LM traj ecto-ry from DO1 t o touchdo;m.

7 . 2 . 3 . 2 Rendezvous T r a j e c t o r i e s

This combination

The BET f o r TN ascent was i n i t i a l i z e d wi th landing site coord ina tes

of .6357' l a t i t u d e , 23.4701' longi tude, and a he ight of -8607 f.eet

above t h e mean luna r radius.

agated t o in se r t ion using accelerometer d e t a t o model t h e ascent

burn.

These initial conditiocs were then prop-

The D I B E T f o r t he per iod from i n s e r t i o n t o TPF was recons t ruc ted

in two segments; i n s e r t i o n t o CSI and CSI t o TPF.

i n s k i o n t o CSI segment was obtained from a MSFN f r e e f l i g h t f i t .

d a t a arc and trajectory- i n t e r v a l are descr ibed i n Table 7.4. The NSFN

data was good both q u a n t i t a t i v e l y and qua l i t a tFve ly as can be se, an i n

Figure 7-2. The r e s idua l statist ics, suminarizcd i n Appendix B, show t h a t

the s tandard deviat ions of t h e doppler r e s i d u a l s are l a r g e r I n th i s segnent

than i n segments which have a less severe o r b i t a l geometry.

acteristic also ex i s t ed i n t h e Apoilo 10 p o s t f l i g h t r e s u l t s .

The t r a j e c t o r y f o r the

The

This char-

7-10

The second rendezvous segment covered the per iod from CSI t o TPF.

The BET choser? m.s obtained from an onboard da ta , IGS f i t . The d a t a used

i n the fit included LM rendezvous rad2r , CSM sextant, and CSM VHF ranging

observations. In addi t ion, telemetered acceleration d a t a was used i n the

I G S burn option of HOPE t o recons t ruc t the CDH and TPI burns. The d a t a

arcs are shown i n Figure 7-2, and t h e r e s i d u a l statistics are s m a r i z e d

i n Appendix B. Data q u a l i t y was good, and t h e r e s u l t i n g BET produced an

accurate relative trzjectory . €or t h e relative observat ions was t h e r evo lu t ion 26 t r a j e c t o r y described i n paragraph 7.2.2. (The qua l i t y of t h e d a t a and t h e r econs t ruc t ion

are discussed i n more d e t a i l i n Sec t ion 7.3 of this r epor t . )

The C94 t r a j e c t o r y chosen 8 s t he re ference

7-11

Table 7 . 3 Matchpoint Comparisons of Trajectories Produced with R2 and L1 Lunar Potential Nodels

R2 Ll POS Rss . VEL RSS Revolutions . POS RSS VEL RSS

Compared (ft) (ft/sec) u t > (f t / s ec)

11-12 1 0 , 6 3 7 7.187 7544 5.756

12-13 9,936 8.178 4817 3.046

13-14 8 , 6 4 3 8.723 1555 2.53

25-26 9.595 9.139 2147 3.173

RSS = Square root of the sum of the squares of t h e differences between positi-on (POS) or, velocity (VEL) components.

7-12

L I-

f

7-13

e w m .

0 rf rt 0

2 i

I-

n cn 2 ..

15 2z

m +In a m n

:E .. 5 a W

9) a h H +I d k

c Q\

b\ 4 4 2

L 4 z2

G O 4

N

b - 4

do* x .u- h 004 m o o r l N N

......

......

...... 000 C V N N

In- . . 0-r- o e m m c o u m o o ...... ...... r - m o r l 4 N ...... 000 W W N

...... c n m h m u 4 E o m o ddhl

000 “ 0 4

......

......

m m 4 uov l ...... O o m a u w - 3 h a m r ldd

......

...... 000 N h’ r\l

Q,

caw03 o m 0 ...... m ri L-, o m r l c o c o d ddc4

d d d N N N

......

...... 0‘. (x3FIo m N O ...... OldN m o u ) b Q 3 E D d d d

4 4 4 n1NC.l

......

......

mco 4 m o m

I - f N

.... I .... I Q)o dhl .... r ld CIN

.... I O 0 I .... I a m ?Id l-ld N c u

....

H 0 FI 0 U

2 . O a c P

H FI PI 0 U

H 0 FI

LI

N

1 - l I

0 0 0 0

c.i F- N r l

m r l d N

0 0 N N

....

....

....

0 0 00

N N N N

b c n d d 0 0 mC\1

....

....

....

a 4 m w

m m c o o r ( w 00 N N

.... m m .... ....

ut.. N e 4

ut..

b c h dPi

00 C V N

....

....

....

y? E E 2E

H F r

P7-T r ld

gdo

% Z

E %

dtl UJJ 3 3 r ld 0 0

& W

u u

00 00 .... h ic- m m a 3 0 FIN

d 4 C V N

....

.I .. 00 00 .... l-r- m v l U l D Q 4 d

rld C\IN

....

....

m r l Flln .... COLD o m .... c o o FIN

d 4 c.lN

....

r l m m r l .... h a N h l .... r - m d d

rld N c v ....

. . F ? $ k

H H

*3( 8 e

. 7.3 ONBOARD TRACKIRG DATA ANALYSIS

7.3.1 h t r o d u c t i o n

Aqalysis'of t h e Lll rendezvous r ada r d a t a from Apol lo missions 9 2nd

10 and CSM IXF ranging d a t a f r o m Apollo 10 r e s u l t e d i n t h e conclusions

t h a t both da t a types w2re of high q u a l i t y and, i n genera l , produced tra-

j e c t o r i e s cons i s t en t wi th those obtained from ground based t racking da ta

(References I and 5 ) . A s i m i l a r a n a l y s i s o f . t h e onboard t racking d a t a obtained dur iag t h e

Apollo 11 mission was perfonzed with t h e following objec t ives :

a) Deternine the consistency of the LM rendezvous r ada r d a t a and t h e CSM VHF ranging d a t a with similar data from Apollo missions 9 and 10.

b). Using t h e s e d a t a as a s tandard of comparison, eva lua te the LM s igh t ings made with the CSM sex tan t .

c) Determine t h e consistency of all onboard da ta .wi th the ground based da ta .

d) Use t h e onboard da ta t o cons t ruc t a more accura t e LT.I rendezvous t ra j e ctory .

The onboard t rack ing data w e r e obtained from t h e dotrnlink te lemetry

tapes by a special purpose computer program designed t o read t h e tape ,

and output t h e des i r ed observations 2nd assoc ia ted information on punched

cards.

HOPE Program.

The format of the punched cards was t he s p e c i f i e d input t o the

Edicirig of bad data was perfom-ed manually.

Enboard t racking d a t a yTelas a measure of t h e p o s i t i o n and v e l o c i t y

of one v e h i c l e relative to another. It is necessary, t he re fo re , t o ob ta in

a good, independent estimate of t he t r a j e c t o r y of one v e h i c l e and fix- t h i s

as a rer'erence t r a j e c t o r y .

manewers during t h e descent and rendezvous mission per iods , it: is l o g i c d

to f i x the' t r a j e c t o r y of t h e r e l a t i v e l y quiescent CSI4 as t h e reference.

Since t h e Ltf t r a j e c t o r y i s per turbed by several

A s discussed i n Sec t ion 7.2, t h e CSM t r a j e c t o r y was recons t ruc ted i n

four s i n g l e revolu t ion f i t s from MSFN t rack ing da ta .

of i n t e r e s t here w e r e MSFN free f l i g h t f i t s on r evo lu t ions 14, 25, and 26.

The t h r e e seginents

7-15

Trajectories for t h e 1;M free f l i g h t segments were a l s o recons t ruc ted from

MSFX tracking data . The ground based ZIfSFN t r ack ing a v a i l a b l e f o r use dur-

ing t h e periods of i n t e r e s t are s m a r i z e d i n t imel ine form i n Figure 7-2.

The CSM t r a j e c t o r y was fixed aS t h e re ference , and t h e LM MSFN f r e e

f l i g h t t r a j e c t o r i e s were then used to i n i t i a l i z e fits based on anboard

da ta i n the four segments where relative d a t a w e r e a v a i l a b l e .

confidence va lues of 10,000 feet w e r e placed on each component of p o s i t i o n

and 10 f e e t pe r second on each component of v e l o c i t y i n t h e i n i t i a l

conditions.

A p r i o r i

The reconstruct ion activities w i l l b e discussed i n more d e t a i l i n

the following sec t ions .

included which serve t o descr ibe t h e opera t ions performed and show t h e

accuracy and v a l i d i t y of the data .

In addi t ion , va r ious t a b l e s and f igu res are

7 . 3 . 2 Onboard Measurements

Rendezvous radar da t a were obtained during t h r e e per iods of t h e

Apol lo I l m i s s i o n ; t hese were I n s e r t i o n t o CSI (9 observa t ions) , C S I t o

CDZ (20 observations), and CDB t o TPI (45 observa t ions) . As i n previous

missions, t h e amount of rendezvous r a d a r d a t a obtained vas l imi ted t o

those per iods when t e l e n e t r y coverage w a s ava i l ab le .

VRF ranging data were cbtained from the CSM during fou r segments of

t he f l i g h t ; t h e s e w e r e DO1 to PDI (18 obsemat ions ) , i n s e r t i o n t o CSI

(2 observations), CSI t o CDH (17 observa t ions) , and CDH t o TPI (12 observa-

tions).

io meaningful statistics could b e obtained.

Since only two observat ions w e r e obtained from I n s e r t i o n t o CSI ,

Sextant d a t a w e r e obtained during the same per iods of f l i g h t as were

VEF-ranging data; 13 observat ions between DO1 and PDI, 4 observat ions from

i n s e r t i o n to CSI , 21 observat ions f rom C S I t o CDH, and 10 observat ions

between CDH and TPI. Lis t ings of a l l t h e d a t a are included i n Appendix D.

7 . 3 . 3 Rendezvous Radar Data

Evaluation of Onboard Tracking Data

In order t o determine t h e q u a l i t y of t h e rendezvous r ada r da t a , t h e

residuals (d i f fe rences between t h e a c t u a l measured va lue and a measurement

7-16

vzlue computed from given CSM and T..M t r a j e c t o r i e s ) w e r e exanked.

CSH t r e j e c t o r i e s used i n obtaining these r e s i d u a l s were t h e BET'S discussed

i n Sect ion 7.2 of t h i s r e p o r t (one rev MSFN free f l i g h t f i ts) .

t r a j e c t o r i e s w e r e obtained by using technique (c) descr ibed i n paragraph

7.2.1 (onboard f r e e f l i g h t f i t s ) .

The

The Dl

A l l available onboard d a t a were used

in t hese f i t s .

Table 7.5 lists r e s i d u a l statistics (mean, s tandard deviat ion, one-

sigma noise estimate) computed from t h e onboard free f l i g h t fits .of each

segment and Figures 7-3a and 7-3b i l l u s t r a t e the r e s u l t s graphica l ly .

were genera l ly w e l l behaved as can be seen i n t h e r e s i d u a l p l o t s (Figures

7-4 through 7-6). The r e l a t i v e l y large differences between t h e s taadard

devia t ion and noise computed f o r s h a f t and t runnion i n che CSI t o CDH and

CDH t o TPI per iods can p a r t l y be a t t r i b u t e d to t h e f a c t t h a t both rendezvous

radar and sextant da ta were used i n the f i t . A s t h e two da ta sets become

more equal in s i z e (weighted e f f e c t ) o r the sampling arcs more coinc ident ,

r e s idua l statist ics d e t e r i o r a t e .

statistics l i s t e d i n Tsble 7.6 which were obtained from fits made ~ 5 t h

only rendemous r a d a r d a t a included.

eliminated, t h e RR s h a f t and trunnion means and devia t ions decrease i n a l l

segments.

t h e CDH and TPI per iod) , i nd ica t ing t h a t a sys temat ic e r r o r i s s t i l l pre-

s e n t i n the s h a f t measurement. It should a l s o be noted t h a t t h e rendezvous

The dat2

This e f f e c t is demonstrated by the

Note t h a t when sex tan t d a t a i s

The shaft s t a t i s t i c s are s t i l l relatively high ( e spec ie l ly i n

radar r e s i d u a l s t a t i s t i c s from Apollo 1 0 exhib i ted a sixilar c h a r a c t e r i s t i c

(Reference 1).

tYuiEZo3 measurement are r e l a t i v e l y large i n the CDH to 'RT period (no

sex tan t da t a were included i n Apollo 10 so lu t ions ) .

.

In A p o l l o 1 0 , t h e s tandard dev ia t ions for both shaft and

The l a r g e mean values

seen i n T a b l e 7.5 are a l s o a r e s u l t of t h e inc lus ion of s ex tan t d a t a i n the

so lu t ion d a t a sets. !.Then only rendezvous r ada r d a t a was included, t h e mean

values decreased t o near zero va lues .

The range r e s i d u a l statist ics exhib i ted c h a r a c t e r i s t i c s s i m i l a r t o

When VHF ranging d a t a i s removed from t h e s o l u t i o n the Apollo 1 0 da ta .

data set, s tandard devia t ions decrease and become, i n two segments, a h o s t

equal t o n o i s e estimates.

t h a t no bias is present .

The mean values a l so approach ze ro , ind ica t ing

7-17

I .T?IH nsertion . CSI To CDH TP I

I 1 ' .009 ,015 ' .033

.015 .016 .031

.013 .010 . o m -. 051 -. 068 -. 119 9 010 .019 .031

.010 .008 . .007

79. 75. 55. 144. 63. 92.

39. 37. 27.

.604 - .243 -. 305

.173 .339 ,277

.627% ,6278 .6278

Meen

S. D e v .

Noise

Mean

S. D e v .

Noise

Me an S. D e v .

No is e

Mean

S. D e v .

Q. E.*

* 9.uantization Error.

7-18

ti v) H

=,o

VAV LOIY

7-19

I 3'78V'IIVAV LON

I a M C d X

N

I-+

W

I

N

l-l I

C (3 p:

rn 3 0 > N aJ 'J C 0 !%

0 0 rl

0 0 N

0 0 0 +--(

0 0 N

I

0 0 m

7-20

.12

-08

.04

0

- .04

0

- .04 n 0 w n v

-.a8 t-l z 2 3 ffi E-

- . 1 2

-. 16

0 1 2 3 1; 5 5 7

TIVE (MINUTES FROM FIRST DATA POINT)

I

0 1 2 3 4 5 6 7

TIME (MINUTES FROM FTRST DATA POINT)

Figure 7-4 Rendezvous Radar Residua1.s ( I n s e r t i o n to CSI)

7-21

1 . 2

u z 3 - . 4

.8

.4

0

.

- . a

-1.. 2

0 1 2 3 4 5 6 7

TIME (MINUTES FROM FIRST DATA POINT)

3 4

0 1 2 3 4 5 6 7

TIME (MINUTES FROM FIRST DATA POINT) Figure 7-4 Concluded

7 .-lo I &L

.08

.04

0

- .04 6 8 10 22 14 I€ 0 2 4

TIME (MINUTES FROM FIRST DATA POINT)

0

-.04

c5 w n

- .16 2 4 6 8 10 12 14 IC 0

TIME (MIhWTES FROM FIRST DATA P O I N T ) 2 4 6 8 10 12 14 I; 0

TIME (MIhWTES FROM FIRST DATA P O I N T )

Figure 7-5 Rendezvous R a d a r Residuals (CST t o C D H )

1-23

0 2 4 6 8 ' 10 12 1L; 16

TIME (MINUTES FROM FIRST DATA POINT)

1 . 2

.8

. 4

0

- .4

- .8

-1.2

I

D

0 2 4 6 8 10 1 2 14 1 6

TIME (MINUTES FROM FIRST DATA POTNT) Figure 7 -5 Concluded

7-24

.12

* 08

- .04 ci w 0 v

0 -2 m c

- .04

- -08

3 R

,

20 24 28 32 36 0 4 8 12 , 16

TINE (MIhVTES FROM FIRST DATA POINT)

0

- -04

- .16

0 4 16 20 24 26 32 36 8 12

TTE!E (MINUTES FXON FIRST DATA POINT)

Figure 7-6 Rendezvous Radar Residuals (CDH to TPI) 7-25

4 8 12 16 20 24 28 32 36

TIME (MINUTES FROM FIRST DATA POINT)

F i g u r e 7-6 Continued

I Reproduced from best available copy

7 -26

.6

.4

.2

0

- . 2

- .4

- .6

--. 8

i I

0 4 8 22 16 20 24 28 3 2 3e

TIME (MINUTES FROM FIRST DATA POINT)

F i g u r e 7-6 Concluded

7-27

Table 7 . 6 Rendezvous Radar Only Solution Residual Sta t i s t ics

S h a f t

Trunnion '

Rang e

Range Rate

Mean

S. Dev.

Me an

S. Dev.

Mesn

S. Dev.

EIean

S. Dev.

7-28

I

The range rate res idua ls w e r e a l s o of good'qual2ty. Mean ve lues w e r e

&I less than the downlink readout e r r o r (.6278 fps) .

One sigma noise ca lcu la t ions f o r s h a f t , . trunnion, and range rate

from three missions are plo t ted as a func t ion of average range i n Figures

7-7 through 7-9. .These f igures show t h a t t h e Apollo 11 n o i s e estimates

campare well wi th similar estimates from missions 9 and 10. h'ote t h a t no

d e f i c i t e ' t r e n d i s apparent i n t h e angular noise as relative rmge varies. F igure 7-9 does seen t o ind ica te , however, t h a t t h e n o i s e e s t ima te f o r .

t h e range measurement does increase as average range increases . The

Apol lo 11 noi se estimates f o r all t h r e e observables appear t o be gene ra l ly

smaller than those obtained from previous missions.

VEF Ranging Data

Table 7.7 contains a summary of VHF ranging da ta r e s i d u a l s t a t i s t i c s

ob ta ined from onboard f r e e f l i g h t f i ts made over t h e t h r e e segments where

adequate amounts of da ta were ava i l ab le . Figures 7-10, 7-11, and 7 ~ 1 2

con ta in p l o t s of t hese res idua ls . Since only two observat ions were obtained

f r o m t h e i n s e r t i o n t o CSI segment, o n l y t h e DO1 t o PDT (18 observa t ions) ,

CST t o CDH (17 observat ions) , and CDH t o TPI (12 observat ions) sements

are considered.

The VHF ranging da ta were generally of good qual i ty . As expected,

t h e smallest mean va lue w a s obtained during t h e D O 1 to PPI period i.Then

VEF ranging w a s t h e only range d a t a type measuring t h e d i s t a n c e between

veh ic l e s . The mean values becoine increas ingly large as more rendezvous

r a d a r d a t a are included i n t h e d a t a set o r as t h e da t a a r c s become

coinc ident i n t i m e .

CDE t o 'PI period. This large mean, however, i s s t i l l wi th ln t h e b i g s

s p e c i f i c a t l o n l i m i t of 2270 feet.

This can be seen i n t h e l a r g e mean va lue for t h e

Figure 7-13 shor-7s t h a t the ca lcu la ted no i se values conpare favorably

with Apollo 10 r e s u l t s apd are r e l a t i v e l y constant when compared t o those

obta ined from Apollo 10. The r e s i d u a l statist ics l i s t e d i n Table 7.7 are

i l i u s t r a t e d graphica l ly in Figure 7-14.

Sextant

The r e s i d u a l s t a t i s t i c s shown i n Table 7.8 i n d i c a t e t h a t t h e CSM

sextant i s a very accura te instruqent . Sextant observat ions were obtained

OQD

f 1 I I I I 1 I I N 0 r. r(

0 0

co 0 0

-3 0 0

0 N hl

0 C N

lo N

0

0

7-30

9 -;t 0 0

cy 0 0' 0

0 Q . r(

0 \o

0 0 0 hl 0 co r) r)

0 cv 0

7-32 '.

DOI-PDI

-26.

7 4 .

23.

Range (feet)

7-33

CSI-CDR CDH-TPI

-86, -216. Mean

104. 48. S. Dev.

Koise 23. 19.

300

200

100

0

-100

-200

-300

-400

0 4 8 12 16 20 24 28

TIME (MINUTES FROM FIRST DATA POINT)

Figure 7-10 VHF Ranging Residua'ls (DOT to PDT)

7-34

300

200

100

0 :

-100

- 200

-300

- 400

8 1 2 16 20 24 28 32 0

TIME (MINUTES FROH FIRST DATA POTNT)

Figure 7-11 VHF Ranging Residuals ( C S I to CDH)

7-35

-120

-160

c3

2 -240

-280

-320

-360

0 4 8 12 . 16 29 24 28

TIME (MINUTES FROM FIRST DATA POINT)

Figure 7-12 VHF Ranging Residuals (CDH to T P I )

7-36

I i

7-37

300

200

100

n F a W

m O u

3 - 100

-200

-3 00

MEAN STD NOISE D EV

D O 1 INS TO TO PDI CST

CSI CDH TO TO CDH TPI

Figure 7-14 VHF Ranging Residual Stat i s t ics

7-38

U C m U

5 0-l

w 0 h &i

B ’ 5 cn

h

A m 4 0 4 4 0 0 0 . . .

F1 0 4 0 O d d 9 9 9

(d U CI P

U C a, .A

In u 0 In -4 c o w o c w

cn c

4 L n c 0 4 4 0 0 0 I . .

I

4 0 3 4 0 0 4 0 0 0 . . .

I

. . .

P) OI .rl 0 U

G . 0 U-I o o w

I C

o m -r!

0 * :

H

4 o u m 0 0 0 0 0 0 . . . I

7-39

I

in four of the f r e e flight seginents; DO1 t o PDI (13 s i g h t i n g s ) , i n s e r t i o n

to CSI ( 4 s igh t ings ) , CSI t o CDH (21 s i g h t i n g s ) , O H t o TPI (10 s i g h t -

ings) . The c lose agreement of t h e s tandard devia t ions w i t h t h e no i se

estimates and t h e very small means listed i n d i c a t e t h a t t h e r e are

essen t i a l ly no b i a s e s i n e i t h e r angle.

The r e s idua l p a t t e r n s (Figures 7-15 through 7-18) are very w e l l be- . “haved. The random n o i s e es t imates (Figure 7-19) compare w e l l w i t h ren-

demous radar angular noise estimates and no t rend can be i d e n t i f i e d

tr i th respect t o average range.

no ise estimates p l o t t e d i n Figure 7-19.

Onboard Tracking Data Consistency

Note the good agreement with t h e Apollo 9

In order t o determine the consis tency of t r a j e c t o r i e s reconstructed

from onboard t r ack ing d a t a wi th those obtained from MSFN t rack ing d a t a ,

state vector comparisons w e r e made over the gxopagatioa interrals. These

conparisons w e r e made i n a UVV-type coord ina te system and t h e r e s u l t s are

presented i n graphic fonn. I n t h e figures presented, RZ is the Eegzt ive

of t he U or r a d i a l component, RX i s the V o r downrange component, and RY i s the negat ive of t h e W o r crossrange component of a system centered a t

the CSM. RW, RM) and RZD are the r e spec t ive v e l o c i t i e s .

Three LM t r a j e c t o r i e s were obtained f o r t he per iod from D O 1 t o PDI.

Figure 7-21 plots (as a function of time) t h e out-of-plane component o f

LM pos i t ion relative t o t h e CSM f o r z MSFN f r e e f l i g h t ‘ t r a j e c t o r y , an

onboard data free f l i g h t t r a j e c t a r y , and the f ina l BET (combined h igh

speed MSFN and onboard t rack ing data) . It can be seen that the add i t ion

Of onboard t racking d a t a d r a s t i c a l l y improves t h i s component of pos i t i on .

Figures 7-22 and 7-23 show t h e d i f f e rences between re la t ive t r a j e c t o r i e s

obtained froui t h e MSFN and from t he onboard t racking free f l i g h t f i ts .

Tnere are large d i f f e rences i n the t r a j e c t o r i e s which are pr imar i ly due

to the poor q u a l i t y of the MSFN f r e e f l i g h t f i t , b u t the coinparFsons do

show t h a t t he dawnrznge and rad‘tal components compare f a i r l y w e l l i n s i d e

the ES” data arc.

7 -40

t . L . c r c M . l i

I I -e

1. .. 6 8 10 !7

91!*:E (NTPUUTES J X O M FIRST DATA POINT)

- r f .c f

$ I- . i

4-

pc, 5-

t

f I i

4 6 8 10 1 2 14 . 2

TIME (MINUTES FROM FIRST DATA POINT)

7-41

.04

.02

n c5 cri P

& 0 W

3 ul

-.02

- -04

.04

.02

h

t9 w m W

2 3 0 n z z D ffi E + -

- .02

- .04

0 2 4 6 8 10 12 14

TIME (MINUTES I k O M FIRST DATA POINT)

0 2 4 6 8 10 12 14 TIME (MINUTES FROM FIRST DATA POINT) ’

Figure 7-16 Sextant Residuals (Insertion to C S I )

7-42

-04

.02

- .02

- .04

. OL:

.02 h

c3 W a U

z o o H z z D cs e

- -02

- .04

0 4 8 12 16 20 24 28

TIME (MINUTES FROH FIRST DATA POINT)

F i g u r e 7-17 Sextant Residuals (CSI to CDH)'

7-43

.12

.08

.04

0

- - 0 4

0 1 2 3 4 5 6 7 8

TIME (MINUTES FROM FIRST DATA POINT3

.08

.04

0

- .04

- .08

TIME (MINUTES FROM FIRST DATA POINT)

Figure 7-18 Sextant Residuals (CDH to T P I )

7 -44

0

0

b

4 v1

Q ri

9 \o c

9 N 0 aa \o + ,-I 0 0 0 . o 9 (33U) BSLON N O X N f l X L ‘J,.dFRts

7-45

* 0 9

PJ 0 0 -?

0 C c

cn (v d 0

co 0 0

* 0 0

0 a 0 0

N 4 0

I

4 U ld

0 0

I U rn

.

.;f m 0 0

4 C J .O 0

8000

6000

4000

2000

0

- 2000

- 400C

-6OOC

-8OOC

DATA ARCS - .)

D

--- RELATIVE DATA FREE FLIGHT \ MSFN DATA FREE FLIGHT (6-SEC RATE) - -MSFN AND RELATIVE COMBINED IGS DO1 TO XNDING H I G H SPEED NSFN

1 8 : 3 0 19 :OO 19 :30 20:oo 20:30

TIME (HR, GMT, 2 1 JULY 1969).

Figure 7-21 Out-of-Plane Component of LM Position Relative to CSM (DOT. to PDI)

7 -47

N

0 0

m

0 0

r(

6 4

,-l O N m

-.

[ w

X

H

0

0 N

Ff

s: .. i

0 0

m .. 4

0 0

0 .. N

0 rl

0. .. ri

0

0 c d

7-49

Figures 7-24 and 7-25 show the d i f f e rences between p o s i t i o n and

v e l o c i t y components of the two relative t r a j e c t o r i e s obtained f o r the

I n s e r t i o n t o C S I per iod.

(low speed) da ta free f l i g h t f i t and an onboard d a t a f r e e f l i g h t f i t .

N n t e t h a t t h e d i f fe rences between t h e RX and RZ components are nominal

whereas t h e RY component (crossrange) is l a r g e . This c h a r a c t e r i s t i c

i s expected s ince onboard d a t a f i t s produce a much b e t t e r relative tra-

jectory i n the cut-of-plane sense. Figure 7-26 i l . l u s t r e t e s the better

crossrange pos i t ion obtained f r o m onboard d a t a f i t s .

These t r a j e c t o r i e s w e r e obtained from a EEFN

Figure 7-27 i l l u s t r a t e s t h a t t h e t r a j e c t o r y obtained from onboard

t r ack ing data el iminates t h r e e t o f o u r thousand feet of r e l a t i v e cross-

range error which the MSFN d a t a could not. i n Figures 7-26 and 7-27 r e s u l t p r imar i ly from d i f f e rences In t h e deternina-

t i o n of t h e right ascension of the ascending node of t h e o r b i t s . The

r e s u l t s of t h i s phase d i f f e rence are very evident i n the plot of the

d i f f e rences between out-of-plane pos i t i on components of t r z j e c t o r i e s

der ived from MSFN and from onboard d a t a (Figure 7-28 (ARY)).

The phase d i f f e rences ev ident

The important f e a t u r e t o no te in these f i g u r e s i s t h a t t h e t r a j e c t o r i e s

based on onboard t racking d a t a e l imina te a l a r g e po r t ion of t h e cross-

range error present i n independent E.IsFN f i t s far both vzhicles. It i s a l s o i n t e r e s t i n g t o no te t h a t i n t h e out-of-plane pos i t i on curves shown

in Figures 7-26 and 7-27, t h a t t h e t r a j e c t o r i e s produced from relative data

match across the C S I burn much more c lose ly than the fits produced from

MSFN da ta . While t h i s agreement does depend, t o some extent, on a good

match between t h e CSM t r a j e c t o r i e s , t h e relative d a t a d id produce a m o r e

continuous t r a j ec to ry i n t h e out-of-plane sense from one independent fit

t o another .

Despi te the l a r g e out-of-plane d i f f e r e n c e s , i t can be seen t h a t tra-

jectories produced from onboard t rack ing d a t a are genera l ly c o n s i s t e n t w i t h

MSFN based f i t s , e spec ia l ly i n overlaping d a t a arcs (Figures 7-24 and 7-28).

Therefore , because of b e t t e r c h a r a c t e r i s t i c s i n the r e l a t i v e ' sense , tra-

j e c t o r i e s produced from relative t r ack ing d a t a are more s u i t a b l e f o r d e t a i l e d

rendezvous analysis purposes.

7-50

L 0 0

i;

0

o\ c I+

C

cc - . I .. c

0

5 0 ri

0 0

u? i

..

a CI

a2 .. i

u 0

‘1:

0

0

.. r(

Fi

C (?

a2 .. i

0

?

ri

14

12

10

a

n r7 0 6 4

x !3 L W

2 4

2

0

-2

- 4 '

- RELATIVE

n I MS FN I

/ 1

/ I

f I

1 /

/ f

f I . (FREE FLIGHT) - M S F N LM TRAJECTORY

--- RELATIVE DATA T R A J E C T O R Y I (FREE F L I G H T ) f

I

28:OO 18:30 19 :00 19 :30 1 7 :30

TIME (HR, GMT, 21 JULY 1969)

Figure 7-26 Out -o f -P lane Component of LM Position Relative t o CSM (Insertion t o CSI->

7-53

c -

0 - 0

0 # /

/

Q s-4

0 Fz

7 - 5 4

1 I

I I 1 1 I I

1 - I I I 1 I I - t I 1 I I I I

i I

TPF

1 MS FN I I

I I . I I RELATIVE I

I I I I

18:30 . 19 :oo 19:30 20:oo 20:30 2 1 :oo 21 :

TIME (HR, G M T , 21 JULY 1969)

Figure 7-28 Differences Between Posttion Components of Relative Trajector ies (CSI to TPF)

19:OO 19 : 30 20:oo 20:30 21 :oo 2 1 :30

TIME (HR, G M T , 2 1 JULY 1969)

Figure 7-28 (Continued)

7 -56

3000

2000

1000

A

E- '& v

0 Ga 0 z kl & 3 2 w 3

-1000 z u 3

b t-l VI

E w -2000 > F 4 -3 Lil ,u

b-

-3000

- ~ 0 0 0

- 5000

I 1 1 . I I I I I

I I I I I I I 1 I I

1 I I I .

TPF I

T P I I

CD H cs I

1 I I I

1 I

MS FN I I I I I I - I I

L RELATIVE

I I I 4 I

20:30 21 :oo 21 : 3 19 :oo 19:30 . 20 :oo 18:30

TIME (HR, GMT, 21 JULY 1969)

F i g u r e 7-28 (Concluded)

0 ?. 4 N

0 F! l-l N

0 m 0 N

0

0 N

F!

0 c?

o\ 4

..

0

rn 4

0

0 m

t% --PI -

H c -

- T H

-fi - w

X -0 -

V

H cn- u

-

m U cv 0 I N

I

7-58

0 ?. ri N

0 0 .. i N

c 0 -1

2

0 0

0 cv ..

0 r l

0' .. i

0 0

Q\ .. 3

0 W

C' .. c

0

co 0 d

7 - 5 9

- - -

I d I a 9 N

I I 9 cu 4 UI aD

I I I

7 -60

Table 7.9 Comparison of Rendezvous Radar Noise Estimates with Specification Requirements

Average Angular Noise Range Noise Free Flight R a n g e 35 (deg) 30 (feet)

Segment (n . m i . ) E s t . Spec. E s t . S p e c . --

INS t o CSI

CSI t o CDH

140

107

.049 .I146 117. 2126.

,038 .I146 111. 1627.

CDH t o T P I 59 .037 .1146 81. 890.

Tzble 7.10 Comparison of VHF Ranging and Sextant Noise Estimates with Speci f ica t ion Requirernents

Sextant VHF Ranging Average Angular Noise Range NoJLse

Free Flight Rang e 30 (deg ) 3c ( f e e t ) - Segment (n. m i . ) Est. S b e c ( l > E s t . Spec.

~ --

DO1 t o PDI

INS t o CSI CSI to CDH

CDH t o TPI

32 ,043 - 140 NA

107 .03 5 L

59 - ,047 -

69. 180.

NA

69. 180.

57. 180.

(1) No s p e c i f i c a t i o n value was available.

7-61

Speci f ica t ion Comparisons

Table 7.9 compares the 3a values of noise estimated from the redemous

radar residuals with s p e c i f i c a t i o n requirements.

estimates were a l l well w i th in s p e c i f i c a t i o n limits.

the sex tan t and trtr_F ranging d a t a zre l i s t e d i n Table 7-10. Although no

spec i f i ca t ion value was found for t h e sex tan t , t h e va lues obtained (RSS

of individual angle n o i s e estimates) were all within acceptab le l i m i t s .

The VHF ranging noise estimates d s o C O ~ F Z ~ ~ well with spec i f i ca t ions .

Conclusions

It can be seen that t h e

Noise estimates f o r

The following conclusions w e r e drawn f r o m t h e zna lys i s .

1. The onboard d a t a was general ly of good qua l i ty . datz, examined for the first time, appesred t o b e es accurate as the rendezvous radar angular measureinenrs.

The sex tan t

2. Estimates of d a t a random noise were a l l w i t h i 2 s p e c i f i c a t i o n and expected va lues .

3. Tra jec to r i e s produced from onbaard tracking data proved t o be genera l ly cons i s t en t with t h o s e produced from HSFN data . L t was found that a method used i n the past t o demonstrate t r a j e c t o r y consis tency was inadequate. On Apollo 10, tra- j e c t o r i e s w e r e compared only a t s e l e c t e d t i m e s . Because of t he s i g n i f i c a n t l y l a r g e phase d i f f e rences found to be present i n r e l a t i v e t r a j e c t o r i e s , t he values for out -o f - plane p o s i t i o n d i f fe rences obtained a t s e l e c t e d t i m e s may b e misleading. The out-of-plane p o s i t i o n conponents must be p l o t t e d as a funct ion o f t i m e i n order t o see t h e t o t a l d i f fe rences i n t h e t r a j e c t o r i e s .

7 -62

7.4 W % I N G DATA AhULYSIS

The laEding r ada r data ana lys i s cons is ted of genera t ing and evaluat-

ing landing r ada r r e s i d u a l s (difference between observed measurement and

computed mezsurement) and mapping of t h e l u n a r su r face p r o f i l e and ground-

t r a c k wi th t h e s l a n t range measurement.

The landing r ada r data were obtained by processing the downlink

telen,etry d a t a wi th a s p e c i a l purpose computer program which outputs

onboard observations on punched cards i n a HOPE-compatible forinat.

The HOPE Program was used t o compute simulated landing radar abserv-

ables from se l ec t ed LM t r a j e c t o r i e s and from auxiliary information such as REFSMAT, gimbal angles , and radar opera t ing inode. The LV t r a j e c t o r i e s

w e r e generated by t h e HOPE Progran u t i l i z i n g te lemetered acce le ra t ion

d a t a i n the IGS burn opt ion t o model t h e descent burn.

then formed by sub t r ac t ing the coinputed f rom t h e a c t u s 1 observable value.

Paragraph 7.4.2 presents statistics and s e l e c t e d p l o t s of r e s idua l s

obtained from var ious T.21 state vec tors .

Residuals were

Terrain mapping da ta w e r e obtained from a s m a l l , special pupose

computer program designed t o compute terrain a l t i t u d e above a mean luna r

r ad ius 2s a func t lon of l a t i t u d e and longitude. The r e s u l t s of rn z t t e p t

t o c o r r e l a t e t h i s t e r r a i n da ta wi th lunar contour maps are presented Lxi

Paragrqh 7 . 4 . 3 .

7.4.1 Descent T ra j ec to r i e s

Six d i f f e r e n t descent t r a j e c t o r i e s were examined i n the landing rzdzr

data ana lys i s .

(a)

The o r i g i n s o f t hese t r a j e c t o r i e s are summzrized as follows:

RTCC - This v e c t o r was obtained i n t h e RTCC i n real time.

(b) MSFN (LS) - This vector was obtained f r o m an I G S f i t using l o w speed MSFN da ta obtained from a c q u i s i t i o n of s i g n a l t c LM touchdown (revolut ion 1 4 ) . The doppler d a t a were conpact- ed t o tqio observations p e r minute.

( c ) Onboard - This vec tor vas obtained from a free f l i g h t f i t using CSM sex tan t and VHI: ranging observat ions. The tech- nique required f ix ing the CSM t r a j e c t o r y as a re ference and updating t h e LN s ta te from onboard observat ions and t h e CSK re ference t r a j ec to ry .

(d) BET f 3 - The MSFN state vector descr ibed i n item (b) above, was used a s t h e b a s i s for t h i s t r e j e c t o r y . The BET #3 w a s obtained by cor rec t ing the- l.ISFBT low speed state wi th a linear e r r o r ana lys i s pmgram s o t h a t t h e r e s u l t a n t povered descent t r a j e c f o r y would impact a des i r ed landing site with a r e l a t i v e v e l o c i t y of zero. as re ference were the MPB photographic estimate.

Lear - High speed NSFI? ckta (ten s a n p l e s p e r second) obtained over a 232 second da ta arc j u s t p r i o r t o PDI were fit by the Lear Powered F l i g h t Processor producing this state vector .

The landing coordinates used

( e )

(f) Onboard/MSE" (H-S) - This t r a j e c t o r y was obtained wi th the HOPE Program and used high speed MSFN doppler d a t a which had been compacted t o 30 observat ionslminute and from CSFI sextant: and VHF ranging da ta us ing t h e HOPE orbit de temina - t i o n program. burn option. vec tor included position and v e l o c i t y a t epoch (which was p r i o r to P D I ) , ai-d Y platform mlsaligninent. The t racking da ta i n t e r v a l t7as f r o a DO1 t o LEI touchdam. Figure 7-2 shows t h e t racking data t imel ine.

The descent burn was modeled by t h e HOPE IGS Tie HOPE weighted leas t squares solution

In order to gauge the q u a l i t y of the landing r ada r data , i t was

necessary to determine t h a t the above t r a j e c t o r i e s d i d accura te ly rep-

resent the actual descent t r a j ec to ry .

l a r g e l y on t h e landing poin t condi t ions obtained f rom each t ra jec torv ' .

These landing sites obtained from each t r a j e c t o r y are summarized graphica l ly

i n Figure 7-30.

estinates are very close t o t h e 16mm photographic estimate (accepted as

t h e b e s t es t imate) .

This q u a l i t y judgeinent vas based

Note t h a t both t h e BET #3 and the OrLboardhlSFN H-S

Since the data type being examined is a v e l o c i t y measurement, i t is

nost dimportant t h a t the re ference t r a j e c t o r y be v i r t u a l l y f r e e of v e l o c i t y

errors i n the data arc,

v e l o c i t y e r r o r a t landing where the BET #3 was cons t ruc ted i n such a manner that t h e v e l o c i t i e s are zero a t landing, as the bas ic re ference upon which t o b a s e the analysis of landing radar

v e l o c i t y res idua ls .

The onboard/NSFN H-S t r a j e c t o r y conta ins a Iarge

Therefore , t h e BET #3 was chosen

7.4.2 Landing Radar Veloci ty Residuals

Table 7.12 lists t h e v e l o c i t y r e s i d u a l statistics obtained from a l l Note the small mean va lues

In t h e absence of a

the t r a j e c t o r i e s considered i n the analysis;

obtained from t he re ference t r a j e c t o r y (BET C3).

real s tandard of comparison, t he mean va lues obtained from BET #3 were reasonably s m a l l . Standard deviat ions i n d i c a t e t h a t 77 and V are

somewhat more errat ic than V reasonably good quality as shown by Figures 7-31 through 7-33.

f i g u r e s show t h e BET #3 v e l o c i t y res idua ls p l o t t e d ve r sus time.

addi t ion , s p e c i f i c a t i o n l i m i t s have been p lo t t ed . Note t h a t . a f e w po in t s f a l l ou t s ide spec i f i ca t ion .

YA ZA However, these va lues are s t i l l of X I -

These

I n

It is d i f f i c u l t t o i s o l a t e measurement e r r o r s from t r a j e c t o r y e r r o r s

i n this p a r t i c u l a r case. The descent t r a j e c t o r y is a p a r t i c u l a r l y di f -

f i c u l t one t o recons t ruc t , and the landing radar v e l o c i t y d a t a are par-

t i c u l a r l y s e n s i t i v e t o t r a j e c t o r y e r ro r s . Notice that t h e v e l o c i t y

r e s i d u a l s i n Figures 7-31 through 7-33 tend toward zero a t landing where

the BET #3 v e l o c i t i e s w e r e constrained to zero.

j e c t o r y obtained from t h e Onboard/MSFN H-S f i t i s known t o conta in v e l o c i t y

e r r o r s a t landing. The r e s u l t a n t t o t a l v e l o c i t y at landing as 8.02 f p s ,

wi th t h e p r i m a r y con t r ibu t ion i n the 2 d i r e c t i o n (North).

I n con t r a s t , the tra-

The r e s i d u a l

s tatist ics show a mean valve f o r V roughly North, the large mean value r e f l e c t s t h e -7.96 f p s i n t h e Z com-

ponent of v e l o c i t y a t landing. The r e s i d u a l s obtained from t h e Onboard/

MSE" H-S f i t are p l o t t e d i n Figures 7-34 through 7-36.

of 6.966 fps. Since V,,was d i r e c t e d YA

The r e s i d u a l s t a t i s t i c s l i s t e d i n Table 7.12 also i n d i c a t e t h a t the .

b e s t t r a j e c t o r i e s do produce the bes t landing r ada r v e l o c i t y r e s i d u a l

s t a t i s t i c s , t h a t is, t h e BET #3 and t h e OnboardjMSFN H-S t r a j e c t o r i e s

produce t h e smallest r e s i d u a l inean values . This f a c t , toge ther wi th t h e

s e n s i t i v i t y which the d a t a has exhib i ted t o t r a j e c t o r y v e l o c i t i e s i n d i c a t e

t h a t descent t r a j e c t o r y recons t ruc t ion activities w i l l be aided consider-

ably by t h e landing radar v e l o c i t y da ta . *

* Subsequent recons t ruc t ions using landing radar d a t a have produced a a t r a j e c t o r y landing a t acceptab le coordinates ( tar . = .649 deg, Long. = 23.490 deg) with a t o t a l r e l a t i v e ve loc i ty of .96 f p s . A r e p o r t of this r econs t ruc t ion w i l l be forthcoming under a s e p a r a t e cover.

0

e

0 0 h

0 0 UI

0’ a3 rl cv

0 fi

P> N

0 \D

m N

0 L n

m cv

0 4

m hl

0

? m N

0 hl

r? N

rl Q k 0 0 u aJ u rl m oc c

rl Q

7-66

Table 7.11 LM Landing S i t e Coordinates

VECTOR SOURCE

RTCC

MSm' (L-S)

OhqO&U) (VRF, S X T )

BET #3

LEAR

16MM

ONB0_4RD/MS FN H- S

0.777

0.756

0.656.'

0.630

0.620

0.647

0.655

LONGITUDE (ded

23.461

23.537

23.538

23.497

23.532

23.505

23.515

RADIUS (n.mi.)

936.59

937.93

936.90

937.15

936.66

N/A

937.04

7-67

Table 7.12 Landing Radar Velocity Residual Statist ics

Vector Source

RTCC - Mean S.Dev. Noise

MSFN (LS)

Mean S . Dev. Xoise

ONBOARD

. Nean S.Dev. Nois e

EET 53 Nean S . D e v . Noise

LEAR Me an S .Dev. Nois n,

Ok€B€MU/IfSF?T (K-S)

Mean S .Dev. Nofse

vxA - ~~

9 . 5 4 3 1.532 1.172

-1.997 1.758 1.120

2.681 '

1.475 1.316

.857 1.829 1.142

4.733 1.018 .718

.234 1.183

.575

3.909 5 . 4 5 5 3.891

6.501 4.081 3.281

6 . 7 2 4 4.209 3.948

.a93 4.306 4.565

5.625 4.189 3 .932

6 .966 3.866 3 .336

3 .022 3 .918 3.44s

4.533 3.486 3 . 6 6 1

4.640 3 . 4 3 0 2.203

-.I73 3.689 2 .361

4.287 3 . 7 2 3 2 .340

1.729

2 . 3 4 9 2 .978

7-68

0 .

0 . oo

OC 0

c (

0

0

C

0

c

7-69

0

r

8

3

0 c)

0 0 r-l

0 r -4

I

n

n -4

U E

* - 7 -

N m I b .

(Sad) "A

7-70

0 I

0’)

0 0.

0

O O 0

O* 0

0

8 0

0 0

0 0

O O

C

1 r

r

f

0

0

0

0

0

0 0

0

0

go 0

83 0

0

0

m N V-I 0 d N r-l I I I

0

0

0 .

0

O 0 0 8 . 8. * O * O

0 3 0 O

0 0

O O

0

0 O O 0

0 0 0

h

0 a”

0 0

0

0 0

0

0 0 ,o

0

0

0

]L I I t 0 c\I

\o CJ m y‘ 0 w 4 m-l s m N

I i

0

0

0

0

OO 0 0

0

0 0

0 0 0

I I

(sail) vz*

7-7 4

. 7.4.3 Lunar Surface Al t r tude Alonp Groundtrack

Landing Radar range r e s idua l s are used to.compute an estimate or' t h e

re la t ive a l t i t u d e of t h e sur face along t h e groundtrack of t h e p ie rcepoin t .

Surface a l t i t u d e re la t ive t o t h e landing s i te is p l o t t e d versus

angular range i n Figure 7-37.

r e d times (2-second in t e rva l s ) .

T i m e t i c k s ' a r e ind ica t ed at the LR range

The ground track of the range beam p ie rcepo in t i s shown i n Figure

7-38.

lOO,OOO)*.

T r s n q u i l i t y Base coordinates .

correspond t o those on t h e surface a l t i t u d e p l o t .

bean on the s u r f a c e is indicated by t h e snall ellipses drawn pe r iod ice l ly

a long t h e groundtrack.

The p l o t is made on Lumr Maps 0P.B-Ii-6 and ORB-1-3 (scale I:

The l a t i t u d e does n o t a g r e e with p o s t f l i g h t estimates of

Time t i c k s are a t LR range read t-es and

The s i z e of t h e raxe

Litcle quan t i t a t ive information caa be obtained from Figure 7-33.1 except to n o t e t h a t t h e gen t l e upward s lope of the terrain on t h e approzch

to t h e landing s i t e i s i n general agxeement wi th t h e su r face a l t i t u d e

p l o t .

On Figure 7-38.2, sur face a l t i t u d e v a r i a t i o n s can b e co r re l a t ed t o

several prominent f ea tu re s :

The 170 f t drop i n a l t i t u d e between the readings a t 102:39:37.19 and 102 :39 :39.19 correspond t o range beam c e n t e r s a t t h e top and bottom of a c l i f f .

T h e po in t a t 102:39:51.19 is centered in a f a i r l y lar, =e crater. A depression of approximately 300 f t is clearly ou t l ined i n t h e su r face a l t i t u d e p lo t .

* Nap legend: Contour l i nes (a t 50 meter intervals) zre indexed by an e s t t m t e of the radius in meters wi th t h e f i r s t three d i g i t s omitted. Crater markings such as 45R (110) i n d i c a t e - Height of rim above terrain = 45 meters, Crater depth (floor t o rim) = 110 meters.

7-75

The po in t at 102:39:23.19 f a l l s inside a crater, and a depres- s ion of approximately 200 ft i s indicated.

As the range bean intersection grows in s i z e with increasing LM a l t i t u d e , su r f ace details become tncreas ingly difficult t o resolve. The overall downward terrain slope along t h e ground- t r a c k i n Figure 7-38.3 is i n general agreement wi th t h e su r face a l t i t u d e p l o t .

The a l t l t u d e of the LLN above tnc’ LLS radius during LR range data coverage is shown i n Figure 7-39.

The data presented i n t h i s s e c t i o n results from a HOPE program o r b i t

determination which includes LR v e l o c i t y i n the DC f i t .

only r e c e n t l y become a v a i l a b l e and t h e r e s u l t s presen:ed here are amoog

t he f i r s t obtained using Apollo I1 data. The p r i n c i p a l e f f e c t of in- c luding LR velocity in the fit is t o produce a more accu ra t e relative

v e l o c i t y p ro f i l e .

of the descent t r a j e c t o r y , show u n r e a l i s t i c t e r r a i n slopes due t o small

inplane velocity errors.

This opt ion has

Surface a l t i t u d e p l o t s , der ived from ezr l i er versions

7-76

600

400

200 t; 2 0

-200 iz * -400

-600

- U

w 3

I-

4

W

@= =l

0 IO 20 30 CENTRAL ANGLE FROM LA!iDIllG

1

400

200

0

-200

-400

-600

-800 60 70 80 90

CENTRAL ANGLE FROM LP.i.!UIHCi

I000

800

600

400 w 3 w- n - 200 5 w 0

2 3 -200

-400

-60~

4

u

a I n

120 130 140 150

CENTRAL ANGLE F

40 (-MIN)

5@ 60

100 ( M I N )

110 120

160

-ANDING SITE (MIN)

170 180 190

Figure 7-37 Surface A l t i t u d e Along Groundtrack - , I .-.

7-77 FCiL$DUT F’RAME 2

h

Z - :r 6 W CI W

+a60

+0:48

+036

+a24

+o: 12 2

!

2 4 0 24: 12 24: 24 Figure 7-38.1 Groundtrack of LR Range Beam Piercepoint )E (DEG:MIN)

FOLDOUT @AME o( 7-79

+o:

+ U: 6U

+048

+ 0:36

+a24

2 24: 36 24: 48

-to: 48

-to: 24

+o: 12

25: 36 25: 43 FOLDOUT FRAME

26: 0 ~ LONGITUDE (GEGMIN)

26: 24 - 26: 12 Figure 7 - 3 8 . 3

7 -83

GET 102 w.. (nr:lrsrc)

F i g u r e 7-39 A l t i t u d e . o f U4 During LR Range Sampling

7-85

Page Intentionally Left Blank

R- 1

Page Intentionally Left Blank

Appenl

APPENDIX A

Summary of CSM, Uf Vectors Used to Generate the Preliminary NAT f o r Apollo 11

ix A documents t h e vec tors used t o genera te the N T t r a j e c t o r y

Since i n order t h a t t h e user may know t h e q u a l i t y of the t r a j ec to ry .

most of t h e vec to r s were not based on p o s t f l i g h t f i ts but r a t h e r on RTCC

vec tors which w e r e then propagated, propagation e r r o r s arise which can

degrade t h e t r a j e c t o r y .

In order t o reduce the e r ro r , t h e lunar o r b i t propagation times were

kept t o a minimum.

(which i s a measure of t he qua l i t y of t h e t r a j e c t o r y ) were ca l cu la t ed at

a comon t i m e po in t f o r adjacent t r a j e c t o r y i n t e r v a l s and t abu la t ed fn

Table A . l (CSM)and Table A . 2 (LM) f o r u se r convenience. Whenever two

i n t e r v a l s were separated by a,maneuver, t h e BV as exhib i ted in Tables A . 1

and A . 2 r ep resen t s the d i f fe rence between the t o t a l ve loc i ty d i f f e rence

and the measured v e l o c i t y of the maneuver.

Also, t h e t o t a l d i f f e rence i n pos i t i on and v e l o c i t y

Each t2b le l i s t s t h e vector I D snd RTCC batch number, the source of

the vec to r , t he i n i t i a l t i m e of t he vec tor , t h e propagation iztemal, t h e

t o t a l d i f f e rences i n pos i t i on and v e l o c i t y of ad jacent i n t e r v a l s , and

comments relevent t o a p a r t i c u l a r propagation i n t e r v a l . Maneuvers are

l i s t e d between the appropriete f r e e f l i g h t intervals f o r easy reference.

Most lunar t r a j e c t o r i e s were generated using RTCC SS2 ( i n c l i n a t i o n

constrained) s o l u t i o n vec tors as opposed t o S S l (no a p r i o r i ) s o l u t i o n

vectors .

pre-LOI1, rev 18, and rev 29 planes, t h e Apollo 11 SS2 vectors were

constrained on a rev-to-rev basis . Each S S 2 vector contained two revs of

da ta and w a s constrained t o the SSI s o l u t i o n plane of one of these two

revs (except ions ex i s t ed at maneuvers).

By us ing the new SS2 scheme, t h e Apollo 11 out-of-plane e r r o r was

Unlike t h e Apollo 1 0 SS2 vec tors which were constrained t o t h e

not allowed t o accumulate as it d id during the Apollo 10 mission. It should be noted t h a t the vec to r s used t o genera te t h e t r a j e c t o r y

from i n s e r t i o n t o P I were based on free f l i g h t solutions u t i l i z i n g S.IS5”

d a t a and not RTCC vectors . The q d i t y of t h e vec to r from D O 1 t o PDI w a s

A-I.

questionable, bu t w a s included because no bet te r vector Qras available at

. that .tine. In general, the q u a l i t y of t h e CSM trajectory was better than the

quality of the LM trajectory during the rendezvous period.

A-2

0 N

0 c 9

s c -

n o m , " '7

A-3

I-!

0 a 4

9J

LJ

i 0 U

W

E c n In

e 0 J J c) o l n

P . ? C tl

H 0 a 0 U

5 0 -a fi EJ

I I I

I I I

rl

* rl

02 0 o\ l-l

0 N

..

..

..

c3 m m u- pc 4

0 N

..

..

..

\D

9 0

co 3

m d

0 N

..

..

..

- 2 w

H H Fa z Fr, cl: E

H

2 0 u U 0 f=a

I I I

I I I

5 * 0

Vl 0

0 N

0 N

..

..

..

Q: r-l 4

0

6 rl

.. m .. .. s

I- rl

L n n u- 0

0 N

0 N

..

..

..

2 9

Lil

E 2 2

H Pi t3 0 u X FI U

I I I

I I I

co 0 m \o rn 0 cv d cv

..

.I

..

a3 0 U 0 0 u)

Q\ rl

r( cv

..

..

..

co 0

4. 0

0 In cn d

d CJ

.I

..

..

A-4

APPENDIX B

Supplementary Data

Appendix B conta ins supplementary information wb-ich 2s too d e t a i l e d

This information inc ludes a sunrmary of fo r the main body of the report.

the r ada r da t a used i n each BET f i t segment, a suimary of ground and on-

. board data weights used i n HOPE, a sumnary of t h e USBS s t a t i o n l o c a t i o n s ,

and a summary of the components used i n the R 2 and L1 lunar p o t e n t i a l

models.

Tables 33.1 and B.2 l i s t by v e h i c l e s ta t is t ics conputed from the d a t a

used i n each BET f i t , t h e type and number of observables , and the mean and

s tandard devia t ions obtained f r o m t h e r e s idua l s ca l cu la t ed i n the f i n a l

i t e r a t i o n of t he f i t . The range s ta t is t ics are i n f e e t , doppler u n i t s are

cycles per second, range r a t e u n i t s are i n f e e t pe r second, and angular

units are degrees .

Table B . 3 l i s t s the d a t a weights used i n t h e HOPE Prograq f o r ground

based radar d a t a and Table B.4 l i s t s t h e da t a weights used i n t h e HOPE Program for onboard d a t a by t y p e of observable.

Table B.5 l ists the terms of t h e R 2 lunar p o t e n t i a l model.

Table B . 6 l ists the terms of t h e Langley 1 l una r p o t e n t i a l mode, a

modi f ica t ion of the R2 model. Table B.7 l is ts t h e S-band tracking s ta t ior rs and t h e i r l oca t ions as

used i n t h e Apo l lo 11 p o s t f l i g h t ana lys i s . A l l l oca t ions are referenced

to t h e F ischer E l l ip so id o f 1960. The mean s u r f a c e r e f r a c t i v i t y numbers

for ezch s t a t i o n f o r t h e month of July are a l s o l i s t e d .

B- 1

Station

MAD MIL ACN

MAD GDS , ACN

MAD MIL ACN

MAD MIL ACii GDS

Table B. 1 GSM BET Ground Based Tracking Data Statistics

Data Type

2-my doppler 3-way doppler 3-way doppler

2-way doppler 3-way doppler 3-way doppler

2-way doppler 3-way doppler 3-way doppler

2-way doppler 3-way doppler 3-way doppler 3-way doppler

Number of'OBS

Rev 13 Segment 122 103 101

Rev 14 Segment

142 138 63

Rev 25 Segment 136 52 47

Rev 26 Segment 128 114 114 70

' 'Hean I__

-.013 -. 009 -. 018

.002

.009 - -004

.002

.om

.007

.001

.0005

.005

.006

' 0 -

,236 .246 ,235

.186

.171

.1a2

.160

.165

.157

.223 ,199 ,188 .182

B-2

Table B . 2 LM BET Ground Based and Onboard Tracking Data Statist ics

Sta t ion Data Type Rmber of OBS Mean __ cr

Undock t o DO1 Segment

RID 2-way doppler 141 - 023 .I93 CY1 3-way doppler 140 -.049 .202 ACN 3-way doppler 112 -.014 .193 P-NG 3-way doppler 137 .030 .219 MI?, 3-Way doppler 114 -.OX .189

WI t o PDI Segment Sextant s h a f t 13 -.0097 .015 Sextant trunnion 13 -.0004 .004 VKF ranging 18 -26.000 74.000

R I D EDA k I G ACN MIL

Inse r t ion t o CSI Segment

2-way doppler 74 3-way doppler 69 3-way doppler 72 3-way doppler 60 3-way doppler 63

CDH t o Post-TPI Segnent

Sextant shaft 31 Sextant trunnion 31 WF ranging 29 Rend. r a d a r s h a f t . 65 Rend. radar. trunnion 65 Rend, radar rmge 55 Rend. radar range rate 65

-.022' .315 - .019 .319

. O S 9 .315

.Olf .320 .014 .316

,030 . O X . ..011 .023

-394.000 222.00G -.OX! ,107 -.084 .056

- .I15 .543 uz.aoo z7~ .aoo

B-3

Table 3 .3 , Ground Based Radar Data Weighting

Data Type Radar Weighting

Range USB: 30-ft. antenna 600 ft. 85-f t . antenna

Doppler (2-way) USB: 30-ft. antenna 0.1 cyclejsec. 85-ft. antenna

Doppler (3-way) USB: 3.0-ft. antenna 0.1 cycle/sec. .

85-f t . antenna

B-4

Table B.5 R2 Lunar P o t e n t i a l Model

Term

52 2.07108~10-~

53

c22

C31

All o the r harmonics are zero

Table B.6 L1 Lunar Potential Model

Value Term

52

33

c22

C 3 1

c33

-2. 1x1~-5

2.0716~10-~

3. CXIO-~

All other harmonics are zero

B -5

m I.- hl

hl 0

\o a3 l-i rl

CO I.- 0 U 4

m * N

N In

a3 m v) m

cn

.

d H PI

- m a3

n N rl

0 c N Eo

0 N \D N r-

m m d

m 0 b 0 m U rsl

I

0 r3

c o r n o m m N

b m

v) CO e7

I-i a)

N m

0) m b 0 m cn b N

Ul UJ 02 0 v)

cn N

;3 r:

I 0.

hl b b m

03 N m c) m 0 0 N

UJ w UI N 4

N hl

.

m 5 0 d L1 c ..J c; 9 - c. 0

c

0 m L

0 rn

- L

o m r n a

c

0 cp)

c 0 cp)

c

0 L

0 (?

C 0

ul co 0 rn

Y aJ aJ u W

‘L1

E M E: w

C (0

t-4 rn H

aJ d v1 H U v1

al s t l 3 X a h ; 0

X

APPENDIX C

h Rendezvous Radar Data, CSM VHF'Ranging Data and CSX Sextant (Apollo 11)

The LM rendezvous r a d a r data t h a t w a s used i n the analysis are l i s t e d

i n the two card format of t h e HOPE o r b i t determinat ion program. The f irst

card speci€ies.the veh ic l e taking the observation, the vehicle that is

being obs.erved, t he t i m e o f the observat ion (year (mod 1900), month, day,

hour, minute, and second (GMT)), t h r e e code n h b e r s , shaft observable, ,

trunnion observable, range observable, and range rate observable. The

second card specifies the inner, middle, and outer gimbal angles . The

units are feet, degrees, and seconds.

The CSM VHF ranging d a t a are a l s o listed i n the same format. The

card format d i f fe rences are t h e following: 1) v e h i c l e ID'S are reversed,

2) code numbers are different, 3) range is t h e only observable, and 4 )

ginbal angles are not needed to process the ranging da ta .

The CSM sex tan t d a t a a r e also l i s t e d . The card format i s a l s o

similar t o t h e rendezvous radar cards.

c-1

N .Q

a r- Q

0 3 M N 0.

0 N r- o\ 9

e

rl

5. W J

E Y) V

m 9 UJ

m 0 I- m

m

Q t-4 4

In 0 9 a 0. N r- N 0'

0 N r-

m 9

rl

z w -I

r VI V

N 9

t- a m e 9 J I' N m 0 N t-

o\ 9

#-I

5 W -I

P Y) V

c-2

c\I 9

r 0 r- e

.-I

m m 6

0 N

4

r 0. \D

E W -I

I rr, V

Q 4 4 r- r- r-

0 L n m m cn .d 0 N r- 0. 9

r W J

z a V

0 0 m r l O N 09 a n 0 4 P 0.

N m N

* .

c-3

>

cu I W >

d I w >

c-4

N 9

-3 r- ln

m m r- m 0 V-i

A N r- m 9

o

z w J

rr, U

cv I W >

rl I W >

XJ r- 0 0 ob 0 N

rrl 0

N a In 9 -t

N L n rn

cn

0

r-i

d d N Iz

o\ 9

z U J

r m V

cv Q

cn o\ 0

t- m m 0

Q

r-4

?I 4

N r-

o\ 9

r W -I

P v) V

c-5

3 &, 0

In rr o\ 0 0 9

0

4. ri rl In m ln m m (D rl OI k-l rl N (I

t3 9

IT w J

x w LJ

Q d rl m 0 In

9 N N N ch d rl N e m 9

0

I w -I

x w V

N 9

r 0 r-

e P-

m N OI d 4 N c- m 9

I W -I

x v) U

4- d d -5 f- ln e

m -5 m N 01 rl rl N r- OI r3

z W -J

r w V

N 9

In a3 h!

m tr\ 0 N @ d 4 N r- OI 9

0

r W J

E v) u

N 9

+ N rn

N 0

* m m rl rl N r- 0. a

6

z w J

x Ir) u

C-6

N a Q Q N

e d

N m Ch d d N P-

.-I 4

Ln P- rn a N

Ln m Ch r4 d

N I-

d

c-7

C-8

c-9

d m \b e co t-i r4 1

9) Q3 9 3 0 m N e 4

9 tu 4-

)c N m rl 0

I Q

0

m

c\I 9

5 0 0.

e a r- 0 N d N r 0. 9

x w -I

5 U

N 9

r- 0 o\ e

rn 4 r-

0 N

N r-

d

4 4

ln ln m o\ Lr\ 0 I--(

0 N 4 N I'

I

rl rl

4- N m

a i€+ r-

0 N I 4

N I'

0

c-10

A d

IC m 4.

r- 4- m -0 N d N t-

0

d

N 9

03 m 0

IC & -3

-0 N

cu rc

. d

4

4 4

9 0 4

O'

0 cv 0 N r(

N r-

a

c-11

.--(

.-I

In a3 P-

0 Q CD N 0 N l-l

N P-

o\ Q

e

E Y) U

I: w -I

c-12

APPENDIX D

. Apollo 11 Landing Radar Data

The LM landing radar da ta t h a t was used i n the analysis is l i s t e d

i n the two card fo rna t of t h e HOPE o r b i t determinat ion program. The

f i r s t card s p e c i f i e s the vehicle , t h e time of the observat ion (year

(mod 1900) , month, day, hour, minute, and second), t h ree code numbers,

Vu measurement, VyA measurement, Vu measurement, and t h e s l a n t range

measurement (p). The second card specifies the inner , middle , and the

ou te r gimbal angles. The units are feet and f e e t per second.

D-1

I

vr z 0 Y

I- G > hI UJ v)

ec C

rz c

VI E L I:

c' d Li cv

d

c. cv

c: rl L. N

. . i3 N

c c\I

c N

D-2

N In A

.3 5. c e

m

4- 4 r )

A rP 4 Ln

C

cs m 4- m ?- N ul

N e r- m r n d 9

N m

V f i l c t"

a r .

e

m N 4 9 4 N e

d d

c ru

5, N I-

O' 9

1-:.

N c-

0. d

D-3

In N rr d 43 r )

;P

d d 3 N c N r OI Q

Ln N d z 9 r(

* N d r(

a N 0 N t-

D-5

b 0 CJ r;,.

D-6

ln 4-

t- in Q

d

a

c

I' d Q N m U* In .

I

0 N C 3' N 3 co

I- t- N a cr) 9 N

c)

I

cu v\ 9 m * F- 0'

CP ln

e

D-7

4

I

r- 9

D-8

QD a m * 0' 4-

m

a

U 3 m 9 rl 0; 9

N 8

9 rn co rn Q N

N

r(

. I

I In N d 9 N 0, .

D-9

I

D-10

in N

.$ m d

r . 4 9 m 5 N 3 ry P-

o' 9

4

l

I

3 4-d

. . .. rg C..

9 Ln 0 m

.

In CL' d .+ 9 l-l . In s m d

c: N c N t-

c" 9

1

I

I

m N

d 3 P I

* 4- rn

. c N

In Q Fl t7. N 9 tu . rn

h Q) r- m N d . 0

4 t-.

- $ m N

0' J r) 0-* f- VI N cv

r- 0 cv N d N 9

m C. N CO c2

m

c' v\ m

I I

I

1

I

r: N t

c N P-

3 hl b

Q, 9

01 9

D-12

In r- m CP C 9 .p

cu e

D-13

d

I I

u, Ln a3 c.. CD m VI

rl w

I

Lc, N d v\ d N

0

m In 4-

C N c N c 0' 9

4

c' N

ti N r- CP 9

c ru b

r .- N r- 0- 9

5: LU J

D-14

U N 9 e 0; ln rn

\t hl c@ y\

a a In d N CT 9 In

9) a a

QI c U cu .+ .s.

a? h .$ 03 0 el m

a

n

a 51 In r- m 4 N

Q .

I

d Q .t N

Lh N d m 4 N e

0'

m rl Q N

c N c= rJ r-

D-15

m cv d m r( (v

Fl A VI 4 -0 tu v N

.

r-

m N rl ln d N

.$ m 4 c? N C N t-

8 d

c cu 0 N r- cn Q

c N C N I-

'3 M 0 N r-

D-16

m a? c(? 4 Ln N 9

A a

m N 9 In d In rn

a

N m m I n m m

0

i-

I- d CF In 9

r- (u

hl E-

P N hl r- c

0- e c - 0 s- .

Ln d

. P. P i

D-17

I

I

tn N rl ln 4 N

t- cu 9 4 G CJ c N e 0 9

*

In CJ d m 4 N

Q 0' h' d d 0 N C i d t-

o, 9

E w -1

ln N d 9

E w I

u

D-18

r( m 0 N W LF 9

4

4.

CD cr m m QI

4 a

I

I

5 ln r m 4- a, *

0 9 Ln rn

I

tn N d ln 4 N

a ?-- In 9 + c N i> N I-

@ 9

D-19

ri a5 m C m N * 4

b

.s u- co 02 ru N pr! m N N N N

1

I

I

C 0%

c N c N rc

s N r

cp 9

Q 9

z: 0 J

D-20

Q sr

I