product description - eth z

28
Low Power Wireless Sensor Module Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 1 of 28 Ultra low power IEEE 802.15.4 compliant wireless sensor module Humidity, Light, and Temperature sensors with USB Product Description Tmote Sky is an ultra low power wireless module for use in sensor networks, monitoring applications, and rapid application prototyping. Tmote Sky leverages industry standards like USB and IEEE 802.15.4 to interoperate seamlessly with other devices. By using industry standards, integrating humidity, temperature, and light sensors, and providing flexible interconnection with peripherals, Tmote Sky enables a wide range of mesh network applications. Tmote Sky is a drop-in replacement for Moteiv’s successful Telos design. Tmote Sky includes increased performance, functionality, and expansion. With TinyOS support out-of-the-box, Tmote Sky leverages emerging wireless protocols and the open source software movement. Tmote Sky is part of a line of modules featuring on-board sensors to increase robustness while decreasing cost and package size. Key Features 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver Interoperability with other IEEE 802.15.4 devices 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash) Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller Integrated onboard antenna with 50m range indoors / 125m range outdoors Integrated Humidity, Temperature, and Light sensors Ultra low current consumption Fast wakeup from sleep (<6μs) Hardware link-layer encryption and authentication Programming and data collection via USB 16-pin expansion support and optional SMA antenna connector TinyOS support : mesh networking and communication implementation Complies with FCC Part 15 and Industry Canada regulations Environmentally friendly – complies with RoHS regulations

Upload: others

Post on 11-Jan-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 1 of 28

Ultra low power IEEE 802.15.4 compliant wireless sensor module Humidity, Light, and Temperature sensors with USB

Product Description Tmote Sky is an ultra low power wireless module for use in sensor networks, monitoring applications, and rapid application prototyping. Tmote Sky leverages industry standards like USB and IEEE 802.15.4 to interoperate seamlessly with other devices. By using industry standards, integrating humidity, temperature, and light sensors, and providing flexible interconnection with peripherals, Tmote Sky enables a wide range of mesh network applications. Tmote Sky is a drop-in replacement for Moteiv’s successful Telos design. Tmote Sky includes increased performance, functionality, and expansion. With TinyOS support out-of-the-box, Tmote Sky leverages emerging wireless protocols and the open source software movement. Tmote Sky is part of a line of modules featuring on-board sensors to increase robustness while decreasing cost and package size.

Key Features • 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver • Interoperability with other IEEE 802.15.4 devices • 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k Flash) • Integrated ADC, DAC, Supply Voltage Supervisor, and DMA Controller • Integrated onboard antenna with 50m range indoors / 125m range outdoors • Integrated Humidity, Temperature, and Light sensors • Ultra low current consumption • Fast wakeup from sleep (<6μs) • Hardware link-layer encryption and authentication • Programming and data collection via USB • 16-pin expansion support and optional SMA antenna connector • TinyOS support : mesh networking and communication implementation • Complies with FCC Part 15 and Industry Canada regulations • Environmentally friendly – complies with RoHS regulations

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 2 of 28

Table of Contents Product Description.......................................................................................................................1 Key Features.................................................................................................................................1 Table of Contents..........................................................................................................................2 Module Description .......................................................................................................................3

Power ....................................................................................................................................4 Typical Operating Conditions ................................................................................................4 Mechanical Characteristics ...................................................................................................5 Block Diagram.......................................................................................................................6 Schematic .............................................................................................................................7

Microprocessor .............................................................................................................................9 Description ............................................................................................................................9 Typical Operating Conditions ................................................................................................9 PC Communication ...............................................................................................................9 Programming.......................................................................................................................10 Block Diagram.....................................................................................................................12

Radio...........................................................................................................................................13 Description ..........................................................................................................................13 Typical Operating Conditions ..............................................................................................14 Measured Output Power .....................................................................................................14

Antenna.......................................................................................................................................15 Internal Antenna without Battery Pack ................................................................................15 Internal Antenna with Battery Pack .....................................................................................15 Radiation Pattern ................................................................................................................16

External Flash .............................................................................................................................17 Typical Operating Conditions ..............................................................................................17 Flash Hardware Write Protection ........................................................................................18

Sensors.......................................................................................................................................19 Humidity/Temperature Sensor ............................................................................................19 Light Sensors ......................................................................................................................20 Expansion Connector..........................................................................................................21 Internal Temperature and Voltage Monitoring.....................................................................23

Agency Certification ....................................................................................................................24 FCC Certification.................................................................................................................24 OEM Labeling requirement .................................................................................................24 FCC Notices........................................................................................................................25

General Information ....................................................................................................................25 Document History................................................................................................................26 Product Status Definitions...................................................................................................26 Disclaimer ...........................................................................................................................27 Address Information ............................................................................................................28 Headquarters ......................................................................................................................28

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 3 of 28

Module Description The Tmote Sky module is a low power “mote” with integrated sensors, radio, antenna, microcontroller, and programming capabilities.

USBConnector

UserButton

ResetButton

PhotosyntheticallyActive Radiation

Sensor(optional) Total Solar

RadiationSensor

(optional)10-pin expansion

connector

6-pin expansionconnector

InternalAntenna

CC2420Radio

SMAAntenna

Connector(optional)

HumidityTemperature

Sensor(optional)

USB Transmit LED

USB Receive LED

LEDsUSB

MicrocontrollerDigital switch

Isolating USB frommicrocontroller

JTAGconnector

USBConnector

UserButton

ResetButton

PhotosyntheticallyActive Radiation

Sensor(optional) Total Solar

RadiationSensor

(optional)10-pin expansion

connector

6-pin expansionconnector

InternalAntenna

CC2420Radio

SMAAntenna

Connector(optional)

HumidityTemperature

Sensor(optional)

USB Transmit LED

USB Receive LED

LEDsUSB

MicrocontrollerDigital switch

Isolating USB frommicrocontroller

JTAGconnector

USBFlash (2kB)

ST CodeFlash (1MB)

Texas InstrumentsMSP430 F1611microcontroller

32kHzoscillator

48-bit siliconserial ID

2-pin SVSconnector

USBFlash (2kB)

ST CodeFlash (1MB)

Texas InstrumentsMSP430 F1611microcontroller

32kHzoscillator

48-bit siliconserial ID

2-pin SVSconnector

Figure 1 : Front and Back of the Tmote Sky module

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 4 of 28

Power Tmote Sky may be powered by two AA batteries. The module was designed to fit the two AA battery form factor. AA cells may be used in the operating range of 2.1 to 3.6V DC, however the voltage must be at least 2.7V when programming the microcontroller flash or external flash. If the Tmote Sky module is plugged into the USB port for programming or communication, it will receive power from the host computer. The mote operating voltage when attached to USB is 3V. If Tmote will always be attached to a USB port, no battery pack is necessary. The 16-pin expansion connector (described in the Section on page 17) can provide power to the module. Any of the battery terminal connections may also provide power to the module. At no point should the input voltage exceed 3.6V—doing so may damage the microcontroller, radio, or other components.

Typical Operating Conditions MIN NOM MAX UNIT Supply voltage 2.1 3.6 V Supply voltage during flash memory programming 2.7 3.6 V Operating free air temperature -40 85 oC Current Consumption: MCU on, Radio RX 21.8 23 mA Current Consumption: MCU on, Radio TX 19.5 21 mA Current Consumption: MCU on, Radio off 1800 2400 μA Current Consumption: MCU idle, Radio off 54.5 1200 μA Current Consumption: MCU standby 5.1 21.0 μA

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 5 of 28

Mechanical Characteristics

revoc ton od ;annetna draob-nO

1 4 5

6

2

3

slairetam gnitcudnoc htiw

361.3

085.2

762.1

652.

315.

Tag X Y Size Notes 1 0.183 0.099 Ø 0.090 Mounting hole, do not use metal fixture 2 2.454 0.099 Ø 0.090 Mounting hole 3 2.454 1.151 Ø 0.090 Mounting hole 4 0.755 0.162 Ø 0.066 Pin 1 of 10-pin 0.1in rect IDC connector 5 1.099 0.163 Ø 0.066 Pin 1 of 6-pin 0.1in rect IDC connector 6 2.139 0.909 Ø 0.034 Pin 1 of 8-pin 2mm rect JTAG connector

Figure 2 : Physical dimensions of Tmote Sky. All units are in inches unless otherwise noted.

MIN NOM MAX UNIT Width 1.24 1.26 1.29 in Length 2.55 2.58 2.60 in Height (without battery pack and SMA antenna) 0.24 0.26 0.27 in

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 6 of 28

Block Diagram

CC2420 Radio2.4 GHz

IEEE 802.15.4 compliant

PCBAntenna

SMACoax

4

2

6

2

2UART[0]

2I2C[0]

6ADC[0-3,6-7]

4GPIO

HumidityTemperature

Sensor

PARSensor

TSRSensor

ADC[4]

ADC[5]

I/O

Power

SPI I/O

4

Pow

er

Reset

User

10-pin

+ 6-p

inID

C h

eader

SVSin

SVSout

TI MSP430 Microcontroller

UART[1]P1.1/P2.2

ResetTCK

SPI[0] P1[0,3,4]P4[1,5,6]

SPI[0]I2C[0]

Silicon Serial ID1-wire

7JTAGJTAG 8-pin2mm IDC header

SVS 2-pinIDC header

USB 2.0UART/RS232Functionality

RX/TX RTS/DTR

JTAG Write Protection

ST Flash1024k (2.7V)

Figure 3 : Functional Block Diagram of the Tmote Sky module, its components, and buses

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 7 of 28

Schematic 5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

VCCin

LED1

RESET

LED2

LED3

DVCC

HUM_SCL

AVCC

RADIO_SO

RADIO_SI

FLASH_CS

ADC4

ADC0

ADC1

UART0RX

UART0TX

I2C_SCL

I2C_SDA

GIO1

ADC6 ADC7

VCCin

GIO2 GIO3

SVSin SVSout

P_DVCC

DVCC

RADIO_SCLKFLASH_HOLD

UART1TX

P_DVCC

AD

C2

FLASH_HOLD

FLASH_CS

GIO

2

ADC2

RA

DIO

_SO

ADC5

DAC0 ADC6

HUM_SDA

AD

C0

SVSin ADC7

AD

C1

GIO

1

HU

M_S

CL

ADC4

LED

2

UART1RX

Use

rIN

T

RE

SE

T

GIO

3

ADC3

DVCC

TM

S

TD

O

HU

M_P

WR

HU

M_S

DA U

AR

T0T

X

TC

K

LED

3

UART0RX

GIO

0

AV

CC

I2C

_SD

AR

AD

IO_S

I

TD

I

SV

Sou

t

UA

RT

1RX

HUM_PWR

ADC5

LED1

I2C

_SC

LR

AD

IO_S

CLK

UART1TX

SVSout

1Wire

DVCCDVCC

1Wire DVCC

RESET

TMS

DVCC

DVCC

TDI

TDO

TCK DVCC

DVCC

UserINT

UserINT RESET

ADC3

GIO0

ADC0

RADIO_CS

RADIO_GIO0

RADIO_GIO1

RADIO_SFD

RADIO_RESET

RADIO_VREF_EN

DVCC

P_DVCC

VCCin

RESET

PKT_INT

UART1TX

RADIO_SCLK

RADIO_SO

RADIO_SI

UART1RX

TMS

TDI

TDO

TCK

OFFPAGELEFT-L

Title

Size Document Number Rev

Date: Sheet of

(c) Copyright 2004: UC Berkeley, 2006: Moteiv B

Tmote Sky B

1 3Thursday, May 11, 2006

Title

Size Document Number Rev

Date: Sheet of

(c) Copyright 2004: UC Berkeley, 2006: Moteiv B

Tmote Sky B

1 3Thursday, May 11, 2006

Title

Size Document Number Rev

Date: Sheet of

(c) Copyright 2004: UC Berkeley, 2006: Moteiv B

Tmote Sky B

1 3Thursday, May 11, 2006

OPTIONAL

FLASH

MCU

SENSORS POWER

LEDS

OPTIONAL OPTIONAL

DAC0

TimerA Capture

EXPANSION

MOUNTING HOLES

RESET SWITCH

USER SWITCH

Prev Flash Pwr

DMAE0

DAC1/SVSin

ACLK

Nonplatednear antenna

JTAG

SERIAL ID

By default, R_VREF connects to ground. If R_VREF is moved to adjacent pins, external voltage reference may be connected to ADC0; in that case ensurethat ADC0 is configured as an IO pin inthe input direction.

R7

470

R7

470

R10

10k

R10

10k

J10J10

11

R16

0 open

R16

0 open

R1

100k

R1

100k

D6

Blue Clear - 404-1028-1-ND

D6

Blue Clear - 404-1028-1-ND

1 2

R14

0 open

R14

0 open

R5

5.1M

R5

5.1M

R22.2k

R22.2k

U5

M25P80

U5

M25P80

S1

Q2

W3

Vss4 D 5C 6

HOLD 7Vcc 8

J11J11

11

SW2

EVQ-P2K02Q

SW2

EVQ-P2K02Q

1 2

U0

TI_MSP430_F1611

U0

TI_MSP430_F1611

DVcc1

P6.3/A32

P6.4/A43

P6.5/A54

P6.6/A6/DAC05

P6.7/A7/DAC1/SVSIN6

Vref+7

XIN8

XOUT/TCLK9

VeREF+10

Vref-/VeREF-11

P1.0/TACLK12

P1.1/TA0/BSLTX13

P1.2/TA114

P1.3/TA215

P1.4/SMCLK16

P1.

5/T

A0

17

P1.

6/T

A1

18

P1.

7/T

A2

19

P2.

0/A

CLK

20

P2.

1/T

AIN

CLK

21

P2.

2/C

AO

UT

/TA

0/B

SLR

X22

P2.

3/C

A0/

TA

123

P2.

4/C

A1/

TA

224

P2.

5/R

osc

25

P2.

6/A

DC

12C

LK/D

MA

E0

26

P2.

7/T

A0

27

P3.

0/S

TE

028

P3.

1/S

IMO

0/S

DA

29

P3.

2/S

OM

I030

P3.

3/U

CLK

0/S

CL

31

P3.

4/U

TX

D0

32

P3.5/URXD0 33

P3.6/UTXD1 34

P3.7/URXD1 35

P4.0/TB0 36

P4.1/TB1 37

P4.2/TB2 38

P4.3/TB3 39

P4.4/TB4 40

P4.5/TB5 41

P4.6/TB6 42

P4.7/TBCLK 43

P5.0/STE1 44

P5.1/SIMO1 45

P5.2/SOMI1 46

P5.3/UCLK1 47

P5.4/MCLK 48

P5.

5/S

MC

LK49

P5.

6/A

CLK

50

P5.

7/T

Bou

tH/S

VS

OU

T51

XT

2OU

T52

XT

2IN

53

TD

O/T

DI

54

TD

I55

TM

S56

TC

K57

RS

T/N

MI

58

P6.

0/A

059

P6.

1/A

160

P6.

2/A

261

AV

ss62

DV

ss63

AV

cc64

R9

100

R9

100

R15

0 open

R15

0 open

C20.1uC20.1u

R12100k 1%

R12100k 1%

U9

DS2411

U9

DS2411

I/O1 Vcc 2

GND 3

J12J12

11

D4

Red Clear - 404-1017-1-ND

D4

Red Clear - 404-1017-1-ND

1 2

C50.1uC50.1u L2

F Bead 240-1035-1

L2

F Bead 240-1035-11 2

R_VREF0Ohm jumperR_VREF0Ohm jumper

1 2

3

GND

X0

32kHz

GND

X0

32kHz

1

23

C10.1uC10.1u

U7

2pin Header - 2mm

U7

2pin Header - 2mm

11 2 2

R8

220

R8

220

C310uFC310uF

D5

Green Clear - 404-1021-1-ND

D5

Green Clear - 404-1021-1-ND

1 2

U2

10pin Header - 0.1"

U2

10pin Header - 0.1"

11 2 2

33 4 4

55 6 6

77 8 8

99 10 10

D2S1087 PhotodiodeD2S1087 Photodiode

D3S1087-01 PhotodiodeD3S1087-01 Photodiode

ROSC2.2k

ROSC2.2k

C4

0.1u

C4

0.1u

R4470kR4470k

U4

PWR_CONN

U4

PWR_CONN

+ 1

- 2

C60.1uC60.1u

U8

8pin Header - 2mm

U8

8pin Header - 2mm

11 2 2

33 4 4

55 6 6

77 8 8

C90.1uC90.1u

SW1

EVQ-P2K02Q

SW1

EVQ-P2K02Q

1 2

HUMIDITY/TEMP SENSOR

U3

SHT11

HUMIDITY/TEMP SENSOR

U3

SHT11

SCLK 3VCC4

GND1 SDA 2

U28

6pin Header

U28

6pin Header

11 2 2

33 4 4

55 6 6

R11100k 1%

R11100k 1%

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 8 of 28

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

DDVA_K42CC

3DDVD_K42CC

DDVA_K42CC

DDVD_K42CC

CC

24K

_AV

DD

CC

24K

_DV

DD

3

CC

24K

_AV

DD

DDVD_K42CC

DDVD_K42CC

3DDVD_K42CC

CC

24K

_DV

DD

3DDVD_K42CC

DDVD_K42CCDDVA_K42CC

3DDVD_K42CC

3DDVD_K42CC

CC

24K

_AV

DD

TESER_OIDAR

DFS_OIDAR

CCVD

0OIG_OIDAR

TNI_TKP

OS_OIDAR

KLCS_OIDAR

IS_OIDAR

SC_OIDAR

1OIG_OIDAR

NE_FERV_OIDAR

DDVD_K42CC

eltiT

veRrebmuN tnemucoDeziS

teehS:etaD fo

yelekreB CU :4002 thgirypoC )c( B

soleTB

324002 ,92 rebmetpeS ,yadsendeW

4.51.208 0242CC oidaR sseleriW

zHG4.2 ta

noitalosi

05 esu secart mho

zHG4.2 krowten gnihctam

smho 05 ot dehctam

18L

%5 n5.71 2

3L

1-5301-042 daeB F1 2

183C0pn %5 p22

1X

fp61 - ZHM61

48Cn01

1ATNA_BCP_0242CC

1 2 3

7Cu1.0

16L%5 n5.7

1

2

68Cp86

37C

0pn p52.0-/+ p6.5

12

3

674Rk01

28Cp86

274Rm1

26L%5 n6.5

1

2

78Cu1.0 8C

u1.0

38Cp86

374Rm1

18C0pn p52.0-/+ p5.0

01U

0242CC

DRUAG_OCV1

OCV_DDVA2

ERP_DDVA3

1FR_DDVA4

DNG5

P_FR6

HCTIWS_XRXT7

N_FR8

DNG9

WS_DDVA01

CN11

CN21

NC

13

AV

DD

_RF2

14

AV

DD

_IF2

15

NC

16

AV

DD

_AD

C17

DV

DD

_AD

C18

DG

ND

_GU

AR

D19

DG

UA

RD

20

RE

SE

Tn21

DG

ND

22

DS

UB

_PA

DS

23

DS

UB

_CO

RE

24

3.3DDVD 52

8.1DDVD 62

DFS 72

ACC 82

POFIF 92

OFIF 03

nSC 13

KLCS 23

IS 33

OS 43

MAR_DDVD 53

CN 63

AV

DD

_XO

SC

1637

XO

SC

16_Q

238

XO

SC

16_Q

139

NC

40

VR

EG

_EN

41

VR

EG

_OU

T42

VR

EG

_IN

43

AV

DD

_IF1

44

R_B

IAS

45

ATE

ST2

46

ATE

ST1

47

AV

DD

_CH

P48

XE_DNG94

58Cu1.0

474Rk01

2AAMS

RF

1G

ND

2G

ND

3G

ND

4G

ND

546C

< RSEwoL Fu01 mho5

16C

0pn p52.0-/+ p5.0

574R0

193C0pn %5 p22

154R%1 k34

17C

r5x %01 p6.5

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

U_VCC

U_VCC

U_AVCC

U_VCC3.3

USB+

USB-USB-USB-USB-USB-USB-

U_VCC

VCCin

RTS

U_VCCU_VCC3.3

P_DVCC

RXDTXD

P_DVCC

DTR

RXD

P_DVCC

P_DVCCUART1TX

TXD UART1RX

DV

CC

DCDRI

DSR

DCD

DV

CC

RTSDTR

RESETTCK

TCK

DVCC

DSRRI

TMSTDITDO

TCK

P_DVCC

U_VCC

U_VCCEECS

EESK

EEDATA

VCCinP_DVCC

UART1TX

UART1RX

DVCC

USB5V

DVCC

RESETTCK

TMSTDITDO

TCK

Title

Size Document Number Rev

Date: Sheet of

(c) Copyright 2004: UC Berkeley, 2006: Moteiv B

Tmote SkyB

3 3Thursday, April 06, 2006

Title

Size Document Number Rev

Date: Sheet of

(c) Copyright 2004: UC Berkeley, 2006: Moteiv B

Tmote SkyB

3 3Thursday, April 06, 2006

Title

Size Document Number Rev

Date: Sheet of

(c) Copyright 2004: UC Berkeley, 2006: Moteiv B

Tmote SkyB

3 3Thursday, April 06, 2006

Used for Reading Serial / ProgrammingConnects and Powered via USB

USB INTERFACE

I/O BUFFER

MOTE POWERUSB POWER FILTER

USB Interface

RESET SEQUENCE RECOGNITION

USB IDENTIFICATION EEPROM

U23

93C46

U23

93C46

CS1

SK2

DIN3

DOUT4 GND 5

NC 6

NC 7

VCC 8

C230.1uC230.1u

R27

2.2k

R27

2.2k

R2910kR2910k

U27 ADG715BRUU27 ADG715BRU

S15S27S39S411S514S616S718S820 D8 19

D7 17

D6 15

D5 13

D4 12

D3 10

D2 8

D1 6

SDA3

SCLK1

A024

A122

VC

C2

GN

D4

VS

S21

RST23

C2510uC2510u

U25TC55RP33U25TC55RP33

GN

D1

Vin 2Vout3

D22

LLSD103A

D22

LLSD103A

1 2

U22

USB A

U22

USB A

4 4

3 3

2 2

1 1

L20

F Bead 240-1035-1

L20

F Bead 240-1035-1

1 2

R26

100

R26

100

D21

Red Clear - 404-1017-1-ND

D21

Red Clear - 404-1017-1-ND

12

R3110kR3110k

D20

Green Clear - 404-1021-1-ND

D20

Green Clear - 404-1021-1-ND

12R25

100

R25

100

C2133nC2133n

C240.1uC240.1u

U20

FT232BM

U20

FT232BM

3V3OUT6

USBDM8

USBDP7

RSTOUT#5

RESET#4

XTIN27

XTOUT28

EECS32

EESK1

EEDATA2

TEST31

AG

ND

29

GN

D9

GN

D17

SLEEP# 10PWREN# 15PWRCTL 14

RXLED# 11TXLED# 12TXDEN 16

RI# 18DCD# 19DSR# 20DTR# 21CTS# 22RTS# 23RXD 24TXD 25V

CC

IO13

VC

C26

VC

C3

AV

CC

30

C220.1uC22

0.1u

C20

0.1u

C20

0.1u

R20470

R20470

R24

1.5k

R24

1.5k

U29 NC7WZ126U29 NC7WZ126

1OE1

1A2 1Y 6

2OE7

2A5 2Y 3

Vcc

8G

nd4

R28

10k

R28

10k

Figure 4 : Schematics for the Tmote Sky module

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 9 of 28

Microprocessor Description The low power operation of the Tmote Sky module is due to the ultra low power Texas Instruments MSP430 F1611 microcontroller featuring 10kB of RAM, 48kB of flash, and 128B of information storage. This 16-bit RISC processor features extremely low active and sleep current consumption that permits Tmote to run for years on a single pair of AA batteries. The MSP430 has an internal digitally controlled oscillator (DCO) that may operate up to 8MHz. The DCO may be turned on from sleep mode in 6μs, however 292ns is typical at room temperature. When the DCO is off, the MSP430 operates off an eternal 32768Hz watch crystal. Although the DCO frequency changes with voltage and temperature, it may be calibrated by using the 32kHz oscillator. In addition to the DCO, the MSP430 has 8 external ADC ports and 8 internal ADC ports. The ADC internal ports may be used to read the internal thermistor or monitor the battery voltage. A variety of peripherals are available including SPI, UART, digital I/O ports, Watchdog timer, and Timers with capture and compare functionality. The F1611 also includes a 2-port 12-bit DAC module, Supply Voltage Supervisor, and 3-port DMA controller. The features of the MSP430 F1611 are presented in detail in the Texas Instruments MSP430x1xx Family User’s Guide available at http://ti.com/msp430.

Typical Operating Conditions MIN NOM MAX UNIT Supply voltage during program execution 1.8 3.6 V Supply voltage during flash memory programming 2.7 3.6 V Operating free air temperature -40 85 oC Low frequency crystal frequency 32.768 kHz Active current at Vcc = 3V, 1MHz 500 600 μA Sleep current in LPM3 Vcc = 3V, 32.768kHz active 2.6 3.0 μA Wake up from LPM3 (low power mode) 6 μs

PC Communication Tmote Sky uses a USB controller from FTDI to communicate with the host computer. In order to communicate with the mote, the FTDI drivers must be installed on the host. FTDI provides drivers for Windows, Linux, BSD, Macintosh, and Windows CE. These drivers are included on the Moteiv CD shipped with your order. Windows users will need the Virtual Com Port (VCP) drivers. They may also be downloaded from FTDI’s website at: http://www.ftdichip.com/ Tmote Sky appears as a COM port in Windows’ device manager (or as a device in /dev in Linux, OSX, and BSD). Multiple Tmote Sky motes may be connected to a single computer’s USB ports at the same time. Each mote will receive a different COM port identifier. In the example below, one Tmote is connected and assigned COM6 “USB Serial Port”. An application may read from Tmote Sky by opening the COM port assigned to the Tmote Sky mote. Tmote communicates with the host PC through USART1 on the TI MSP430.

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 10 of 28

Figure 5 : Device Manager showing Tmote Sky installed as COM6

The motelist command line utility lists all of the Tmote Sky motes currently connected to a computer. This utility optionally lists previously connected motes that the system has cached. Invoke motelist with the -h option for more information. > motelist Reference CommPort Description ---------- ---------- ---------------------------------------- M49WD0S6 COM6 Moteiv tmote sky

NOTE: Tmote Sky uses an I2C digital switch to prevent unwanted conventional serial port signals from reaching the TI microcontroller. The I2C protocol must be implemented and sent over the RTS and DTR lines in order to obtain direct access between the Tmote Sky and USB controller. The UART lines do not use the I2C switch allowing direct communication (but not programming or JTAG) without additional software.

Programming The Tmote Sky module is programmed through the onboard USB connector. A modified version of the MSP430 Bootstrap Loader, msp430-bsl, programs the microcontroller’s flash. Tmote has a unique hardware circuit that prevents the mote from spuriously resetting. This hardware circuit makes it necessary to have a special sequence sent to the module in order to program it. By invoking msp430-bsl, verify you have the patched BSL by looking for the “telos” keyword. Version 1.39-telos-7 or later is required for Tmote Sky. > msp430-bsl MSP430 Bootstrap Loader Version: 1.39-telos-7 Use -h for help

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 11 of 28

To communicate with Tmote Sky, the MSP430 Bootstrap Loader requires a set of options to provide the proper signals to the microcontroller to initiate programming. For convenience, the options have been folded into a single Tmote flag: --tmote To program a Tmote Sky module on COM3 (or /dev/ttyUSB2 in Linux) with an application image named app.ihex, invoke the MSP430 Bootstrap loader with the following options. > msp430-bsl --tmote -c 2 -r -e -I -p app.ihex MSP430 Bootstrap Loader Version: 1.39-telos-7 Mass Erase... Transmit default password ... Invoking BSL... Transmit default password ... Current bootstrap loader version: 1.61 (Device ID: f16c) Changing baudrate to 38400 ... Program ... 2742 bytes programmed. Reset device ... If you are using TinyOS, it has support for programming Tmote Sky. After compiling your application, you may install it with the following command > make tmote install.x bsl,n Where x is the 16-bit address assigned to the mote and n is the COM port that Tmote Sky is currently using. Note that not including “bsl” or “bsl,n” will program automatically using the bsl to the first Telos mote found on the USB bus using the motelist command. For more information about the options in the MSP430 Bootstrap loader, invoke msp430-bsl with the -h option to display the help information. Motelist and msp430-bsl are available from Moteiv Corporation at http://www.moteiv.com in the “Support” section.

NOTE: msp430-bsl starts counting from 0, but COM ports in Windows start counting at 1. If Tmote Sky is connected to COM3 in Windows, you must program it using “-c 2” or “bsl,2” when invoking msp430-bsl. In Linux, Tmote Sky will appear as /dev/ttyUSB2 and may be programmed using “-c 2” or “bsl,2”.

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 12 of 28

Block Diagram

Oscillator

SystemClock

32kHz

ACLK

SMCLK

CPU16 bit16 reg

multiply

Flash

RAM

12-bit ADC8 Channels<10μs Conv

12-bit DAC2 Channels

16-bit bus

I/O Port 3/416 I/Os

I/O Port 1/216 I/Os

Interrupts

I/O Port 5/68 I/Os

MCLK

WatchdogTimer

15/16 bit

Timer A3 CC reg

ComparatorA

Timer B7 CC reg

USART0UART

SPII2C

DMAController3 Channels

USART1UART

SPI

CC2420 RadioInterrupts & SPI

PCUART via USB

Figure 6 : Block diagram of the TI MSP430 microcontroller and its connection to other peripherals

in the Tmote Sky module

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 13 of 28

Radio Description Tmote Sky features the Chipcon CC2420 radio for wireless communications. The CC2420 is an IEEE 802.15.4 compliant radio providing the PHY and some MAC functions. With sensitivity exceeding the IEEE 802.15.4 specification and low power operation, the CC2420 provides reliable wireless communication. The CC2420 is highly configurable for many applications with the default radio settings providing IEEE 802.15.4 compliance. Features and usage of the CC2420 is available in Chipcon’s datasheet at http://www.chipcon.com The CC2420 is controlled by the TI MSP430 microcontroller through the SPI port and a series of digital I/O lines and interrupts (see the Schematics on page 7 for more information). The radio may be shut off by the microcontroller for low power duty cycled operation. The CC2420 has programmable output power. Common CC2420 register values and their corresponding current consumption and output power are shown in Figure 7.

PA_LEVEL TXCTRL register Output Power [dBm] Current Consumption [mA] 31 0xA0FF 0 17.4 27 0xA0FB -1 16.5 23 0xA0F7 -3 15.2 19 0xA0F3 -5 13.9 15 0xA0EF -7 12.5 11 0xA0EB -10 11.2 7 0xA0E7 -15 9.9 3 0xA0E3 -25 8.5

Figure 7 : Output power configuration for the CC2420 The CC2420 provides a digital received signal strength indicator (RSSI) that may be read any time. Additionally, on each packet reception, the CC2420 samples the first eight chips, calculates the error rate, and produces a link quality indication (LQI) value with each received packet. A mapping from RSSI to the RF level in dBm is shown in Figure 8.

Figure 8 : Received Signal Strength Indicator mapping to RF Power [dBm]

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 14 of 28

Typical Operating Conditions MIN NOM MAX UNIT Supply voltage during radio operation (Vreg on) 2.1 3.6 V Operating free air temperature -40 85 oC RF frequency range 2400 2483.5 MHz Transmit bit rate 250 250 kbps Nominal output power -3 0 dBm Programmable output power range 40 dBm Receiver sensitivity -90 -94 dBm Current consumption: Radio transmitting at 0 dBm 17.4 mA Current consumption: Radio receiving 19.7 mA Current consumption: Radio on, Oscillator on 365 μΑ Current consumption: Idle mode, Oscillator off 20 μΑ Current consumption: Power Down mode, Vreg off 1 μΑ Voltage regulator current draw 13 20 29 μΑ Radio oscillator startup time 580 860 μs

Measured Output Power The RF output power of the Tmote Sky module from the CC2420 radio is shown in Figure 9. For this test, the Tmote Sky module is transmitting at 2.405GHz (IEEE 802.15.4 channel 11) using the O-QPSK modulation with DSSS. The CC2420 programmed output power is set to 0 dBm. The measured output power of the entire modulated spectrum is 2.4 dBm.

2.4 2.401 2.402 2.403 2.404 2.405 2.406 2.407 2.408 2.409 2.41−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency (GHz)

Out

put p

ower

(dB

m)

RWB: 100 kHzVWB: 100 kHzSweep: 50ms

Figure 9 : Measured RF output power over the modulated spectrum from the Tmote Sky module

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 15 of 28

Antenna Tmote Sky’s internal antenna is an Inverted-F microstrip design protruding from the end of the board away from the battery pack. The Inverted-F antenna is a wire monopole where the top section is folded down to be parallel with the ground plane. Although not a perfect omnidirectional pattern, the antenna may attain 50-meter range indoors and upwards of 125-meter range outdoors. Measurements of the internal antenna’s performance with and without a battery pack are show in Figure 10 and Figure 11. Approximate radiation patterns for the Inverted-F antenna as provided by Chipcon AS are shown in Figure 12 and Figure 13.

Internal Antenna without Battery Pack 2004/11/25 Thr 14:44:06

CH2 S11 SMITH(R+jX) FS 1.000MKR 3: 2.483 958 333GHz

65.166 4.083

Cor

3:2.483 958GHz 65.041 4.227 270.843pH2:2.450 000GHz 39.757 -4.623 14.050pF1:2.400 000GHz 40.014 -40.598 1.633pF

3

1

2

START 2.3GHz [ 10.00 dBm] STOP 2.55GHz2.3 2.325 2.35 2.375 2.4 2.425 2.45 2.475 2.5 2.525 2.55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency (GHz)

Log(

|S11

|) (

dB)

1

2 3

4

1: 2.400 GHz −7.40 dB2: 2.450 GHz −16.58 dB3: 2.485 GHz −16.58 dB4: 2.500 GHz −12.50 dB

Figure 10 : S11 measurements for the internal inverted-F antenna when no battery pack is present

Internal Antenna with Battery Pack 2004/11/25 Thr 14:49:13

CH2 S11 SMITH(R+jX) FS 1.000MKR 3: 2.483 958 333GHz

57.265 7.168

Cor

3:2.483 958GHz 57.205 7.146 457.900pH2:2.450 000GHz 34.763 -8.204 7.917pF1:2.400 000GHz 38.610 -49.225 1.347pF

1

2

3

START 2.3GHz [ 10.00 dBm] STOP 2.55GHz2.3 2.325 2.35 2.375 2.4 2.425 2.45 2.475 2.5 2.525 2.55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency (GHz)

Log(

|S11

|) (

dB)

1

2

3

4

1: 2.400 GHz −5.10 dB2: 2.450 GHz −13.27 dB3: 2.485 GHz −20.92 dB4: 2.500 GHz −12.24 dB

Figure 11 : S11 measurements for the internal inverted-F antenna with battery pack underneath

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 16 of 28

Radiation Pattern

Figure 12 : Radiated pattern of the Inverted-F antenna with horizontal mounting (from Chipcon AS)

Figure 13 : Radiated pattern of the Inverted-F antenna with vertical mounting (from Chipcon AS)

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 17 of 28

External Flash Tmote Sky uses the ST M25P80 40MHz serial code flash for external data and code storage. The flash holds 1024kB of data and is decomposed into 16 segments, each 64kB in size. The flash shares SPI communication lines with the CC2420 transceiver. Care must be taken when reading or writing to flash such that it is interleaved with radio communication, typically implemented as a software arbitration protocol for the SPI bus on the microcontroller.

SC_HSALF

CCVD_P

CCVD

KLCS_OIDAROS_OIDAR

IS_OIDAR

DLOH_HSALFrewoP BSU

4.4P7.4P

CCVD

92Rk01

5U

08P52M

S1Q2W3

ssV4 D 5C 6DLOH 7ccV 8

Figure 14 : External serial flash schematic

Typical Operating Conditions MIN NOM MAX UNIT Supply voltage during flash memory programming 2.7 3.6 V Operating free air temperature -40 85 oC Erase/Programming cycles 100,000 cycles Data Retention 20 years Active current (READ) 4 mA Active current (WRITE/ERASE) 20 mA Standby current 8 50 μA Deep Power Down current 1 10 μΑ

NOTE: The ST M25P-series of code flash always starts in the standby state. For low power applications, the flash must be sent a command at boot time to place it in the deep power down mode. If using TinyOS, the flash is automatically put into deep power down mode and must be instructed to exit deep power down mode the first time the flash is accessed. See the ST M25P80 datasheet for more information. http://www.st.com/stonline/books/pdf/docs/8495.pdf

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 18 of 28

Flash Hardware Write Protection The flash includes hardware write protection functionality. The write protection exists on a sector basis as shown in Figure 16. The hardware write protection pin (Pin 3 of the M25P80 shown in Figure 14) only disables write protection when the module is powered by the USB port. When connected to USB, the status register must be updated by removing the write protect and block protect bits in Figure 15. The write protected segments may only be changed after the module connected to USB and the write protect bit is cleared. Tmote Sky ships with sector 15 (the upper sixteenth sector) write protected and the SRWD bit set. In sector 15 is the “Golden Image” and factor metadata. The “Golden Image” is a factory program image that includes network reprogramming so that Tmote Sky may always return to a known good state, even if loaded with a malfunctioning program image. When Tmote Sky is connected to the USB, the “Golden Image” may be changed. See the TinyOS Deluge documentation in tinyos-1.x/docs of the TinyOS distribution included with Tmote.

b7 b0

SRWD 0 0 BP2 BP1 BP0 WEL WIP

Status Register Write Protect

Block Protect Bits

Write Enable Latch Bit

Write In Progress Bit Figure 15 : ST M25P80 Status Register contents (from ST).

Status Register Content Memory Content (Sectors) BP2 Bit BP1 Bit BP0 Bit Protected Area Unprotected Area 0 0 0 None All sectors (0-15) 0 0 1 Upper sixteenth (15) Lower fifteen-sixteenths (0-14) 0 1 0 Upper eighth (14-15) Lower seven-eighths (0-13) 0 1 1 Upper quarter (12-15) Lower three-quarters (0-11) 1 0 0 Upper half (8-15) Lower half (0-7) 1 0 1 All sectors (0-15) None 1 1 0 All sectors (0-15) None 1 1 1 All sectors (0-15) None

Figure 16 : Write protection settings for the ST M25P80 flash. Tmote Sky modules are shipped with the gray setting (001).

NOTE: When programming data to write protected segments of external flash, do not disconnect the module before the programming is completely. If the module is disconnected from the USB, the write may be interrupted or the status register may not be updated to reflect the new write protection settings.

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 19 of 28

Sensors Humidity/Temperature Sensor The optional humidity/temperature sensor is manufactured by Sensirion AG. The SHT11 and SHT15 models may be directly mounted on the Tmote Sky module in the U3 component position. The SHT11/SHT15 sensors are calibrated and produce a digital output. The calibration coefficients are stored in the sensor’s onboard EEPROM. The difference between the SHT11 and SHT15 model is that the SHT15 produces higher accuracy readings as shown in Figure 18. The sensor is produced using a CMOS process and is coupled with a 14-bit A/D converter. The low power relative humidity sensor is small in size and may be used for a variety of environmental monitoring applications. More information can be found in the SHT1x datasheet available at http://www.sensirion.com

Parameter MIN TYP MAX UnitsHumidity Resolution 0.5 0.03 0.03 %RH 8 12 12 Bit Repeatability ±0.1 %RH Range 0 100 %RH Temperature Resolution 0.04 0.01 0.01 oC 0.07 0.02 0.02 oF 12 14 14 bit Repeatability ±0.1 oC ±0.2 oF Range -40 123.8 oC -40 254.9 oF

Figure 17 : Sensirion relative humidity and temperature performance specifications

%RH

Relative Humidity absolute accuracy

± 0

± 1

± 2

± 3

± 4

± 5

0 30 402010 8050 10070 9060

%RH

SHT15

SHT11

Temperature accuracy

0 °C

±1 °C

±2 °C

-40°C 0°C 40°C 80°C 120°C

±3 °C

0 °F

±1.8 °F

±3.6 °F

±5.4 °F

-40°F 32°F 104°F 176°F 248°F

SHT11

SHT15

Figure 18 : Accuracy of Sensirion relative humidity and temperature sensors (courtesy Sensirion)

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 20 of 28

Light Sensors A variety of light sensors may be used with Tmote Sky. Tmote Sky has connections for two photodiodes. Moteiv currently uses photodiodes from Hamamatsu Corporation (http://www.hamamatsu.com) If your mote is populated with light photodiodes, the default diodes are the S1087 for sensing photosynthetically active radiation and the S1087-01 for sensing the entire visible spectrum including infrared Although these photodiodes from Hamamatsu have been tested with Tmote Sky, any photodiode with similar physical dimensions may be used with Tmote Sky.

0

0.1

0.2

0.3

0.4

0.7

200 400 600 800 1000

WAVELENGTH (nm)

PH

OT

O S

EN

SIT

IVIT

Y (

A/W

)

(Typ. Ta=25oûC)

0.5

0.6

S1087

S1087-01

QE=100 %

Figure 19 : Photo Sensitivity of the Light sensors on Tmote Sky(from Hamamatsu)

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 21 of 28

Expansion Connector Tmote Sky has two expansion connectors and a pair of onboard jumpers that may configured so that additional devices (analog sensors, LCD displays, and digital peripherals) may be controlled by the Tmote Sky module. On the far side of the board from the USB connector is a 10-pin IDC header at position U2 and a 6-pin IDC header at U28. The 10-pin connector has the same connections as Tmote Sky and is the primary connector. It provides digital input and output signals as well as and analog inputs. Peripherals may be connected to the 10-pin connector using an IDC header, an IDC ribbon cable, or by designing a printed circuit board that solders directly on to the IDC header providing a robust connection to the module. An additional 6-pin (U28) header provides access to the exclusive features of Tmote Sky. Two additional ADC inputs are provided that may be reconfigured by software to be two 12-bit DAC outputs. ADC7 may also act as the input to the supply voltage supervisor. The user interface elements—the reset and user buttons—are exported by the 6-pin header for use in external interfaces and packaging.

2

43

65

87

109

1Analog VCC (AVcc)

Analog Input 0 (ADC0)

Analog Input 1 (ADC1)

Analog Input 2 (ADC2)Exclusive Digital I/O 1 (GIO1)

Analog Ground (Gnd)

UART Receive (UART0RX)

UART Transmit (UART0TX)

I2C Clock (I2C_SCL)Shared Digital I/O 4 (GIO4)I2C Data (I2C_SDA)Shared Digital I/O 5 (GIO5)

Exclusive Digital I/O 0 (GIO0)Analog Input 3 (ADC3)

2

43

65

87

109

1Analog VCC (AVcc)

Analog Input 0 (ADC0)

Analog Input 1 (ADC1)

Analog Input 2 (ADC2)Exclusive Digital I/O 1 (GIO1)

Analog Ground (Gnd)

UART Receive (UART0RX)

UART Transmit (UART0TX)

I2C Clock (I2C_SCL)Shared Digital I/O 4 (GIO4)I2C Data (I2C_SDA)Shared Digital I/O 5 (GIO5)

Exclusive Digital I/O 0 (GIO0)Analog Input 3 (ADC3)

2

43

65

87

109

1Analog VCC (AVcc)

Analog Input 0 (ADC0)

Analog Input 1 (ADC1)

Analog Input 2 (ADC2)Exclusive Digital I/O 1 (GIO1)

Analog Ground (Gnd)

UART Receive (UART0RX)

UART Transmit (UART0TX)

I2C Clock (I2C_SCL)Shared Digital I/O 4 (GIO4)I2C Data (I2C_SDA)Shared Digital I/O 5 (GIO5)

Exclusive Digital I/O 0 (GIO0)Analog Input 3 (ADC3)

Figure 20 : Functionality of the 10-pin expansion connector (U2).

Alternative pin uses are shown in gray.

Figure 21 : Functionality of the 6-pin expansion connector (U28).

NOTE: The I2C pins are shared with the radio’s data input pin and the radio clock. Care must be taken by application developers to multiplex operations on the I2C bus and the radio.

Exclusive Digital I/O 2 (GIO2)

2

43

65

1

Exclusive Digital I/O 2 (GIO2)

Analog Input 7 (ADC7) DAC 1 / SVS inDAC0Exclusive Digital I/O 3 (GIO3)

User Interrupt (UserInt) Reset

Timer A Capture (TA1) External DMA Trigger (DMAE0)

2

43

65

1Analog Input 6 (ADC6) Analog Input 7 (ADC7) DAC 1 / SVS in

Exclusive Digital I/O 3 (GIO3)

User Interrupt (UserInt) Reset

Timer A Capture (TA1) External DMA Trigger (DMAE0)

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 22 of 28

If expansion pin 10 (ADC3) is used to generate microcontroller interrupts instead of digital I/O and analog input functionality, R14 must be populated with a 0 ohm resistor to enable the pin for digital I/O (GIO0) on the microcontroller. R16 must be populated with a 0 ohm resistor to enable GIO1. R14 and R16 are located on the top side of Tmote Sky between the USB controller and the radio.

The 6-pin IDC header also has an optional jumper, R15. By installing a 0 ohm resistor at R15, GIO3 is directly connected to SVSout. By making GIO3 an input and using the SVS features of the microcontroller, the SVSout function can be exported via pin 4 of U28. A separate Supply Voltage Supervisor (SVS) 2-pin IDC header is provided underneath the USB connector at position U7. The SVS header allows add-on boards to be built that connect to the positive and negative battery terminals and the SVS pins in order to provide power the module and use the microcontroller’s advanced SVS functionality for boost converters, solar systems, and rechargeable systems. The SVS header is shown in Figure 22 and includes the SVSin and SVSout pins from the microcontroller.

21Analog Input 7 (ADC7)DAC 1 / SVS in SVS out21Analog Input 7 (ADC7)DAC 1 / SVS in SVS out21Analog Input 7 (ADC7)DAC 1 / SVS in SVS out

Figure 22 : Functionality of the 2-pin Supply Voltage Supervisor connector (U7).

NOTE: When R14/R16 is populated (GIO0/GIO1 enabled), ADC3/ADC2 will not provide reliable readings if an application reverts to using the ADC input instead of the digital I/O port input on the microcontroller. R14/R16 are not required for digital I/O functionality from ADC3/ADC2; they are only needed if an interrupt request must be generated by an external device on these pins. R14/R16 should be removed when using ADC3/ADC2 for analog input.

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 23 of 28

Internal Temperature and Voltage Monitoring The MSP430 microcontroller has internal temperature and voltage sensors that may be used through the microcontroller’s ADC interface. The voltage port (input 11) on the 12-bit ADC monitors the output from a voltage divider.

11CDA

ccVD

R

R

Voltage monitoring for Tmote Sky modules.

Converting the ADC units to a voltage reading can be done with the following formula:

RR2V

4096ADCCountsDVcc ref ××=

The temperature input is a temperature diode connected to internal ADC port 10. When using the temperature sensor, the sample period must be greater than 30 µs. The temperature sensor offset error can be large, and may need to be calibrated for most applications. The typical response of the temperature sensor is shown in Figure 23.

C els ius

Volts

0 50 100

1.000

0.800

0.900

1.100

1.200

1.300

–50

0.700

V T E MP =0.00355(T E MPC )+0.986

Figure 23 : Typical response of the internal temperature sensor. Results vary and the sensor

should be calibrated for most applications. Response curve from Texas Instruments.

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 24 of 28

Agency Certification FCC Certification The Tmote Sky module complies with Part 15 of the FCC rules and regulations. Compliance with the labeling requirements, FCC notices and antenna usage guidelines is required. To fulfill FCC Certification requirements, the OEM must comply with the following regulations:

1. The system integrator must ensure that the text on the external label provided with this device is placed on the outside of the final product [Figure 26].

2. The Tmote Sky module may be used only with approved antennas that have been tested with this module.

FCC OEM Labeling requirement Contains FCC ID: TOQTMOTESKY The enclosed device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation

Figure 24 Required FCC label for OEM products containing the Tmote Sky module. The Original Equipment Manufacturer (OEM) must ensure that FCC labeling requirements are met. This includes a clearly visible label on the outside of the final product enclosure that displays the contents shown in Figure 24.

Industry Canada OEM Labeling Requirement To satisfy Industry Canada labeling requirements, the following text must be placed on the exterior of the end product: Contains IC: 6142A-TMOTESKY

Figure 25: Required Industry Canada label for OEM products containing the Tmote Sky module

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 25 of 28

Regulatory Notices

IMPORTANT: The Tmote Sky module has been certified by the FCC for use with other products without any further certification (as per FCC section 2.1091). Changes or modifications not expressly approved by Moteiv Corporation could void the user's authority to operate the equipment.

IMPORTANT: OEMs must test final product to comply with unintentional radiators (FCC section 15.107 and 15.109) before declaring compliance of their final product to Part 15 of the FCC Rules.

IMPORTANT: The RF module has been certified for remote and base radio applications. If the module will be used for portable applications, the device must undergo SAR testing. This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: Re-orient or relocate the receiving antenna, Increase the separation between the equipment and receiver, Connect equipment and receiver to outlets on different circuits, or Consult the dealer or an experienced radio/TV technician for help.

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 26 of 28

General Information Document History Revision Date Notes 1.0 2005/02/23 Initial Release 1.0.1 2005/12/28 Added FCC and IC regulatory information 1.0.2 2006/02/06 Updatedcontact infromation 1.0.3 2006/10/05 Updated schematics to reflect the RoHS production boards 1.0.4 2006/11/13 Updated schematics, figures, and disclaimer

Product Status Definitions Data Sheet Identification Product Status Definition Advance Information Planned or under

development This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.

Preliminary Engineering samples or first production

This data sheet contains preliminary data, and supplementary data will be published at a later date. Moteiv reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

No Identification Noted Full production This data sheet contains the final specifications. Moteiv reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Obsolete Not in production This data sheet contains specifications on a product that has been discontinued by Moteiv. The data sheet is printed for reference information only. Moteiv no longer supports this product.

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 27 of 28

Disclaimer This document identifies products, their specifications, and their characteristics, which may be suitable for certain applications. It does not constitute an offer to sell or a commitment of present or future availability, and should not be relied upon to state the terms and conditions, including warranties and disclaimers thereof, on which Moteiv Corporation may sell products. A prospective buyer should exercise its own independent judgment to confirm the suitability of the products for particular applications. Moteiv Corporation believes the information contained herein is correct and accurate at the time of this printing. However, Moteiv Corporation reserves the right to make changes to this product or information herein without notice. Moteiv Corporation does not assume any liability or responsibility for the use of the described product; neither does it convey any license under its patent or other intellectual property rights, or the rights of others. This product is not designed for use in life support devices or any other system where malfunction can reasonably be expected to result in significant personal injury to the user. This product is not designed for critical systems where failure of the product to perform affects safety or effectiveness. Moteiv Corporation customers using or selling products for use in such applications do so at their own risk and agree to fully indemnify Moteiv Corporation for any damages resulting from improper use or sale. This disclaimer extends to any prospective buyer, and it includes Moteiv’s licensee, licensee’s transferees, and licensee’s customers and users. Major changes of product specifications and functionality may be stated in product specific errata notes published at the Moteiv website. The latest updates are available from the Moteiv website at www.moteiv.com or by contacting Moteiv directly at [email protected].

Low Power Wireless Sensor Module

Moteiv Corporation Tmote Sky : Datasheet (11/13/2006) Page 28 of 28

Address Information Web site: http://www.moteiv.com E-mail: [email protected] Technical Support E-mail: [email protected] Phone Number: +1.415.692.0960 Fax Number: +1.415.358.4872

Headquarters Moteiv Corporation 55 Hawthorne St., Suite 550 San Francisco, CA 94105

© 2004-2007 Moteiv Corporation