pratica 5.6.7

21

Upload: karyoky

Post on 20-Jul-2015

1.287 views

Category:

Documents


0 download

TRANSCRIPT

ÍNDICE

OBJETIVOS………………………………………………………..3

MOTIVACIÓN……………………………………………………..3

ANTECEDENTES………………………………………………….3

EQUIPO…………………………………………………………….7

DETERMINACIÓN DE LA

PÉRDIDA POR ACCESORIOS……………………………………8

DISEÑO DE LA PRÁCTICA……….……………………………...9

DATOS OBTENIDOS

(Practica 5)…………………………..……………………………...7

RESULTADOS……………………………………………………11

DATOS OBTENIDOS

(Practica 6)…………………………..…………………………….16

RESULTADOS……………………………………………………17

DATOS OBTENIDOS

(Practica 5)…………………………..…………………………….20

RESULTADOS……………………………………………………20

CONCLUSION………………..…………………………………..21

REFERENCIAS………………………………………………...…21

2

1. OBJETIVOS:

Determinar la pérdida que ocasiona el factor de fricción en los diversos accesorios que podemos encontrar en los diferentes sistemas de tuberías.

2. MOTIVACIÓN:

Las perdidas por fricción de uno de los problemas que se presentan en la vida de cualquier ingeniero, uno debe de reconocer y argumentar por que existe tal perdida y por consecuencia demostrar la perdida que existe y tratar de hacer los cambios necesarios para equilibrar las perdidas.

3. ANTECEDENTES:

Para solucionar los problemas prácticos de los flujos en tuberías, se aplica el principio de la energía, la ecuación de continuidad y los principios y ecuaciones de la resistencia de fluidos.

La resistencia al flujo en los tubos, es ofrecida no solo por los tramos largos, sino también por los accesorios de tuberías tales como codos y válvulas, que disipan energía al producir turbulencias a escala relativamente grandes.

La ecuación de la energía o de Bernoulli para el movimiento de fluidos incompresibles en tubos es:

f2

222

1

211 hZ

g*2V

g*ρPZ

g*2V

g*ρP +++=++

3

Cada uno de los términos de esta ecuación tiene unidades de energía por peso (LF/F=L) o de longitud (pies, metros) y representa cierto tipo de carga. El término de la elevación, Z, está relacionado con la energía potencial de la partícula y se denomina carga de altura. El término de la presión P/ρ*g, se denomina carga o cabeza de presión y representa la altura de una columna de fluido necesaria para producir la presión P. El término de la velocidad V/2g, es la carga de velocidad (altura dinámica) y representa la distancia vertical necesaria para que el fluido caiga libremente (sin considerar la fricción) si ha de alcanzar una velocidad V partiendo del reposo. El término hf representa la cabeza de pérdidas por fricción.

El número de Reynolds permite caracterizar la naturaleza del escurrimiento, es decir, si se trata de un flujo laminar o de un flujo turbulento; además, indica, la importancia relativa de la tendencia del flujo hacia un régimen turbulento respecto a uno laminar y la posición relativa de este estado de cosas a lo largo de determinada longitud:

νV*DRe =

En donde D es el diámetro interno de la tubería, V es la velocidad media del fluido dentro de la tubería y ν es la viscosidad cinemática del fluido. El número de Reynolds es una cantidad adimensional, por lo cual todas las cantidades deben estar expresadas en el mismo sistema de unidades.

Colebrook ideó una fórmula empírica para la transición entre el flujo en tubos lisos y la zona de completa turbulencia en tubos comerciales:

+−=

fRe2.51

3.7ε/D 0.86ln

f1

4

En donde:

f = factor teórico de pérdidas de carga.

D = diámetro interno de la tubería.

ε = Rugosidad del material de la tubería.

Re = número de Reynolds.

La relación ε/D es conocida como la rugosidad relativa del material y se utiliza para construir el diagrama de Moody.

La ecuación de Colebrook constituye la base para el diagrama de Moody.

Debido a varias inexactitudes inherentes presentes (incertidumbre en la rugosidad relativa, incertidumbre en los datos experimentales usados para obtener el diagrama de Moody, etc.), en problemas de flujo en tuberías no suele justificarse el uso de varias cifras de exactitud. Como regla práctica, lo mejor que se puede esperar es una exactitud del 10%.

La ecuación de Darcy-Weisbach se utiliza para realizar los cálculos de flujos en las tuberías. A través de la experimentación se encontró que la pérdida de cabeza debido a la fricción se puede expresar como una función de la velocidad y la longitud del tubo como se muestra a continuación:

= 2f LV

2gDhf

5

En donde,

hf = Pérdida de carga a lo largo de la tubería de longitud L., expresada en N*m/N

L = Longitud de la tubería, expresada en m.

D = Diámetro interno de la tubería, expresada en m.

V = Velocidad promedio del fluido en la tubería, expresada en m/s.

El factor de fricción f es adimensional, para que la ecuación produzca el correcto valor de las pérdidas. Todas las cantidades de la ecuación excepto f se pueden determinar experimentalmente.

En toda tubería recta que transporta un líquido a una temperatura determinada, existe una velocidad crítica (vc) por debajo de la cual el régimen es laminar. Este valor crítico que marca la transición entre los dos regímenes, el laminar y el turbulento, se corresponde con un Re = 2300, aunque en la práctica, entre 2000 y 4000 la situación es bastante imprecisa.

Por lo tanto:

Re < 2000: Régimen laminar.2000 < Re < 4000: Zona crítica o de transición.Re > 4000: Régimen turbulento.

6

Pérdida de energía por fricción en accesorios

Las válvulas y accesorios alteran las líneas normales de flujo y dan lugar a fricción. En conductos de corta longitud con muchos accesorios, las pérdidas por fricción causadas a los mismos llegan a ser mayores que las correspondientes a la longitud recta de la tubería. Las pérdidas de energía son proporcionales a la carga de velocidad del fluido conforme pasa por un codo, expansión o contracción de la sección de flujo, o por una válvula.

g

vkhL 2

2

=

Donde K des el coeficiente de resistencia. Las válvulas de globo presentan grandes perdidas de energía cuando se encuentran totalmente abiertas, estas perdidas de energía son mayores que en las válvulas de mariposa y en las de cono esto es debido al complicado recorrido del flujo a través de ella.

Válvulas con perdidas pequeñas (válvulas de bola, cono y compuerta y para algunas acepciones en válvulas de mariposa), son algunas veces deseables para ser usadas en conducciones con diámetros mayores a las válvulas, esto para tener un mejor control. Transmisiones cónicas deben ser usadas para reducir y expandir flujos y para minimizar las perdidas. Si la válvula es para la disipación de energía, reduciendo el diámetro de la válvula aumentaremos el problema de la cavitación.

4. EQUIPO:

7

5. DETERMINACIÓN DE LA PÉRDIDA POR ACCESORIOS:

Formula para perdidas de energía en reducción y ensanchamiento.

Experimental:

γ212

21

2

2

PP

g

vvhL

−+−=

Y teórico:

g

vkhL 2

2

=

Donde k es la el punto de intersección en el eje de la ordenadas con

respecto a 1

2

D

D

8

Formula para perdidas de energía en accesorios como codos.

γP

hL∆=

Y teórica:

g

v

D

Lfh e

L 2

2

=

6. DISEÑO DE LA PRÁCTICA.

1) Conectar las mangueras a la mesa, asegurándose de que estén

bien colocadas, evitando así la salida de flujo.

2) Se prende la bomba para iniciar la purgación, para que no altere

la lectura de la diferencia de presión.

3) Una vez purgadas las mangueras se cierra la válvula, para poder

calibrar a cero.

4) Se abren las válvulas de la mesa hidrodinámica (P1 y P2) poco a

poco al mismo tiempo de la mesa.

5) Esperar las lecturas y tomar cada lectura en el medidor

9

6) Repetir lo mismo para las siguientes tuberías

7. DATOS OBTENIDOS (Practica 5)

CODO 90⁰Flujo Presión

Q(L min)-1 ( / )Δp ml bar

21.2 22.719.4 17.617 12.3

15.7 9.8

10

ENSANCHAMIENTOFlujo Presión

Q(L min)-1 ( / )Δp ml bar

21.9 12.619.8 917.5 615.3 3.613.5 1.311.8 -0.39.4 -1.77.1 -2.9

REDUCCIÓNFlujo Presión

Q(L min)-1 ( / )Δp ml bar

20.8 47.818.8 37.516.4 26.814.3 1912.3 12.810.3 7.5

8 36.5 0.7

CODO CURVO DIFERENCIAL ∆PFlujo Presión Presión Presión

Q(Lmin)-1 ∆P1 ∆P3 ∆P6

21.5 87.8 101.3 128.519.2 59.7 70.6 9417.3 35.4 44.5 63.515.7 18 25.1 41.413.2 -8.4 -3.6 8.411 -27.9 -24.4 -15.88.9 -43.9 -41.6 -35.66.7 -57.2 -55.5 -57.7

13.1 51.3 2.79.3 0.67.3 -1

8. RESULTADOS

REDUCCION

Reducción 19°C

Q (L/min)

Dif. P (mbar)

Dif. P (KN/m^2)

Vel. 1 m/s

Vel.2 m/s

hL(m)

20.8 47.8 4.78 0.38182512 0.524854908 0.007097

18.8 37.5 3.75 0.34511117 0.47438809 0.005782

16.4 26.8 2.68 0.30105442 0.413827908 0.004382

14.3 19 1.9 0.26250477 0.360837749 0.003318

12.3 12.8 1.28 0.22579082 0.310370931 0.002442

10.3 7.5 0.75 0.18907686 0.259904113 0.001697

8 3 0.3 0.14685582 0.201867272 0.001008

6.5 0.7 0.07 0.11932035 0.164017159 0.000653

11

ENSANCH

AMIENTO

Ensanchamiento 20°C

Q (L/min)

Dif. P (mbar)

Dif. P (KN/m^2)

Velocidad 1 m/s

Velocidad 2 m/s

hL(m)

21.9 12.6 1.26 0.14207863 0.4020178 0.007337

19.8 9 0.9 0.128454652 0.36346815 0.005984

17.5 6 0.6 0.113533152 0.3212471 0.004664

15.5 3.6 0.36 0.100557934 0.28453315 0.003648

13.5 1.3 0.13 0.087582717 0.24781919 0.002752

11.8 -0.3 -0.03 0.076553782 0.21661233 0.00209

9.4 -1.7 -0.17 0.060983521 0.17255558 0.001311

7.1 -2.9 -0.29 0.046062022 0.13033454 0.000728

12

CODO CURVO

Codo curvo 20°C

Q (L/min)

Dif. P (mbar)

Dif. P (KN/m^2)

hL(m)

21.3 29.9 2.99 0.00030479

19.3 23.3 2.33 0.00023751

17.6 18.8 1.88 0.00019164

15.1 11.9 1.19 0.0001213

13.3 7.3 0.73 7.44E-05

11.8 5 0.5 5.10E-05

9.6 1.7 0.17 1.73E-05

7.6 -0.4 -0.04 -4.08E-06

13

CODO 90°

codo 90º, 20°C

Q (L/min)

Dif. P (mbar)

Dif. P (KN/m^2)

hL(m)

21.2 22.7 227 0.023139653

19.4 17.6 176 0.017940877

17 12.3 123 0.012538226

15.7 9.8 98 0.009989806

13.1 5 50 0.00509684

11.3 2.7 27 0.002752294

9.3 0.6 6 0.000611621

7.3 -1 -10 -0.00101937

14

CODOS CURVOS DIFERENCIAL

Q (L/min)

dif. P3-1. dif. P6-3Dif.3-1 (KN/

m^2)Dif. 6-3 (KN/

m^2)hL3-1

(m)hL6-3

(m)Σ hL

(m)

21.5 13.4 27.3 134 273 0.01366 0.027829 0.041488

19.2 10.9 23.4 109 234 0.011111 0.023853 0.034964

17.3 9.1 19 91 190 0.009276 0.019368 0.028644

15.7 7.1 16.3 71 163 0.007238 0.016616 0.023853

13.2 4.8 12 48 120 0.004893 0.012232 0.017125

11 3.5 8.6 35 86 0.003568 0.008767 0.012334

8.9 2.3 6 23 60 0.002345 0.006116 0.008461

6.7 3.7 3.8 37 38 0.003772 0.003874 0.007645

15

9. DATOS OBTENIDOS (Practica 6)

BOLA DIAFRAGMA

Válvula de bolaFlujo Presión

Q(L min)-1 ( )Δp mbar

21.5 19.320.6 51.819.5 92.818.4 131.817.4 162.716.4 196.5

ASIENTO INCLINADO

Válvula de asiento inclinado

Flujo Presión

16

Válvula de diafragmaFlujo Presión

Q(L min)-1 ( )Δp mbar

20 48.319 78.118 109.217 137.516 160.415 185.3

Q(L min)-1 ( )Δp mbar

20 16.719 39.718 59.417 78.616 94.515 105.614 119.913 132.212 144.711 170.1

10. RESULTADOS

Válvula de bola 18°CFlujo Presión Velocidad Flujo

Q(L min)-1 ( )Δp mbar /m s 3/m shL (m)

21.5 19.3 7.01718 0.003583 846.287820.6 51.8 6.775771 0.003433 776.918719.5 92.8 6.413958 0.00325 696.162118.4 131.8 6.052145 0.003067 619.83617.4 162.7 5.723224 0.0029 554.293316.4 196.5 5.394303 0.002733 492.4123

17

Válvula de diafragmaFlujo Presión Velocidad Flujo

Q(L min)-1 ( )Δp mbar /m s 3/m shL (m)

20 48.3 6.578419 0.003333 488.213619 78.1 6.249498 0.003167 440.612818 109.2 5.920577 0.003 395.45317 137.5 5.591656 0.002833 352.734316 160.4 5.262735 0.002667 312.456715 185.3 4.933814 0.0025 274.6202

18

Válvula de asiento inclinadoFlujo Presión Velocidad Flujo

Q(L min)-1 ( )Δp mbar /m s 3/m shL

(m)

20 16.7 6.578419 0.003333 488.213619 39.7 6.249498 0.003167 440.612818 59.4 5.920577 0.003 395.45317 78.6 5.591656 0.002833 352.734316 94.5 5.262735 0.002667 312.456715 105.6 4.933814 0.0025 274.620214 119.9 4.604893 0.002333 230.68113 132.2 4.275973 0.002167 189.182812 144.7 3.947052 0.002 147.684711 170.1 3.618131 0.001833 106.1865

19

11. DATOS OBTENIDOS (Practica 7)

Válvula de Filtracion 20°CQ

(L/min)Dif. P

(mbar)Q

(m^3/s)Dif. P

(KN/m^2)

17.8 83.5 0.000296667 8.35

18.4 62.6 0.000306667 6.26

18.7 49.8 0.000311667 4.98

19 42 0.000316667 4.2

19.3 31.2 0.000321667 3.12

19.5 24.3 0.000325 2.43

19.7 17.4 0.000328333 1.74

RESULTADOS

Q (L/min)

Dif. P (mbar)

Q (m^3/s)

Dif. P (KN/m^2)

hL TeoricohL

Experimental

17.8 83.5 0.000296667 8.35 0.000851 0.004634236

18.4 62.6 0.000306667 6.26 0.000638 0.004790446

18.7 49.8 0.000311667 4.98 0.000508 0.004868551

19 42 0.000316667 4.2 0.000428 0.004946656

19.3 31.2 0.000321667 3.12 0.000318 0.005024761

20

19.5 24.3 0.000325 2.43 0.000248 0.005076831

19.7 17.4 0.000328333 1.74 0.000177 0.005128901

12. CONCLUSION

Con los datos de la practica 5 (perdida de energía por accesorios) se logro determinar con mayor exactitud la perdida total con la suma de las válvulas otros accesorios que se mencionaron en la practica 5

13. REFERENCIAS

• Robert L. Mott, Mecánica de fluidos, Editorial Pearson, 6ta. Edición.

• R. Byron Bird, Fenómenos de Transporte, Editorial Reverté, S.A.

21