printing for transition curves lectures

Upload: dushan-senarathne

Post on 25-Feb-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Printing for Transition Curves Lectures

    1/15

    M = Mass of vehicle

    V = Speed of vehicle

    R = Radius of Road Curve

    = Coefficient of friction ( adhesion)between wheels and road

    (usually = 0.!)

    See "i#. $%.$ for forces actin# on a vehicle&ovin# at a speed of V on a circular curve

    of radius R.

    Sideslip will occur if M#R

    MV

    i.e. when R#

    V

    Mini&u& curvature#VR

    =

    Fig. 14.1"orces actin# on a vehicle at a curve on level#round

    'o "riction

    #R

    Vtan*

    =

    +

    Fig. 14.2 "orces actin# on a vehicle at a curve on slopin# #round

    $

    tan* =#R

    0.%V

  • 7/25/2019 Printing for Transition Curves Lectures

    2/15

    Fig. 14.3 Chan#e of radial acceleration when enterin# a circular curve fro& a strai#htsection.

    r=

    Circularcurve

    r=R

    ,

    R

    r

    l

    -ran

    sition -ransition

    "inalse

    ction

    .nitial

    secti

    on

    Fig. 14.4 "or&ation of transition curves between strai#ht and circular sections

  • 7/25/2019 Printing for Transition Curves Lectures

    3/15

    -he initial re/uire&ent in the desi#n of a transition curve is to find len#th , of the transition curv

    &ay be taena) 1s an arbitrary value(say !0 &)

    b) Such that the cant is applied at a constant rate (say 0.$ & in $00&)

    c) Such that the rate of chan#e of radial acceleration e/uals a chosen value (say 0.2 &3sec2)

    4hen the rate of chan#e of radial acceleration is the desi#n criterion

    5iven

    , = -otal len#th of transition curve

    R = Radius of circular curve

    V = 6nifor& velocity of vehicle

    -he radial acceleration before enterin# the transition curve is 7ero. -he radial acceleration on

    circular curveR

    V = .

    -he ti&e taen to travel alon# the transition curve = V,

    -he rate of chan#e of radial acceleration (a ) is

    ,R

    V

    V,

    )0R

    V( 2

    =

    =a

    Ra

    VL

    2

    =

    8

    S

    R

    R9S

    -$-

    6

    :

    - ;

    S

    S

    ,

    -ransition

    =

  • 7/25/2019 Printing for Transition Curves Lectures

    4/15

    t can be shown that

    ( )R

    LS

    %$

    = ( ) ( )

    tan

    SRIB +=

    ( )

    ,2 =BT ( ) ( )

    ,

    tan% ++=

    SRIT

    y

    S=

    Shift

    Circul

    arCircular

    $

    >

    8

    $

    ?

    @$M:

    R$

    y

    y

    ' -$

    r

    R

    ;

    -

    Fig. 14.6 Shape function for a transition curve

    %

  • 7/25/2019 Printing for Transition Curves Lectures

    5/15

    -> = --$= ,. 1t - = 0 and r = A 1t -$ = ,

    and r = R

    'ote that the centrifu#al force " at any point on the transition curve is proportional to the

    distance of that point fro& the startin# point of the curve.

    ( )constantrorr$-and-between

    rMV" $

    a=

    1t -$ = R,. 1lso = r R,r

    $ =

    >? = B rB = B B =r

    $B =

    R,

    B

    :y inte#ration =R,

    9 C

    at = 0 = 0. C = 0 henceR,

    =

    Cubic Spiral

    f we assu&e to be s&all ('oteD in ordinary transition is very s&all)

    R,

    CB

    By

    B

    By

    ===

    .BR,

    By

    =

    or

    Relationship between an !

    t can be shown tan )2!

    C($

    2

    C

    )$0

    EFG($

    )$%

    $(

    yB

    +=

    ==

    "or s&all

    Since =R,

    'ow deflection of points at distances fro& the tan#ent point - can be calculated.

    Cubic "arabola

    f we assu&e is s&all and also

    !

    FR,y

    2

    =

    B =

    B =FR,

  • 7/25/2019 Printing for Transition Curves Lectures

    6/15

    FR,

    y2

    =

    FR,

    = 2

    -husFR,

    = 2=y . -his is an e/uation for a Cubic Parabola.

    'ow it is possible to co&pute offset distances(y) off the tan#ent for distances() alon#the tan#ent.

    #ransition Curve Setting$out %ata

    R,

    = at -$DR

    ,

    R,

    ,

    $ == :M = '-$(&ai&u& offset)

    Shift S = :;

    = :ME;M

    = '-$E(;8EM8)

    =FR,

    ,2E(RERcos$)

    = ....)H%I

    I

    R($JR

    FR,

    ,%

    $

    $

    2

    ++

    #norin# hi#her powers than $

    S =

    R

    FR,

    ,

    $2

    = 2

    )R,

    ,(

    R

    FR,

    ,

    =

    KR,

    FR,

    %R

    ,S

    =

    F

  • 7/25/2019 Printing for Transition Curves Lectures

    7/15

    'ow @$-$ ;-$

    = R.$= R.

    ,

    R,

    ,=

    @$is the &id point of the transition curve.

    Since the deviation of @$fro& the tan#ent is s&all -@$ -: =

    ,

    "ro& theory of si&ple circular curves

    : = (R9S) tan

    *

    - = : 9 -:

    'ow you can setEout

    Cubic Spiral L with -heodolite(B) Chain() and -ape(y)

    Cubic ;arabola L with Chain() and -ape(y)

    ither calculateFR,

    y2

    = orFR,

    =y2

    = orFR,

    B

    =

    Example 1:Calculate the settin# out data for a N!.0 & transition curve to connect an KO

    circular curve Poinin# two strai#hts with an an#le of deflection 0O usin# $! & chords.

    a) -o calculate R and S

    )

    $K0

    QK(

    $00R=

    = N$F.0 &

    S =%R

    ,=

    N$F.%

    N!

    = 0.2N &

    b) -o calculate -an#ent len#th

    -, = (R9S) tan

    09

    ,

    = $F2.K%2 &

    c) -o calculate and tabulate the deflection an#les and deflection offsets

    S=(rad)

    FR,2

    )R,

    (

    2

    C

    ==

    = &inR,

    !N.FF0&in

    Q

    $K0.

    FR,

    =

    andFR,

    y2

    =

    R = N$F. & , = N! & = $! 20 %! F0 N! &

    N

    - = (R9S) tan

    *9

    ,

    *

    $00

    R

  • 7/25/2019 Printing for Transition Curves Lectures

    8/15

    3& 3&R,

    !N.F =

    FR,y

    2

    = 3&

    $! ! T%U 0.0$0

    20 00 T2FU 0.0K%

    %! 0! $T2FU

    0.K2

    F0 2F00 2KT

    %U0.FN0

    N! !F! F0T0

    0U$.20

    K

  • 7/25/2019 Printing for Transition Curves Lectures

    9/15

    Fig. 14.&Sa&e and Fig. 14.1'8pposite and

    l

    R$ W R

    (l = , E,$)

    CC

    C$C$

    S2

    ;2

    ;

    8

    8$

    @

    ;

    ;$

    R

    S

    S$

    R$

    y

    Fig. 14.11

    $

    $$

    %R

    ,S

    ,$$ =C

    %R

    ,S

    ,=C

    X = CL C$ and Xy = R$ 9 S$E (R 9 S)

    8$@ = 8$89 8; 9 ;@

    R$= (X

    9 Xy

    )$3

    9 R9 S2

    S2= Y (CL C$)9 JR$ 9 S$E (R 9 S)H

    +$3L (RL R$)

  • 7/25/2019 Printing for Transition Curves Lectures

    10/15

    t$

    t9,

    3

    t$9,$3

    -

    ,

    -$

    R

    $

    ;2

    b

    a

    ,$

    ;%

    ;

    8

    8$

    @

    ;

    ;$

    R$

    Fig. 14.12

    a = rate of chan#e of radial acceleration

    aR

    V2=L

    .a

    V2curveofpartsallalo!costa=

    R, is a constant for all three transitions.

    $0

  • 7/25/2019 Printing for Transition Curves Lectures

    11/15

    (E&

    );

    @

    ;

    &

    a

    b

    ;2

    FR,

    &b

    2

    = FR,

    &)E(a

    2

    =

    Fig. 14.13

    baS +=2FR,

    )&2&2( 2

    2

    +=S

    FR,

    &)F2( 2 +=

    "m

    "S

    S2is &ini&u& alon# ;@ (on 8$8produced)at ;@ when a 9 b = S2 0FR,

    &)F2( =

    +

    =m

    -he transition is bisected by the clearance S2

    %KR,

    S 22 === ba

    %R,S

    2

    2

    =

    $$

  • 7/25/2019 Printing for Transition Curves Lectures

    12/15

    #angent lengths

    "ro& co&pound curve e/uations

    t$SinZ = (RL R$)($ECos) 9 R$($ECosZ)

    tSinZ = (R$L R)($ECos$) 9 R($ECosZ)Replace R$with (R$ 9 S$) and Rwith (R9S) and

    apply in transitions. 4e have

    t$SinZ = (R9S) E (R$9S$) CosZ 9 (R$LRLS2) CostSinZ = (R$9S$) E (R 9 S) CosZ E (R$LRLS2) Cos$

    -$ = t$9 ,$ - = t9

    ,

    #hroughchainages

    1rc;$;=R$($)radE ,$

    1rc

    ;2;% = R()radE ,

    -otal curve len#th = -$;$9 ;$;9 ;;29 ;2;%9 ;%-

    = ,$9 R$($)radE ,$

    +9

    9 R()radE ,

    +9 ,

    = ( ) ( ) ra"ra" RR $$$ ,

    , +++

    $

  • 7/25/2019 Printing for Transition Curves Lectures

    13/15

    Example 3: 0000N! = o 000020 = o

    R$ = 200.00 & R = !0.00 & V = K0 &3h

    a = 0.2 &3s2 Chaina#e = KN.N00 &

    (-ransition curves with sa&e hand)

    0000%!20N!$ === ooo m2$.$%F!00.2

    )F0F0

    $0K0(

    aR

    V,

    22

    2

    =

    ==

    mL 22.$$200

    2F!N.N$

    == m0F!.200%

    22.$$

    %R

    ,S

    $

    $$

    =

    ==

    m!FK.2!0%

    2$.$%F%R,S

    ===

    = ,E ,$ = $%F.2$ L $$.22 = %.2KF &

    (Shift) mS 0$N.02F!N.N%

    %.2KF

    %R,

    %.2KF 22

    2 =

    ==

    'ow calculate offsets to the curve fro& tan#ents

    usin#FR,

    =y

    2

    = for transition and fro& usual offsets or

    deflection an#les for circular sections.

    $2

    R, = $%F.2$ !0 =2F!N.N &

  • 7/25/2019 Printing for Transition Curves Lectures

    14/15

    Curves of (pposite )an

    -$

    $

    ;$

    R$8$

    =

    ;

    8

    R

    ;%

    ;2

    S2= (a9b)

    -

    y

    b

    a

    @

    S$

    S

    $

    $

    Fig. 13.14

    ;@ = & @;2= E& FR,&

    a2

    = FR,

    &)E(b

    2

    =

    FR,

    )&2&2( 2

    2

    +

    =+= baS 0&F2d&

    dS

    2

    =+= #$t

    =m

    %KR,

    S 22 === ba

    %R,S

    2

    2

    =

    $%

  • 7/25/2019 Printing for Transition Curves Lectures

    15/15

    #hrough chainage

    -$-= -$;$9 ;$;9 ;;29 ;2;%9 ;%-

    = ,$9 R$$9 9 R9 ,

    =

    ++

    +

    ,

    ,

    $$$$

    RRL

    = ( )$$$

    ,

    RR

    L+++

    #angent length

    -$$= (R$ 9 S$)tan ,

    Z $$+ = $@

    -= (R 9 S)tan ,

    Z + = @

    'ote D

    S2= (X9 Xy)$3L (R$9 R)

    :ut X = C$9 C C$= ,$ and C=

    ,

    Xy = (R$ 9 S$) 9 (R9 S)

    ( ) ( )[ ] ( )$$

    $$

    $2 RRSRSRCCS ++++++=

    $!