precision macromolecular chemistry group (pmc) charles sadron institute - upr 22 cnrs european...

56
Precision Macromolecular Chemistry group (PMC) Charles Sadron Institute - UPR 22 CNRS European Engineering School of Chemistry, Polymers and Materials Science University of Strasbourg Intensification of NMP and ATRP (co)polymer syntheses by microreaction technologies Prof. Christophe A. Serra Caine Rosenfeld, Florence Bally, Dambarudhar Parida, Dhiraj Garg http://ics-cnrs.unistra.fr/caserra Atelier de Prospective du GFP, Paris, Dec. 4 th , 2014

Upload: lilian-paul

Post on 05-Jan-2016

222 views

Category:

Documents


2 download

TRANSCRIPT

Diapositive 1Precision Macromolecular Chemistry group (PMC) Charles Sadron Institute - UPR 22 CNRS European Engineering School of Chemistry, Polymers and Materials Science University of Strasbourg
Intensification of NMP and ATRP (co)polymer syntheses by microreaction technologies
Prof. Christophe A. Serra
http://ics-cnrs.unistra.fr/caserra
*
*
Influence of micromixing
Influence of micromixing
low PDI, defined MW
Two-fold strategy
ATRP, NMP
*
Influence of micromixing
Pump
µreactor
1
Pump
µreactor
2
Monomer
A
Solvent
Initiator
Monomer
B
Synthesis
(CMS)
µmixer
Rosenfeld et al., React. Eng., 1 (5) (2007) 547-552; Bally et al., React. Eng., 5 (11-12) (2011) 542–547
Copolymer
Polymerization microprocess
*
Polymerization microprocess
Rosenfeld et al., React. Eng., 1 (5) (2007) 547-552; Bally et al., React. Eng., 5 (11-12) (2011) 542–547
Recovery
(IPR)
Coiled tube (CT)
2. Synthesis (CMS)
Coiled tube (CT)
A.K. Saxena and K.D.P. Nigam, AIChE J., 1984, 30, 363-368
Inlet
Outlet
Polymerization methods
Rapid measurements
Influence of micromixing
Librairies of poly(DMAEMA-BzMA) / Influence of micromixer
3. Copolymers (CMS)
Micromixers
Parida et al., Green. Proc. Synt., 6 (1) (2012) 525-532
Micromixers
Name
Principle
3. Copolymers (CMS)
Parida et al., Green. Proc. Synt., 6 (1) (2012) 525-532
+35%
20 % B
40 % C
32.1
11069
1.6228
15
15
17.164
6299
1.4804
30
44.942
10911
1.6856
46.88
11833
1.6451
27
9181
1.5713
15
15
17.38
6895
1.6
15
29.768
9154
1.6215
32.82
10564
1.625
5
16
15.2
5
17.5
16.6
41
12254
1.533
30
30
30.28
11660
1.5713
30
43.576
11647
1.6757
49.22
13902
1.6025
15
30
32.1
15
34.2
33.9
56
16167
1.5026
60
60
46.32
13457
1.553
60
60.744
15882
1.6359
63.2
16584
1.6132
30
45
47.1
30
54.4
52.4
71
19057
1.6114
120
120
51.56
15397
120
76.192
18174
1.7038
77.8
18989
1.7138
60
60
62
60
65.78
65
82
21757
1.5902
240
180
56.612
1.6114
240
87.516
18880
1.7523
89.2
22348
1.7293
120
75
77
120
79.48
79
240
57.26
16134
1.5902
240
86
88
240
89.7
91
3. Copolymers (CMS)
Parida et al., Green. Proc. Synt., 6 (1) (2012) 525-532
+6,000
-50%
20 % B
40 % C
32.1
11069
1.6228
15
15
17.164
6299
1.4804
30
44.942
10911
1.6856
46.88
11833
1.6451
27
9181
1.5713
15
15
17.38
6895
1.6
15
29.768
9154
1.6215
32.82
10564
1.625
5
16
15.2
5
17.5
16.6
41
12254
1.533
30
30
30.28
11660
1.5713
30
43.576
11647
1.6757
49.22
13902
1.6025
15
30
32.1
15
34.2
33.9
56
16167
1.5026
60
60
46.32
13457
1.553
60
60.744
15882
1.6359
63.2
16584
1.6132
30
45
47.1
30
54.4
52.4
71
19057
1.6114
120
120
51.56
15397
120
76.192
18174
1.7038
77.8
18989
1.7138
60
60
62
60
65.78
65
82
21757
1.5902
240
180
56.612
1.6114
240
87.516
18880
1.7523
89.2
22348
1.7293
120
75
77
120
79.48
79
240
57.26
16134
1.5902
240
86
88
240
89.7
91
3. Copolymers (CMS)
Parida et al., Green. Proc. Synt., 6 (1) (2012) 525-532
X100
Nitroxide-Mediated Polymerization (NMP)
Mixing between viscous and liquid fluids by
means of microstructured mixers
3. Copolymers (CMS)
1st block
3. Copolymers (CMS)
Microtube
Batch
Copolymer
Rosenfeld et al., Chem. Eng. J., 15 (S1) (2008) S242-S246
3. Copolymers (CMS)
Continuous process
Batch process
34700
36600
26600
33600
PDI
1.28
1.40
1.73
1.74
Mainly controlled by the velocity
Continuous two-step block copolymerization (cont’d)
Influence of the micromixer geometry
F
3. Copolymers (CMS)
Influence of micromixing
3. Microreactor geometry (CMS)
*
Librairies of poly(DMAEMA) / CT vs. CFI
3. Microreactor geometry (CMS)
ID= 876 µm
CT, 3 m
CFI, 3 m
Mn is higher in case of CFI (avg. +2000 g/mol)
Parida et al., Macromolecules, 47 (10) (2014) 3282–3287.
CT, 3 m
CFI, 3 m
RTD is narrower in CFI compared to CT
High Pe in case of both reactors indicates low axial dispersion
Parida et al., Macromolecules, 47 (10) (2014) 3282–3287.
Reactor
Inimer = Monomer + Initiator
3. Microreactor geometry (CMS)
3. Microreactor geometry (CMS)
+ 7.5%
*
3. Microreactor geometry (CMS)
Lowest in CFI
Parida et al., Macromolecules, 47 (10) (20141)3282–3287
3. Microreactor geometry (CMS)
+700
-0.28
Controlled branched structure in microreactors especially in CFI
Parida et al., Macromolecules, 47 (10) (20141)3282–3287
3. Microreactor geometry (CMS)
Branched polymers (cont’d)
*
Influence of micromixing
Parida et al., J. Flow Chem., 4 (2) (2014) 92-96.
3. Pressure (CMS)
Polymer characteristics
*
Parida et al., J. Flow Chem., 4 (2) (2014) 92-96.
3. Pressure (CMS)
Microreactor dimension
576 µm
876 µm
1753 µm
Parida et al., J. Flow Chem., 4 (2) (2014) 92-96.
Effect of pressure (cont’d)
Microreactor dimension
Influence of micromixing
*
Influence of micromixing
Higher monomer conversion
Microreactors and micromixers
Efficient intensification tools
CFI
4. Conclusion
K. Nigam (IIT Dehli)
*
to 4 kg per week of PMMA
Yoshida and coll., Org. Process Res. Dev., 10 (2006) 1126-1131
UV LSD
0
5000
10000
15000
20000
25000
050100150200250
11.31.61.92.20500010000150002000025000PDI
Microtube reactor(µR2)
1) Homopolymerization 2) Block copolymerization
1st block