phytoplankton climate regulation in positive and negative ... · pdf filea. stoer \ oceans...

10
A. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 43 Phytoplankton Climate Regulation in Positive and Negative Feedback Systems: The CLAW and anti-CLAW hypotheses Adam Stoer, Undergraduate Student, Dalhousie University Abstract The global climate crisis is bigger now than it has ever been before, pushing for much- needed research on the consequences of climate change. In 1987, Charlson, Lovelock, Andreae, and Warren proposed the CLAW hypothesis which stated that phytoplankton contribute to the production of a significant amount of cloud condensation nuclei (CCN) which in turn creates a negative feedback loop after there is an initial temperature rise. Many years later, in 2006, Lovelock proposed the anti-CLAW hypothesis, which argues that a similar process occurs except that it works as a positive feedback system. Both hypotheses have created much controversy about the effects phytoplankton has on climate and climate regulation. Research has shown that different types of phytoplankton tend to have higher growth rates within a temperature range. Coccolithophores are known for their contribution of DMSP, a compound that forms to make CCN as well as their carbon sequestration abilities. This type of phytoplankton typically function at a thermal niche where nutrient stratification is not strongly limiting, making them act like a buffer against further temperature rises in terms of the CLAW hypothesis. Based on the physiological capabilities of phytoplankton within their environment, both the CLAW and anti-CLAW mechanisms correlate strongly with coccolithophorid algae. 1. Introduction After Charlson, Lovelock, Andreae, and Warren introduced the CLAW hypothesis in 1987 (where CLAW is an acronym for the four author’s names), much discussion has been generated around the topic. Essentially, the CLAW hypothesis describes phytoplankton growth as a mechanism that can counteract increasing global temperatures. The CLAW hypothesis assumes that phytoplankton growth will significantly increase when the surface seawater temperature rises. After a large phytoplankton bloom, the phytoplankton die, releasing the compound dimethylsulfoniopropionate (DMSP), which is then broken down by marine bacteria into dimethyl sulphide (DMS). DMS then gets transferred to the atmosphere from the ocean, which goes on to oxidize into methanesulphonate (MSA) and non-sea-salt sulphates (NSS-sulphate). The products of DMS become aerosols which act as cloud condensation nuclei (CCN) that contribute to the formation of clouds. Since clouds have a high albedo, they reflect sunlight, and consequently reduce surface temperature. Charlson et al. (1987) argue that phytoplankton growth and the following rise in CCN creates a negative feedback mechanism that offsets temperature rise and helps regulate the climate. More recently, Lovelock (2006) proposed a similar system that acts as a positive feedback mechanism, appropriately named the anti-CLAW hypothesis. Under future global warming,

Upload: phungtuyen

Post on 07-Feb-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 43

PhytoplanktonClimateRegulationinPositiveandNegativeFeedback

Systems:TheCLAWandanti-CLAWhypotheses

AdamStoer,UndergraduateStudent,DalhousieUniversityAbstract

Theglobalclimatecrisisisbiggernowthanithaseverbeenbefore,pushingformuch-needed research on the consequences of climate change. In 1987, Charlson, Lovelock,Andreae,andWarrenproposedtheCLAWhypothesiswhichstatedthatphytoplanktoncontributetotheproductionofasignificantamountofcloudcondensationnuclei(CCN)whichinturncreatesanegativefeedbackloopafterthereisaninitialtemperaturerise.Manyyearslater,in2006,Lovelockproposedtheanti-CLAWhypothesis,whicharguesthata similarprocessoccursexcept that itworksasapositive feedbacksystem.Bothhypotheses have created much controversy about the effects phytoplankton has onclimate and climate regulation. Research has shown that different types ofphytoplankton tend to have higher growth rates within a temperature range.CoccolithophoresareknownfortheircontributionofDMSP,acompoundthatformstomake CCN aswell as their carbon sequestration abilities. This type of phytoplanktontypically function at a thermal niche where nutrient stratification is not stronglylimiting,makingthemactlikeabufferagainstfurthertemperaturerisesintermsoftheCLAWhypothesis.Basedonthephysiologicalcapabilitiesofphytoplanktonwithintheirenvironment, both the CLAW and anti-CLAW mechanisms correlate strongly withcoccolithophoridalgae.

1.IntroductionAfterCharlson,Lovelock,Andreae,andWarrenintroducedtheCLAWhypothesisin1987(whereCLAWisanacronymforthefourauthor’snames),muchdiscussionhasbeengeneratedaroundthetopic.Essentially,theCLAWhypothesisdescribesphytoplanktongrowthasamechanismthatcancounteractincreasingglobaltemperatures.TheCLAWhypothesisassumesthatphytoplanktongrowthwillsignificantlyincreasewhenthesurfaceseawatertemperaturerises.Afteralargephytoplanktonbloom,thephytoplanktondie,releasingthecompounddimethylsulfoniopropionate(DMSP),whichisthenbrokendownbymarinebacteriaintodimethylsulphide(DMS).DMSthengetstransferredtotheatmospherefromtheocean,whichgoesontooxidizeintomethanesulphonate(MSA)andnon-sea-saltsulphates(NSS-sulphate).TheproductsofDMSbecomeaerosolswhichactascloudcondensationnuclei(CCN)thatcontributetotheformationofclouds.Sincecloudshaveahighalbedo,theyreflectsunlight,andconsequentlyreducesurfacetemperature.Charlsonetal.(1987)arguethatphytoplanktongrowthandthefollowingriseinCCNcreatesanegativefeedbackmechanismthatoffsetstemperatureriseandhelpsregulatetheclimate.Morerecently,Lovelock(2006)proposedasimilarsystemthatactsasapositivefeedbackmechanism,appropriatelynamedtheanti-CLAWhypothesis.Underfutureglobalwarming,

Page 2: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 44

theanti-CLAWhypothesisproposesthatphytoplanktongrowthwillfallwhenseawatersurfacetemperaturerises.ThelossofphytoplanktonbiomasswillresultinlessCCNandthusclouds,allowingforevenmorewarmingtooccur(Lovelock,2006).BothhypothesesarevisuallypresentedinFigure1.

Figure1.DiagramoftheCLAWhypothesisleft(Charlsonetal.,1987)andtheanti-CLAWhypothesis,right(Lovelock,2006).However,thereisstillsomeuncertaintyonhowphytoplanktongroupsactinaccordancetotheCLAWhypothesisandanti-CLAWhypothesissincetherearemultiplefactorsthatcancontributetophytoplanktonhealthandreproduction(Cox1997).ThegoalofthisreviewistoshowthatboththeCLAWandtheanti-CLAWprocessesimpactphytoplanktongrowthdependingontemperatureconditions.Unlikeotherreviewpapersthatsupportonlyonehypothesis,thisreviewwillattempttoshowthatbothcanhypotheticallycoexist.ItisimportanttostudythepracticalityoftheCLAWandanti-CLAWhypothesessothereisabetterunderstandingonhowtheEarthcouldorcouldnotberesilienttoclimatechange;alackofresearchwouldleavepeoplewithabenightedviewontheEarth’sabilitytorecover.Therefore,thispaperwilllookattheeffectsoftemperatureonphytoplanktongrowthamongdifferenttaxonomicgroups,andthecorrelationsbetweenalgalbloomsandcloudformationandproposesapossiblerelationshipbetweenthetwohypothesesandphytoplanktongrowth.

2.PhytoplanktonandtheCLAWandanti-CLAWHypothesesThehugecontributionthattheCLAWhypothesismadein1987toclimatesciencehasledtomuchresearchintotherelationshipsbetweenbiologyandclimate.Subsequently,anextensiveinvestigationintophytoplanktongrowthandclimateregulationgaverisetotheanti-CLAWhypothesis,theopposingpositivefeedbacksystem.Althoughtheprocessesworkdifferently,bothstillconsistofthesamecomponents,whichare:phytoplanktongrowth,DMSproduction,andcloudproduction.Fortherestofthispaper,itisimportanttokeepthesemainfactorsinmindasthepaperwilldrawoneachofthesepointsinthecontextofphytoplanktongrowth.

Page 3: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 45

3.EffectsofTemperatureonPhytoplanktonGrowthandCommunitiesTemperatureplaysamoreimportantrolethansunlightinregulatingphytoplanktonreproduction(MiaoandYang2009;Steemann-Nielson1975).Generally,phytoplanktonreproductionratesandmetabolicactivitywillincreasewithrisesinseawatertemperature(Eppley1972).Bycompilingdatafromotherexperimentsusingculturedphytoplankton,Bingzhang(2015)showsthatgrowthispositivelycorrelatedwithtemperatureuntiltheyreachamaximumtemperature.Atthistemperature,or‘thermallimit’,growthbeginstoplateauandthendecreases,resultinginphytoplanktonmortality(MiaoandYang2009).Theoptimalgrowthtemperatureistypicallyhigherthanthemeanenvironmentaltemperature,meaningthatwhenenvironmentaltemperaturerises,phytoplanktonarefunctioningandreproducingatahigherrate(Figure2;Bingzhang2015;Lovelock1995).Withmorephytoplanktonbiomass,theCLAWhypothesispresumesthatthesemarineprimaryproducerswillstartcounteractingtheinitialriseintemperaturewithincreasedproductionofDMSP.ThephysiologicalcapabilitiesinthesemarinephytoplanktonsupportstheideaofaCLAWmechanism:increasedtemperaturesleadtoincreasedphytoplanktongrowth.

Figure2.Scatterplotofoptimalgrowthtemperatureandenvironmentalannualmeantemperature.Theblackdotsrepresentmarinephytoplankton;thetrianglesrepresentfreshwatercyanobacteria;theblacklinerepresentstheregressionlineformarinephytoplanktonwhilethedashedlinerepresentstheregressionlineforfreshwatercyanobacteria.Thethindottedlinesrepresentthe95%confidenceintervals(Bingzhang2015)WhenconsideringtheactualrangeoftemperaturethataCLAWmechanismcanfunctionat,itisimportanttokeepnutrientsinmind.Phosphorus,silicon,andnitrogenallplaysignificantrolesinphytoplanktondevelopmentandgrowth.Intermsoftemperature,elevatedseawatersurfacetemperaturestratifiesnutrients,whichcreatesabarrierbetweenaccessiblenutrientsandphytoplankton,ultimatelyslowingthegrowthofalgal

Page 4: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 46

communities.Bothnitrogenandphosphorusdeficiencycanreducethecapacitytophotosynthesize(MiaoandYang2009;YangandZhu1990).Temperaturealonecanlimittheamountofnutrientsmadeavailabletophytoplanktoncommunities,sonutrientstratificationmustbeminimalinordertosupporttheCLAWhypothesis.Intropicalregions,wherethesurfacewatersarestratifiedandlackingsufficientnutrients,phytoplanktonaremorelikelytofollowanti-CLAWhypothesis;thus,theCLAWmechanismcouldonlyfunctioninrelativelycolderwaters.4.TheSignificanceofPhytoplanktonGroupsinBiogeochemicalProcessesAlthoughdifficulttomeasure,theproductionofcloudproducingagentsafterphytoplanktonbloomsarekeypieceofevidencesupportingtheCLAWandanti-CLAWhypotheses.Overan8-dayperiodusingsatellitedata,MeskhidzeandNenes(2007)measuredchlorophyll-aconcentrationandcloudeffectiveradiusoverasectionoftheSouthernOcean.Theyfoundthatcloudsconsistentlyformdirectlyafterphytoplanktonblooms,asshowninFigure3.SoonafterDMSforms,itispresumedthatCCNbecomesmoreabundantintheatmosphere.Itisunclearifthissamemechanismwilloccurincoolerclimates,andphytoplanktoninmidtohighlatitudeswillproducealgalbloomsthatwillgeneratesufficientamountsofDMStocontributetocloudproduction.

Figure3.The8dayaverageofSeaWiFS-observedchlorophyll-a(A)andMODISretrievedcloudeffectiveradius(B)bothobservedbetween49°to54°Sand35°to41°W.Whitespotsindicatemissingdata;chl-adataisgriddedataresolutionof9by9kmandeffectiveradiusisgriddedby1by1°(MeskhidzeandNenes2007)Inordertounderstandtheeffectoflatitudeonphytoplankton,itisnecessarytounderstandhowdifferentthermalrangesaffecttheabilitytogrowfordifferentgroupsofphytoplanktonspecies.Coccolithophores,atypeofphytoplankton,areknownfortheirdistinctivelightgreenalgalbloomsinthecolderregionsoftheocean.Emilianiahuxleyi,arguablythemostabundanttypeofcalcifyingcoccolithophore,tendstofavourtemperaturesaround16-21°C,withoptimalreproductionratesinthatrange.Whentemperaturesareabove22°C,thesecoccolithophoreswillnotgrow(Huertas,Rouco,Lopez-RodasandCostas2010).Calcifyingcoccolithophoresgenerallyshareasimilaroptimaltemperaturerange.However,dinoflagellates,anothertypeofphytoplankton,can

Page 5: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 47

toleratehighertemperaturesupto30-33°C.(Boydetal.2013).Theoptimumgrowthtemperatureissimilarfordiatoms(Ruth1971;Admiraal1976).Withrisingtemperature,thetaxonomicgroupsinphytoplanktoncommunitieschangedrastically,resultinginmicrothermalspeciesbeingreplacedbymesothermalandmegathermalspecies,whichcanhandlehighertemperatures(Fott1971;MiaoandYang2009).Generally,eachgroupofphytoplanktonhasa‘thermalniche’,oraspecifictemperaturerangewhereoptimalgrowthoccurs.Itisimportanttokeepinmindthateachspecieswithinthesegroupsmayhaveadifferentoptimumgrowthtemperature,butingeneralcoccolithophoridalgaeperformbetteratalowerthermallevelthandinoflagellatesanddiatoms.Usingshipboardincubationofalgalcommunities,Leeetal.(2009)subjectedphytoplanktontoincreasedcarbondioxideconditions(690ppm)andtemperature(16°C)thatwouldrepresentfutureclimateconditionsunderglobalwarming.Attheendoftheexperiment,coccolithophoreabundancesincreased,whilediatomanddinoflagellateabundancesdecreasedasseeninFigure4.Simultaneously,therelativeDMSPlevelswerenearly50-60%greaterthanunderambientcontrols(12°C,390ppmCO2).TherelativeincreasesinbothDMSPandcoccolithophoresshowthatthereisacorrelationbetweenthetwo,whichcouldsignifyaCLAWmechanisminactionwiththesepredominantlymidandhighlatitudephytoplanktoncommunities.Assuch,largerphytoplanktonbloomsthatarepredominantlymadeupofcoccolithophorescouldhelpmitigategrowingcarbondioxideconcentrations.CalcifyingcoccolithophoresshouldmitigaterisesincarbondioxideandtemperaturesincetheirphysiologyinthepolarenvironmentisconsistentwiththemainaspectsoftheCLAWhypothesis.Theanti-CLAWhypothesisisonlyattainableinareaswithheavilystratifiedwaters,suchastropicalregionsthathaveverylowphytoplanktonconcentrations,orextremelywarmwaters.Itisimportanttorememberthefindingsfromthesestudiesshownhereareusedinageneralmanner,andmaynotreflecttheabilitiesallofdiatoms,coccolithophores,anddinoflagellates.Sincemostofthesestudieswereeitherperformedinsituorinincubationtanksoverashortperiodoftime,usuallyonlyspanningoverafewweeks,therelationshipsdescribedheremaynotreflectlongtermtrendsoftemperaturedrivenphytoplanktongrowth.5.ThePrevalenceoftheCLAWFeedbackMechanismintheCurrentClimateInhigherlatitudeswherephytoplanktonaremoreconcentrated,itispresumedthatlargeramountsofdimethylsulfidearereleasedforminghigherconcentrationsofCCN,comparedtolatitudesaroundtheequator.OnestudymeasuredastrongrelationshipbetweentheseasonalcyclesofbiologicallyproducedDMSandtheseasonalvariationoftheproductsofDMS:methanesulphonateandnon-sea-saltsulphate(Ayersetal.1991).ThestudyshowedthatasDMSlevelsincreasedconcentrationsofMSAandNSS-sulphateincreasedbyafactorof12-25and5-10respectively.AyersandGras(1991)alsofoundastrongcorrelationbetweenCCNnumbersandatmosphericsulphurproducts.

Page 6: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 48

However,thisinformationdoesnotmeanthatplanetaryalbedoisincreasing;contradictorysatellitedatahasshownthatthereisanincreasingamountofradiationhittingtheEarth’ssurface(Pinkeretal.2005).Low-lyingcloudstendtobemoreeffectiveatreflectingsolarradiationthanhigh-levelclouds(Figure4)andtherehasbeenanotabledeclineintheselow-lyingcloudsoverthepast30years(Figure5),helpingtoexplaintheincreasedradiationhittingtheEarth'ssurface(ISCCP2011).ItmayseemthattheCLAW-likemechanismisnotapparentbecauseofthis,howeveritisalsopossiblethatthismechanismdoesoccur.Insteadtheprocessisweakenedwhileinaninterglacialstate,orwarmperiod,andisdiminishedevenfurtherbyheavyanthropogenicactivities

Figure4.Therelationshipbetweenlowlevelcloudcover(%)andglobalsurfacetemperature(°C).(ISCCP2011).

Page 7: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 49

Figure5.Atmosphericwater(black)istheaverageamountofwaterpresentinthe

atmosphere;cloudcoverpercentageoflow-levelclouds(blue),middle-levelclouds(green),andhigh-levelclouds(red)inthepast30years.(ISCCP2011)

TheCLAWhypothesisismeanttobeaglobalconceptsupportingLovelock’sGaiaTheory(1995),whichistheunifyingtheorydepictingtheimportanceofmarineandterrestrialbiomassincontributingtoclimateregulation.Puttingthelong-termgeologicaltimelineintoperspective,Lovelock(2006)describesinterglacialperiodsasEarth’sfeverorsickstate,andglacialperiodsasEarth’shealthystate.WhentheEarthisinaglacialperiod,thereismoreicereflectingmoresunlight,resultinginalowerglobaltemperature.Onceoceansrecede,morelandandforestsarecreatedaswellasstrongeroceancurrents,ultimatelyallowingformorebiomasstocontributetoclimateregulation.Ina'feverstate'orinterglacialperiod,theEarthhaslessiceloweringplanetaryalbedoandconsequentlyweakeningtheEarth’sbioticclimateregulation.Theanti-CLAWhypothesisbetterrepresentsawarmerperiodbecauseseawatertendstobelesssalty,lessnutrientabundant,andwarmer.Phytoplanktonandothermarinephotosynthesizerswillhypotheticallyhaveaweakereffectinclimateregulation.Inadditiontothis,humanshaveessentiallyremovedasignificantamountofthenaturalecosystemandreplaceditwithfarmsandurbanlandscape.ItispossiblethathundredsofyearsofchangingthelandandoceancouldhaveunprecedentedeffectsontheabilityforanaturalnegativefeedbackmechanismliketheonedescribedbytheCLAWhypothesis,tocombatcarbondioxidefluxesandotherseverechangesintheenvironment.

Page 8: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 50

ThecombinedeffectsofstronganthropogenicactivityandinterglacialperioddynamicsprobablyhaveweakenedtheCLAWmechanismtoapointwhereitmaynothaveasignificanteffectonclimateregulation.Inotherwords,ifaCLAWmechanismwasoccurringbeforehumansstartedchangingthecompositionoftheatmosphere,itmaynothaveanoticeableeffecttodayandwouldnotbeobservableincloudcoveragedata(e.g.Figure5)6.HypotheticalRelationshipBetweenGrowthandtheCLAWandanti-CLAWHypothesesCombined,thereviewedinformationrevealstherelationshipbetweenbothhypotheseswithphytoplanktongrowthasafunctionoftemperature.Essentially,theresearchimpliesthattheCLAWmechanismactsupuntilanoptimaltemperature,atwhichthatpointtheanti-CLAWhypothesisisactivated,assumingthatheavynutrientstratificationisnotalreadylimitinggrowthattheoptimaltemperature.AsshowninFigure6,whiletheCLAWmechanismisinaction,thereisadownwardpressureornegativefeedbackactinginattempttoreturntoregularenvironmentaltemperatures.WhileundertheCLAWhypothesis,phytoplanktonwouldincreasereproductionwithincreasedtemperaturesintheirenvironment,excludingtheeffectofnutrientstratification.Inthecasethattemperaturedoescontinuetoincreasepasttheoptimaltemperature,theanti-CLAWmechanismgoesintoeffectcausingapositivefeedback,pushingphytoplanktongrowthtozero.Thisrelationshipwouldbemosteffectivewithcoccolithophoridalgaebecausegrowthpeaksarealowertemperaturewherestratificationisnotasheavilylimitingaswoulditbewithothertaxonomicgroups.

Figure6.HypotheticalrelationshipforphytoplanktongrowthasafunctionoftemperaturerelativetotheCLAW(blue)andanti-CLAWmechanisms(red)inaction.Note:the

Page 9: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 51

temperaturerangewhereeithermechanismisfunctionalissubjecttoshiftdependingonthespeciesandenvironment.7.ConclusionTounderstandtherelationshipbetweentheCLAWandanti-CLAWhypotheseswithdifferentmarinephytoplanktongroups,onemustreviewthephysiologicalcapabilitiesandlimitsofthesetaxonomicgroupsrelatedtorisingtemperatures.ThepurposeofthispaperwastoshowthatthephysiologyofphytoplanktoncloselycorrelateswithboththeCLAWandanti-CLAWhypothesesasafunctionoftemperatureandgrowth(asdescribedinFigure6).Coccolithophorescansufficientlyreproduceincolderwaterand,byproducinghighlevelsofDMSP,cancontributetocloudformation.Whentemperaturesreachrangesofabout16-21°C,phytoplanktongrowthisatitsoptimumlevelafterthisoptimumlevelispassed,phytoplanktongrowthbeginstodeclineduetotheinaccessibilityofnutrientsinstratifiedwater;inotherwords,theCLAWmechanismgiveswaytotheanti-CLAWmechanism.Toconclude,coccolithophoridalgaephysiologyshowsthatbothhypothesescanexistasbiogeochemicaloceanprocesses,ratherthanonlyone.Futureresearchshouldbeperformedoveralong-termperiod,spanningseveralyears,lookingatthecorrelationbetweenchlorophyll-aconcentration,cloudcoverage,NSS-aerosols,andDMSlevels.Inadditiontothestudyneedinglongtermfunding,itwouldalsoneedtohaveaccesstoamultitudeofsatellitedataandoceanobservationbuoysthatareabletorecordinformationsuchasDMSlevelsandNSS-aerosolsintheatmosphere.Sincephytoplankton-bornCCNhaveonlybeenstudiedonarelativelysmallscale,along-termstudysuchasthiscouldgreatlyimprovetheunderstandingabouttherolethatphytoplanktonplayinregulatingtheclimate;furthermore,helpingcreatebettermodelsthatpredicthowlifeonEarthwillreacttothecurrentclimatewarmingcrisis.ReferencesAdmiraalW.1977.InfluenceofLightandTemperatureontheGrowthRateofEstuarine

BenthicDiatomsinCulture.MarBiol.39:1-9.AyersGP,CaineyJM.2007.TheCLAWhypothesis:areviewofmajordevelopments.Environ

Chem.4:366-374.AyersGP,GrasJL.1991.SeasonalRelationshipbetweencloudcondensationnucleiand

aerosolmethanesulphonateinmarineair.Nature.353:834-835.AyersGP,IveyJP,GilletRW.1991.Coherencebetweenseasonalcyclesofdimethyl

sulphide,methanesulphonate,andsulphateinmarineair.Nature.349:404-406.BingzhangC.2015.Patternsofthermallimitsofphytoplankton.J.PlanktonRes.37(2):285-

292.BoydPW,RynearsonTA,ArmstrongEA,FuF,HayashiK,ZhangxiH,HutchinsDA,Kudela

RM,LitchmanE,MulhollandMR,etal.2013.Marinephytoplanktontemperature

Page 10: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 52

versusgrowthresponsesfrompolartotropicalwaters-outcomeofascientificcommunity-widestudy.PLoSONE.8(5):e63091.[about17p.].

CharlsonRJ,LovelockJE,AndreaeMO,StephenG.1987.Oceanicphytoplankton

atmosphericsulphur,cloudalbedoandclimate.Nature.326(6114):655-661.CoxRA.1997.Atmosphericsulphurandclimate-whathavewelearned?PhilTransRSoc

Lond.352:251-254.DongfangY,PeigangW.2004.Influenceofseawatertemperatureonphytoplanktongrowth

inJiaozhouBay,China.ChinJOceanolLimn.22(2):166-175.LovelockJ.1995.AgesofGaia:AbiographyofourlivingEarth.NewYork:OxfordUniversity

Press.LovelockJ.2006.TherevengeofGaia:Earth’sclimatecrisis&thefateofhumanity.New

York:BasicBooksPublishing.MiaoZ,YangD.2009.Solarlight,seawatertemperature,andnutrients,whichoneismore

importantinaffectingphytoplanktongrowth?ChinJOceanolLimn.27(4):825-831.MeskhidzeN,NenesA.2006.PhytoplanktonandcloudinessintheSouthernOcean.

Science.314(5804):1419-1423.LeePA,RudisillJR,NeeleyAR,MaucherJM,HutchinsDA,FengY,HareCE,LeblancK,Rose

JM,WilhelmSW.2009.EffectsofincreasedCO2andtemperatureontheNorthAtlanticyangSpringBloom.III.Dimethylsulfoniopropionate.MarEcoProgSer.388:41-49.

PinkerRT,ZhangB,DuttonEG.Dosatellitesdetecttrendsinsurfacesolarradiation?

Science.308(5723):850-854.RuthP.1971.Theeffectsofincreasinglightandtemperatureonthestructureofdiatom

communities.ASLO.16(2):405-421.TheInternationalSatelliteCloudClimatologyProject(ISCCP).2011.

www.climate4you.com.[nodatemodified;accessed2016Dec1].http://www.climate4you.com/ClimateAndClouds.htm#Cloudalbedo

XieY,TilstoneGH,WiddicombeC,WoodwardE,HarrisC,BarnesBK.2015.Effectsof

increasesintemperatureandnutrientsonphytoplanktoncommunitystructureandphotosynthesisinthewesternEnglishChannel.MarEcolProgSer.519:61-73.

YangXandZhuM.1990.Thedevelopmentofphytoplanktonmetabolismstudy.JOceano

HuanghaiandBohaiSeas.3:65-72.