power supply design parameters prediction for high performance ic design...

26
Power Supply Design Parameters Prediction for High Performance IC Design Flow M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni Electronics Department, Politecnico di Torino April, 8-9 2000

Upload: others

Post on 01-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Power Supply DesignParameters Prediction for High

    Performance IC Design FlowM. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni

    Electronics Department, Politecnico di Torino

    April, 8-9 2000

  • Summary.

    Summary

    �Introduction: noise in VLSI circuits�IR drop and � ������ causes, scale and consequences�Proposed methodology to face these problems�Power Supply Model�Noise cost function�Conclusions

    1M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Introduction.

    Introduction: noise in VLSI circuits

    Technology scaling down leads to:�increasing chip size�increasing clock frequency�increasing interconnect density�

    noise jeopardizes UDSM circuits functionality:�crosstalk�electromigration�ground bounce

    � � �������IR drop

    2M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • IR drop and L dI/dt .

    IR drop causes

    Transistor and interconnection scaling down causes�increased gate number w/o area change�

    greater number of gates in a rowgrowing current on power supply lines�

    increased line resistance

    increased GND and VDD area for electromigration�rise of IR drop

    3M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • IR drop and L dI/dt .

    ����� causes

    Transistor sizes scaling down causes:�increased frequency of the clock signal�

    higher gate switching activityhigher electromigration riskdecreased clock rise time: higher � ������ foron chip and package inductances

    4M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • IR drop and L dI/dt .

    IR drop and����� influences on Power Supply

    �Higher sensibility of gates to noise spikes:

    delay, charge alteration, reduced � ��Crosstalk towards neighbor lines�EMI problems towards neighbor circuits�Ground bounce injected into the substrate

    5M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • IR drop and L dI/dt . Simulations

    IR drop influence: simulations

    gnd

    vdd

    gnd

    vdd

    gnd

    vdd

    vdd

    gnd

    6M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • IR drop and L dI/dt . Simulations

    IR drop: simulation parameters

    �AND2 TSPC, 0.25 � m, 2.5V, 1Ghz�Growing number of cells: from 200 up to 600�Different parasitic inductance conditions: on chip

    distributed (0.2pH), package (1pH – 10pH)�Distributed parasitic resistance function of electromigration

    sizing

    7M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • IR drop and L dI/dt . Simulations

    IR drop: simulations results

    0.2pH, Dist.

    1pH, Pack.10pH, Pack

    2

    2.5

    3

    3.5

    300 400 500 600 700 800 900

    Noi

    se O

    vers

    hoot

    [V

    ]

    200 gates

    600 gates400 gates

    Noise Width [ps]

    1.5

    1

    0.5

    8M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Methodology.

    Verification or prediction?

    �Verification of noise failures has expensive time-to-market

    aftereffects�Countermeasures are strongly joined to designer

    intervention�It’s basic to develop design tools facing early in the

    design sequence the

    potential noise generation

    9M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Methodology.

    Noise Cell Views and Cost Function

    EME

    CELL VIEWDE

    SCR

    IPT

    ION

    AND PLAC

    ALG

    NT

    TH

    OR

    IM

    S

    FLOORNING

    PLAN

    NetlistNoise Injection

    Cell View

    Cell ViewNoise Tolerance

    HDL

    Layout

    Interconnect Density

    DelayPower

    NOISE COST FUNCTION

    Area

    10M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Methodology.

    Methodology: instruments

    Synergy among tools related to different design phases is

    needed:�transistor sizing optimization tool�gate noise tolerance analysis�cell model with noisy power supply references�

    row of cells model: the influences between the cell

    and its environment

    11M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Power Supply Model.

    Power Supply Model: uniform sizing

    I II

    Z

    I s1

    p1 p pN

    Is I s I si i+1 N I sN+1

    Z1

    I

    Is i-1

    Ipi+1

    VZiZi-1ZZ1 VN N+1Ni+1i+1Vi+1i-1VV

    pi-1 i

    The maximum current is����� � ����� ����� � �! #"

    while the worst overvoltage is

    � � � �%$ � � & ����� �'��� ( ���� �)��� ��� �� *+� �'�-,. & /"0� ( ���� #"

    12M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Power Supply Model. Uniform sizing

    Uniform sizing, noise prediction

    Maximum noise overvoltage is known from the number of

    cells inserted on the line, or vice-versa

    As a drawback the area of a GND line is:1 243+576 � � �98;:=< � 6 �?> @ ACB

    13M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Power Supply Model. Optimized dimensioning

    Area optimization without noise worsening

    �Area waste due to worst current value used to

    dimension the whole line�Ideal sizing: GND and VDD line width for cell D proportionalto the maximum current at point D�Real sizing: a controlled and optimized line segmentation is

    proposed

    14M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Power Supply Model. Optimized dimensioning

    Optimized dimensioning

    g ( M - 1 )wmax - wmin

    g ( M - 1 ) = M - 1

    ∆ w =

    cellsM

    Ncells

    M M

    NNcells cells

    M

    N

    Mcells

    N

    Mcells

    N

    Mcells

    N

    Mcells

    N

    Mcells

    N

    cellsM

    N

    row1

    row2

    VD

    D

    0

    wm -> Rm

    node

    nodenodeN

    GN

    DG

    ND

    node

    VD

    D

    0

    N

    15M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Power Supply Model. Optimized dimensioning

    Optimized dimensioning: gain and loss

    The area gain is E A � F 2HG. > @ ACB F > @ � �and the noise loss due to increased resistance is:

    E �I � ����� �'�� ��� J@

    K L �NM KF J � ="� ��� � JO J � � J �

    � @K L � M K

    � � .@

    K L �QPF R S M K F

    � � JOwhere T K � U V

    8 ��

    J> @ ACB M K W R XQ> @ � � X�Y P R F J S[Z

    16M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Power Supply Model. Optimized dimensioning

    Optimized dimensioning: overvoltage control∆

    Ν Τ∆

    ΑLosses at node N when optimizing for area: N parametric

    area gain

    2 cells for block m

    w_min = w_MAXW_MIN

    100 cells for block m

    w_min = TEC_MIN

    20 cells for block m

    17M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Power Supply Model. Optimized dimensioning

    Optimized dimensioning: design parameters

    Using a good number of segments with increasing dimen-

    sions the number of cells does not influence the loss in noise

    safety.

    The designer has control on area and noise, varying�number of gates in a row

    ��

    number of segments having different width�width at the line endpoints

    > @ ACB XQ> @ � �

    18M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Power Supply Model. Noise Reduction

    Noise reduction: distributed capacitors

    0.25

    0.350.4

    0.450.5

    0.550.6

    0.650.7

    0.750.8

    400 gates

    200 gates

    0.3

    200 400 600 800 10000

    Distributed capacitance [fF]

    Maximum overvoltage versus distributed capacitorsO

    vers

    hoot

    [V

    ]

    600 gates

    19M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Power Supply Model. Noise reduction

    Decreased current to shrink resistance

    b)

    c)

    a)

    Isi

    Isi Isi+1

    Isi+1

    Ip Ic

    Ip

    Isi = Ip + Isi+1

    l cap

    l gate

    l gate

    Isi = (Ip - Ic) + Isi+1

    20M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Power Supply Model. Noise reduction

    Distributed capacitors: loss and gain

    Noise overshoot variation

    � � \\\\]0^`_?ab

  • Power Supply Model. Noise reduction

    Distributed capacitors design parameters

    If the line width is chosen between

    � W =" F b Z J � 8 :=< � 68 b

  • Future model developments.

    Future model developments

    �conjunction of optimized dimensioning and of distributed

    capacitors insertions� " � � " P �QS and � � � � � P �QS�clock skew modeling in the current superposition and

    overvoltage evaluation�package influence on row model�extension to S.O.C. designs

    23M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Noise Cost Function.

    Noise Cost Function

    A Noise Cost Function to be introduced in a placement algo-

    rithm is influenced as shown before byNoise overvoltagePower supply lines areaElectromigrationNumber of cells in a rowDistributed optimized capacitorsNumber of optimized segments

    24M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000

  • Conclusion.

    Conclusions

    �The aim is to create a NOISE COST FUNCTION to be inserted

    in a placement algorithm�it is based on:�

    a cell description with noise characteristics�a cell environment description with noise generation

    parameters�it is of basic impact to face early in the design sequence the

    potential noise aftereffects

    25M. Graziano, M. Delaurenti, G. Masera, G. Piccinini, M. Zamboni.Power Supply Design Parameters Prediction for High Performance IC Design FlowApril, 8-9 2000