power adapter design for 400 v dc power distribution in electronic systems

15
Power adapter design for seamless interface of low voltage DC equipment to 400V DC distribution Maurizio Salato, VICOR BJ Sonnenberg, Dustin J Becker, EMERSON Network Power David E. Geary, UNIVERSAL Electric Corporation / StarLine DC Solutions

Upload: vicor-corporation

Post on 21-Jun-2015

501 views

Category:

Technology


2 download

DESCRIPTION

This white paper describes the design of power adaptors for systems that distribute power using 400 V DC. The paper particularly considers telecom and data center equipment.

TRANSCRIPT

Page 1: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

Power adapter design for seamless interface of low voltage DC 

equipment to 400V DC distribution

Maurizio Salato, VICORBJ Sonnenberg, Dustin J Becker, EMERSON Network Power

David E. Geary, UNIVERSAL Electric Corporation / StarLine DC Solutions

Page 2: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

Table of content

• Power Adapter Characteristics of Interest• Telco site evolution options• Existing sites transition to 400V DC• Implications of power conversion location• Power Components for 380V Adapter and the Equalizer concept

• Architectural Matrixes• System safety and Harmonics considerations• Conclusions

Page 3: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

Power Adapter Characteristics of Interest

• Location in the power stream: – The power drop box (busway or cable)– The rack power strip– 1U space “power shelf” within the rack– Plug‐in unit at “blade” level

• Electrical function and power conversion topologies

• Battery backup “equalization”

• Safety and protections

• Harmonics

Page 4: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

Telco site evolution options 

Many Transition Paths Possible

Today Next Step

-48VDC

Utility

Gen

-48V DC Power System

AC UPS

Facility AC Loads

Critical AC Loads

Critical 48V DC Loads

DCAC

Batt

Batt

380V DCUtility

Gen

Critical -48V DC Loads

DCDC

.Facility

DC Loads

ACDC

Batt400V DC Power

System

Facility AC Loads

Critical AC Loads

Critical 400V DC Loads

Local Generation

Source

● Paths forward with 400V DC for larger core sites:1. Greenfield with 400V loads (bulk or distributed 400V)2. Retrofit/expand -48V loads with 400V main plant (bulk)3. Greenfield with bulk 400V to distributed 400V/-48V

Page 5: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

Existing sites transition to 400V DC 48V DC bulk equipment

380VDCSystem

48VDCEquipment

Rack

380VDCEquipment

Rack

380/48VDCConversion

+Secondary Distribution

380VDC cabling or bus way

48VDC cabling 

The main power distribution from a 400V DC system is built with 400V DC bus way or cabling, directly to 400V DC enabled loads. 

For loads requiring 48V DC inputs, a bulk 400V‐48V DC conversion replaces the “secondary distribution bay” and is located close to the loads to eliminate long 48V DC cable runs.

Page 6: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

Existing sites transition to 400V DC 48V DC rack mounted equipment

The 400V DC distribution is extended close to the powered rack .

The options for location of the 400V‐48V DC conversion depend on the type of feeder used (bus‐way or cabling) and distribution inside the 

rack.

Due to the relatively low power density of 48V DC powered racks, the conversion section is compact and can be located in a bus way plug‐in box, a 

junction box on top of rack, inside the power strip itself or in a rack mounted shelf

Page 7: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

Implications of power conversion location

LocationAdapter output supplies

Rack units management

System availability / redundancy

Busway or wire drop‐box Entire rack

Un‐qualified operator(SELV)

Fair(rack to rack)

Rack power shelf

Groups of units

Un‐qualified operator(SELV)

Medium(group to group)

Individual unit adapter Single unit

Qualified operator

(AC, 400V DC)Maximum

(unit to unit)

380V busway

Rack

Page 8: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

Power Components for 380V Adapter

SAC

K=1/32

V V/32 

I 32·ISAC

K=1/8

V V/8 

I 8·I

ZVS BUZVS BO ZVS BB

BC K=1/32: high voltage bus converter, 260‐400V input, 32:1 ratio, 8‐12.5V output

BC K=1/8: high voltage bus converter, 260‐400V input, 8:1 ratio, 32‐50V output

ZVS BO: Zero Voltage Switching Boost regulator, 8V min. input, 55V max. output

ZVS BU: Zero Voltage Switching Buck regulator, 55V max. input, 8V min. output

ZVS BB: Zero Voltage Switching Buck‐Boost regulator, 32‐55V input, 20‐55V output

Page 9: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

The Equalizer Concept

• Compliance to ETSI EN 300 132‐3‐1

• Regulate ONLY if voltage falls below normal operating range (365 V ± 15 V)

• 96%98% efficiency under normal operating conditions

• SELV Output

Page 10: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

380V to 12V power components matrix

Load 12V Backplane HDD VRMsSource Range VOUT 12V ± 2% 12V ± 4% 12V ± 35%

VIN [V] 11.75‐12.25 11.5‐12.5 8‐16

Regulated 384V ± 1% 380‐388

Semi‐regulated 380V ‐8% +3% 350‐390

ETSI EN 300 132‐3‐1EMERGE >3ms

380V nom 260‐400

12V LoadsPower distribution

BC K=1/32

BC K=1/8 & BU regulator BC K=1/32 & BO equalizer

Page 11: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

380V to 48V power components matrix

Load 48V Backplane ETSI 48V FPASource Range VOUT 48V ± 2% 48V nom 45V nom

VIN [V] 47‐49 36‐60 32‐60

Regulated 384V ± 1% 380‐388

Semi‐regulated 380V ‐8% +3% 350‐390

BC K=1/8 & BO equalizer

ETSI EN 300 132‐3‐1EMERGE >3ms

380V nom 260‐400

BC K=1/8 & BB regulator BC K=1/8 & BO equalizer

48V LoadsPower distribution

BC K=1/8

Page 12: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

Adapter power architecture, peak efficiency and density vs. Distribution Ratio (DR)

94%

98%

0.8 3 5

+ +EqualizerBus Conv. Bus Conv. RegulatorBus Conv.

Power conversion peak efficiency

Power components

97%

96%

95%

400 (25)

1200 (73)

2000 (122)

Power component density(components only)[W/inch3 – (W/cm3)]

+

Equalizer

Bus Conv.

Regulator

OR

Non‐equalized output

Equalized outputRegulated output

Page 13: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

Safety and Operators protections

Isolated, floating supply, 200V max withrespect to hearth.

Mid‐point resistive grounding early‐detectionsystem for isolation faults.

Safely sustains up to 500V operatinginput to output voltage differential.

Low voltage secondary in UL/CSA 60950 qualified SELV range.

The SAC converter galvanically isolates the 400V DC and the low voltage distribution systems

Page 14: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

Harmonics• AC distribution systems are affected by higher order harmonics 

generated by the interaction of AC‐DC converters. – the impact of high THD on AC distribution systems can affect up to 

59% of the installed wiring capacity, leading to significant higher operating costs or even hazards.

• Bulk power systems and DC‐DC converters generate harmonics that typically start at the switching frequency of the considered converter, therefore a much higher frequency than AC‐DC converters.– Passive filtering for this type of spectrum is usually effective, small and 

avoids low frequency beats that may result from the interaction of asynchronous DC‐DC converters. Moreover, filter size allows effective integration within the adapter enclosure.

Page 15: Power Adapter Design for 400 V DC Power Distribution in Electronic Systems

Conclusions• 400V DC distribution systems offer quantifiable advantages not only for new telecom 

and/or datacenter facilities, but also for upgrades of existing ones. • Power component‐based architectures for power adapters have been discussed and 

analyzed.• The proposed locations leverage the space available within equipment racks or within 

racks’ rows, making maximum use of available space and enabling maximum racks density as far as equipment loads. 

• Best location of power adapter for use with legacy loads depends on user preference based on the following criteria :

– Safety– Availability– Efficiency– Ease of harmonics content elimination– Cabling size

• For high density loads, the best system architecture from efficiency , reliability and space savings standpoint is a direct 380VDC connection to the motherboard with on‐board 380VDC‐48VDC bus converter and direct 48V to processor/memory factorized power system.