piezoelectric actuation for mobile miniature robot

17
Smart Materials for Robotics

Upload: hassan-hariri

Post on 02-Aug-2015

68 views

Category:

Science


2 download

TRANSCRIPT

Page 1: Piezoelectric actuation for mobile miniature robot

Smart Materials

for Robotics

Page 2: Piezoelectric actuation for mobile miniature robot

2

Piezoelectric actuation for mobile miniature robots

Page 3: Piezoelectric actuation for mobile miniature robot

3

Piezoelectric actuation for mobile miniature robots

Actuators are responsible for motion in mobile miniature robotic applications.

Many actuators (smart materials) types used in mobile miniature robots to convert electrical to mechanical energy:

1) Electrostrictive,2) piezoelectric ceramics, 3) shape memory alloys, 4) magnetostrictive materials, 5) Magnetorheological fluids. 6) A new class of electroactive polymers (EAP) 

PI: http://www.physikinstrumente.com/

Page 4: Piezoelectric actuation for mobile miniature robot

4

The piezoelectric actuators in comparison with other types of actuators have: high displacement accuracy, high response speed, high actuation force and high power to weight ratio.

Therefore, they are ideal for applications requiring very high accuracy, fast response and very small powerful and compact devices.

Piezoelectric actuation for mobile miniature robots

PI: http://www.physikinstrumente.com/

Page 5: Piezoelectric actuation for mobile miniature robot

5

Also among the advantages, piezoelectric actuators have: low energy consumption in static state, high reliability and a long lifetime, do not generate magnetic fields nor are they affected by them, do not have moving parts like gears or bearings, and can operate even at very low temperatures.

very high accuracy, fast response and very small powerful and compact devices.

Tomoaki Mashimo, spherical ultrasonic motor, 2013

Piezoelectric actuation for mobile miniature robots

http://global.epson.com/

PI: http://www.physikinstrumente.com/

Page 6: Piezoelectric actuation for mobile miniature robot

6

In mobile miniature robots: High displacement (Fast

speed)Onboard electronics

are essential

However,Piezoelectric actuators suffer from:Low strain (displacement)

generated, and high driven voltage

Piezoelectric actuation for mobile miniature robots

PI: http://www.physikinstrumente.com/

Page 7: Piezoelectric actuation for mobile miniature robot

7

Piezoelectric actuation for mobile miniature robots

References: Karpelson, M., Wei, G. Y., Wood, R. J. Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and Actuators A: Physical, 2011. Yong, Y. K., Fleming, A. J. Piezoelectric Actuators with Integrated High Voltage Power Electronics. Mechatronics, IEEE/ASME Transactions on,Volume:20, Issue:2, pp. 611 - 617, 2014.

Piezoelectric actuators suffer from:Low strain (displacement)

generated, and high driven voltage

Page 8: Piezoelectric actuation for mobile miniature robot

8

Piezoelectric actuators suffer from:Low strain (displacement)

generated, and high driven voltage

Reference: Karpelson, M., Wei, G. Y., Wood, R. J. Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and Actuators A: Physical, 2011.

Piezoelectric actuation for mobile miniature robots

Page 9: Piezoelectric actuation for mobile miniature robot

9

Piezoelectric actuators suffer from:Low strain (displacement)

generated, and high driven voltage

Piezoelectric actuation for mobile miniature robots

PI: http://www.physikinstrumente.com/

Page 10: Piezoelectric actuation for mobile miniature robot

10

Piezoelectric actuation for mobile miniature robots

Piezoelectric actuators suffer from:Low strain (displacement)

generated, and high driven voltage

PI: http://www.physikinstrumente.com/

Page 11: Piezoelectric actuation for mobile miniature robot

11

Piezoelectric actuation for mobile miniature robots

Piezoelectric actuators suffer from:Low strain (displacement)

generated, and high driven voltage

PI: http://www.physikinstrumente.com/

Page 12: Piezoelectric actuation for mobile miniature robot

12

Piezoelectric actuation for mobile miniature robots

Piezoelectric actuators suffer from:Low strain (displacement)

generated, and high driven voltage

Externally leveraged actuators

Stepping mechanisms

Lever arm

?

?Surface Acoustic Wave

?These two types (stepping mech. & SAW )can be combined under the name of

locomotion principles in mobile robotic applications. PI: http://www.physikinstrumente.com/http://www.piezomotor.com/

Page 13: Piezoelectric actuation for mobile miniature robot

13

Piezoelectric actuation for mobile miniature robots

Piezoelectric actuators suffer from:Low strain (displacement)

generated, and high driven voltage

Locomotion principles for piezoelectric miniature robots are mostly inspired from

animal locomotion

Page 14: Piezoelectric actuation for mobile miniature robot

14

G E PLocomotion principles Classification:

Locomotion on a solid substrate Locomotion in liquid Locomotion in air

Wheeled locomotion Walking locomotion

Locomotion on a solid substrate

Inchworm locomotion

Inertial drive

Stick-slip Impact drive

Resonant drive Friction drive

[1]

[2]

[3] [4][5]

[6]

[7] [8]

Piezoelectric actuation for mobile miniature robots

H. Hariri, Y. Bernard, A. Razek, Locomotion principle for piezoelectric miniature robot, Proceeding of Actuator 10, 2010

Page 15: Piezoelectric actuation for mobile miniature robot

15

G E P

Fish swimming mechanisms

Locomotion in liquid

Locomotion at the water surface

[9][9]

[10]

[11]

[12]

Piezoelectric actuation for mobile miniature robots

H. Hariri, Y. Bernard, A. Razek, Locomotion principle for piezoelectric miniature robot, Proceeding of Actuator 10, 2010

Page 16: Piezoelectric actuation for mobile miniature robot

16

G E P

Locomotion in air

Active air vehicle Flapping wing Rotary wing Fixed wing

Passive air vehicle Gliding flight

Flapping wing MAV

[1] K. Uchino, ‘’ Expansion from IT/Robotics to ecological/energy applications’’ ACTUATOR 2006, p.48, 2006.[2] T. Ebefors and G. Stemme, “Microrobotics,” in The MEMS Handbook (M. Gad-el Hak,ed.), pp. 28.1–28.42, Boca Raton, FL: CRC Press, 2005.[3] J.B.Penella, ‘’Smart material for microrobotics. Motion, control and power harvesting’’.Phd thesis, Barcelona university, Spain, 2005.[4] A. Codourey, W. Zesch, R. Buchi, and R. Siegwart, “A robot system for automated handling in micro-world,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS ’95, vol. 3, pp. 185–190, 1995.[5] A. Torii, H. Kato, and A. Ueda, “A miniature actuator with electromagnetic elements,” Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), vol. 134, no. 4, pp. 70–75, 2001.[6] ding-wave-actuated nano-positioning walking robot: Piezoelectric-metal composite beam modeling,” Journal of Vibration and Control, vol. 12, no. 12, pp. 1293–1309, 200K. J. Son, V. Kartik, J. A. Wickert, and M. Sitti, “An ultrasonic stan6.[7] http://wwwipr.ira.uka.de/i-swarm/ I-SWARM project (Intelligent Small World Autonomous Robots for Micromanipulation), 2010.[8] S.-I. Aoshima, T. Tsujimura, and T. Yabuta, “Miniature mobile robot using piezo vibration for mobility in a thin tube,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 115, no. 2 A, pp. 270–278, 1993.[9] M. Sfakiotakis., D.M. Lane, & JBC Davies. ‘’Review of fish swimming modes for aquatic locomotion’’, IEEE Journal of Oceanic Engineering 24-2: 237–252, 1999.[10] S. Heo, T. Wiguna, H.C. Park, N.S.Goo, ’’ Effect of an Artificial Caudal Fin on the Performance of a Biomimetic Fish Robot Propelled by Piezoelectric Actuators ’’, Journal of Bionic Engineering 4, pp. 151−158, 2007.[11] Kosa, G. Jakab, P. Hata, N. Jolesz, F. Neubach, Z. Shoham, M. Zaaroor, M. Szekely, G. ’’ Flagellar swimming for medical micro robots: Theory, experiments and application’’, 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. BioRob 2008.[12] S. H. Suhr, Y. S. Song, S. J. Lee and M. Sitti, "Biologically Inspired Miniature Water Strider Robot," Proceedings of the Robotics: Science and Systems I, Boston, U.S.A., pp. 319–325 2005.[13] Sitti, M.,’’ PZT actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax’’, Proceedings ICRA. IEEE International Conference on Robotics and Automation, vol.4, pp. 3893 – 3900, 2001.

[13]

Piezoelectric actuation for mobile miniature robots

H. Hariri, Y. Bernard, A. Razek, Locomotion principle for piezoelectric miniature robot, Proceeding of Actuator 10, 2010

Page 17: Piezoelectric actuation for mobile miniature robot

17

Thank you

Dr. Hassan Hariri