Transcript
Page 1: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 43

PhytoplanktonClimateRegulationinPositiveandNegativeFeedback

Systems:TheCLAWandanti-CLAWhypotheses

AdamStoer,UndergraduateStudent,DalhousieUniversityAbstract

Theglobalclimatecrisisisbiggernowthanithaseverbeenbefore,pushingformuch-needed research on the consequences of climate change. In 1987, Charlson, Lovelock,Andreae,andWarrenproposedtheCLAWhypothesiswhichstatedthatphytoplanktoncontributetotheproductionofasignificantamountofcloudcondensationnuclei(CCN)whichinturncreatesanegativefeedbackloopafterthereisaninitialtemperaturerise.Manyyearslater,in2006,Lovelockproposedtheanti-CLAWhypothesis,whicharguesthata similarprocessoccursexcept that itworksasapositive feedbacksystem.Bothhypotheses have created much controversy about the effects phytoplankton has onclimate and climate regulation. Research has shown that different types ofphytoplankton tend to have higher growth rates within a temperature range.CoccolithophoresareknownfortheircontributionofDMSP,acompoundthatformstomake CCN aswell as their carbon sequestration abilities. This type of phytoplanktontypically function at a thermal niche where nutrient stratification is not stronglylimiting,makingthemactlikeabufferagainstfurthertemperaturerisesintermsoftheCLAWhypothesis.Basedonthephysiologicalcapabilitiesofphytoplanktonwithintheirenvironment, both the CLAW and anti-CLAW mechanisms correlate strongly withcoccolithophoridalgae.

1.IntroductionAfterCharlson,Lovelock,Andreae,andWarrenintroducedtheCLAWhypothesisin1987(whereCLAWisanacronymforthefourauthor’snames),muchdiscussionhasbeengeneratedaroundthetopic.Essentially,theCLAWhypothesisdescribesphytoplanktongrowthasamechanismthatcancounteractincreasingglobaltemperatures.TheCLAWhypothesisassumesthatphytoplanktongrowthwillsignificantlyincreasewhenthesurfaceseawatertemperaturerises.Afteralargephytoplanktonbloom,thephytoplanktondie,releasingthecompounddimethylsulfoniopropionate(DMSP),whichisthenbrokendownbymarinebacteriaintodimethylsulphide(DMS).DMSthengetstransferredtotheatmospherefromtheocean,whichgoesontooxidizeintomethanesulphonate(MSA)andnon-sea-saltsulphates(NSS-sulphate).TheproductsofDMSbecomeaerosolswhichactascloudcondensationnuclei(CCN)thatcontributetotheformationofclouds.Sincecloudshaveahighalbedo,theyreflectsunlight,andconsequentlyreducesurfacetemperature.Charlsonetal.(1987)arguethatphytoplanktongrowthandthefollowingriseinCCNcreatesanegativefeedbackmechanismthatoffsetstemperatureriseandhelpsregulatetheclimate.Morerecently,Lovelock(2006)proposedasimilarsystemthatactsasapositivefeedbackmechanism,appropriatelynamedtheanti-CLAWhypothesis.Underfutureglobalwarming,

Page 2: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 44

theanti-CLAWhypothesisproposesthatphytoplanktongrowthwillfallwhenseawatersurfacetemperaturerises.ThelossofphytoplanktonbiomasswillresultinlessCCNandthusclouds,allowingforevenmorewarmingtooccur(Lovelock,2006).BothhypothesesarevisuallypresentedinFigure1.

Figure1.DiagramoftheCLAWhypothesisleft(Charlsonetal.,1987)andtheanti-CLAWhypothesis,right(Lovelock,2006).However,thereisstillsomeuncertaintyonhowphytoplanktongroupsactinaccordancetotheCLAWhypothesisandanti-CLAWhypothesissincetherearemultiplefactorsthatcancontributetophytoplanktonhealthandreproduction(Cox1997).ThegoalofthisreviewistoshowthatboththeCLAWandtheanti-CLAWprocessesimpactphytoplanktongrowthdependingontemperatureconditions.Unlikeotherreviewpapersthatsupportonlyonehypothesis,thisreviewwillattempttoshowthatbothcanhypotheticallycoexist.ItisimportanttostudythepracticalityoftheCLAWandanti-CLAWhypothesessothereisabetterunderstandingonhowtheEarthcouldorcouldnotberesilienttoclimatechange;alackofresearchwouldleavepeoplewithabenightedviewontheEarth’sabilitytorecover.Therefore,thispaperwilllookattheeffectsoftemperatureonphytoplanktongrowthamongdifferenttaxonomicgroups,andthecorrelationsbetweenalgalbloomsandcloudformationandproposesapossiblerelationshipbetweenthetwohypothesesandphytoplanktongrowth.

2.PhytoplanktonandtheCLAWandanti-CLAWHypothesesThehugecontributionthattheCLAWhypothesismadein1987toclimatesciencehasledtomuchresearchintotherelationshipsbetweenbiologyandclimate.Subsequently,anextensiveinvestigationintophytoplanktongrowthandclimateregulationgaverisetotheanti-CLAWhypothesis,theopposingpositivefeedbacksystem.Althoughtheprocessesworkdifferently,bothstillconsistofthesamecomponents,whichare:phytoplanktongrowth,DMSproduction,andcloudproduction.Fortherestofthispaper,itisimportanttokeepthesemainfactorsinmindasthepaperwilldrawoneachofthesepointsinthecontextofphytoplanktongrowth.

Page 3: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 45

3.EffectsofTemperatureonPhytoplanktonGrowthandCommunitiesTemperatureplaysamoreimportantrolethansunlightinregulatingphytoplanktonreproduction(MiaoandYang2009;Steemann-Nielson1975).Generally,phytoplanktonreproductionratesandmetabolicactivitywillincreasewithrisesinseawatertemperature(Eppley1972).Bycompilingdatafromotherexperimentsusingculturedphytoplankton,Bingzhang(2015)showsthatgrowthispositivelycorrelatedwithtemperatureuntiltheyreachamaximumtemperature.Atthistemperature,or‘thermallimit’,growthbeginstoplateauandthendecreases,resultinginphytoplanktonmortality(MiaoandYang2009).Theoptimalgrowthtemperatureistypicallyhigherthanthemeanenvironmentaltemperature,meaningthatwhenenvironmentaltemperaturerises,phytoplanktonarefunctioningandreproducingatahigherrate(Figure2;Bingzhang2015;Lovelock1995).Withmorephytoplanktonbiomass,theCLAWhypothesispresumesthatthesemarineprimaryproducerswillstartcounteractingtheinitialriseintemperaturewithincreasedproductionofDMSP.ThephysiologicalcapabilitiesinthesemarinephytoplanktonsupportstheideaofaCLAWmechanism:increasedtemperaturesleadtoincreasedphytoplanktongrowth.

Figure2.Scatterplotofoptimalgrowthtemperatureandenvironmentalannualmeantemperature.Theblackdotsrepresentmarinephytoplankton;thetrianglesrepresentfreshwatercyanobacteria;theblacklinerepresentstheregressionlineformarinephytoplanktonwhilethedashedlinerepresentstheregressionlineforfreshwatercyanobacteria.Thethindottedlinesrepresentthe95%confidenceintervals(Bingzhang2015)WhenconsideringtheactualrangeoftemperaturethataCLAWmechanismcanfunctionat,itisimportanttokeepnutrientsinmind.Phosphorus,silicon,andnitrogenallplaysignificantrolesinphytoplanktondevelopmentandgrowth.Intermsoftemperature,elevatedseawatersurfacetemperaturestratifiesnutrients,whichcreatesabarrierbetweenaccessiblenutrientsandphytoplankton,ultimatelyslowingthegrowthofalgal

Page 4: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 46

communities.Bothnitrogenandphosphorusdeficiencycanreducethecapacitytophotosynthesize(MiaoandYang2009;YangandZhu1990).Temperaturealonecanlimittheamountofnutrientsmadeavailabletophytoplanktoncommunities,sonutrientstratificationmustbeminimalinordertosupporttheCLAWhypothesis.Intropicalregions,wherethesurfacewatersarestratifiedandlackingsufficientnutrients,phytoplanktonaremorelikelytofollowanti-CLAWhypothesis;thus,theCLAWmechanismcouldonlyfunctioninrelativelycolderwaters.4.TheSignificanceofPhytoplanktonGroupsinBiogeochemicalProcessesAlthoughdifficulttomeasure,theproductionofcloudproducingagentsafterphytoplanktonbloomsarekeypieceofevidencesupportingtheCLAWandanti-CLAWhypotheses.Overan8-dayperiodusingsatellitedata,MeskhidzeandNenes(2007)measuredchlorophyll-aconcentrationandcloudeffectiveradiusoverasectionoftheSouthernOcean.Theyfoundthatcloudsconsistentlyformdirectlyafterphytoplanktonblooms,asshowninFigure3.SoonafterDMSforms,itispresumedthatCCNbecomesmoreabundantintheatmosphere.Itisunclearifthissamemechanismwilloccurincoolerclimates,andphytoplanktoninmidtohighlatitudeswillproducealgalbloomsthatwillgeneratesufficientamountsofDMStocontributetocloudproduction.

Figure3.The8dayaverageofSeaWiFS-observedchlorophyll-a(A)andMODISretrievedcloudeffectiveradius(B)bothobservedbetween49°to54°Sand35°to41°W.Whitespotsindicatemissingdata;chl-adataisgriddedataresolutionof9by9kmandeffectiveradiusisgriddedby1by1°(MeskhidzeandNenes2007)Inordertounderstandtheeffectoflatitudeonphytoplankton,itisnecessarytounderstandhowdifferentthermalrangesaffecttheabilitytogrowfordifferentgroupsofphytoplanktonspecies.Coccolithophores,atypeofphytoplankton,areknownfortheirdistinctivelightgreenalgalbloomsinthecolderregionsoftheocean.Emilianiahuxleyi,arguablythemostabundanttypeofcalcifyingcoccolithophore,tendstofavourtemperaturesaround16-21°C,withoptimalreproductionratesinthatrange.Whentemperaturesareabove22°C,thesecoccolithophoreswillnotgrow(Huertas,Rouco,Lopez-RodasandCostas2010).Calcifyingcoccolithophoresgenerallyshareasimilaroptimaltemperaturerange.However,dinoflagellates,anothertypeofphytoplankton,can

Page 5: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 47

toleratehighertemperaturesupto30-33°C.(Boydetal.2013).Theoptimumgrowthtemperatureissimilarfordiatoms(Ruth1971;Admiraal1976).Withrisingtemperature,thetaxonomicgroupsinphytoplanktoncommunitieschangedrastically,resultinginmicrothermalspeciesbeingreplacedbymesothermalandmegathermalspecies,whichcanhandlehighertemperatures(Fott1971;MiaoandYang2009).Generally,eachgroupofphytoplanktonhasa‘thermalniche’,oraspecifictemperaturerangewhereoptimalgrowthoccurs.Itisimportanttokeepinmindthateachspecieswithinthesegroupsmayhaveadifferentoptimumgrowthtemperature,butingeneralcoccolithophoridalgaeperformbetteratalowerthermallevelthandinoflagellatesanddiatoms.Usingshipboardincubationofalgalcommunities,Leeetal.(2009)subjectedphytoplanktontoincreasedcarbondioxideconditions(690ppm)andtemperature(16°C)thatwouldrepresentfutureclimateconditionsunderglobalwarming.Attheendoftheexperiment,coccolithophoreabundancesincreased,whilediatomanddinoflagellateabundancesdecreasedasseeninFigure4.Simultaneously,therelativeDMSPlevelswerenearly50-60%greaterthanunderambientcontrols(12°C,390ppmCO2).TherelativeincreasesinbothDMSPandcoccolithophoresshowthatthereisacorrelationbetweenthetwo,whichcouldsignifyaCLAWmechanisminactionwiththesepredominantlymidandhighlatitudephytoplanktoncommunities.Assuch,largerphytoplanktonbloomsthatarepredominantlymadeupofcoccolithophorescouldhelpmitigategrowingcarbondioxideconcentrations.CalcifyingcoccolithophoresshouldmitigaterisesincarbondioxideandtemperaturesincetheirphysiologyinthepolarenvironmentisconsistentwiththemainaspectsoftheCLAWhypothesis.Theanti-CLAWhypothesisisonlyattainableinareaswithheavilystratifiedwaters,suchastropicalregionsthathaveverylowphytoplanktonconcentrations,orextremelywarmwaters.Itisimportanttorememberthefindingsfromthesestudiesshownhereareusedinageneralmanner,andmaynotreflecttheabilitiesallofdiatoms,coccolithophores,anddinoflagellates.Sincemostofthesestudieswereeitherperformedinsituorinincubationtanksoverashortperiodoftime,usuallyonlyspanningoverafewweeks,therelationshipsdescribedheremaynotreflectlongtermtrendsoftemperaturedrivenphytoplanktongrowth.5.ThePrevalenceoftheCLAWFeedbackMechanismintheCurrentClimateInhigherlatitudeswherephytoplanktonaremoreconcentrated,itispresumedthatlargeramountsofdimethylsulfidearereleasedforminghigherconcentrationsofCCN,comparedtolatitudesaroundtheequator.OnestudymeasuredastrongrelationshipbetweentheseasonalcyclesofbiologicallyproducedDMSandtheseasonalvariationoftheproductsofDMS:methanesulphonateandnon-sea-saltsulphate(Ayersetal.1991).ThestudyshowedthatasDMSlevelsincreasedconcentrationsofMSAandNSS-sulphateincreasedbyafactorof12-25and5-10respectively.AyersandGras(1991)alsofoundastrongcorrelationbetweenCCNnumbersandatmosphericsulphurproducts.

Page 6: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 48

However,thisinformationdoesnotmeanthatplanetaryalbedoisincreasing;contradictorysatellitedatahasshownthatthereisanincreasingamountofradiationhittingtheEarth’ssurface(Pinkeretal.2005).Low-lyingcloudstendtobemoreeffectiveatreflectingsolarradiationthanhigh-levelclouds(Figure4)andtherehasbeenanotabledeclineintheselow-lyingcloudsoverthepast30years(Figure5),helpingtoexplaintheincreasedradiationhittingtheEarth'ssurface(ISCCP2011).ItmayseemthattheCLAW-likemechanismisnotapparentbecauseofthis,howeveritisalsopossiblethatthismechanismdoesoccur.Insteadtheprocessisweakenedwhileinaninterglacialstate,orwarmperiod,andisdiminishedevenfurtherbyheavyanthropogenicactivities

Figure4.Therelationshipbetweenlowlevelcloudcover(%)andglobalsurfacetemperature(°C).(ISCCP2011).

Page 7: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 49

Figure5.Atmosphericwater(black)istheaverageamountofwaterpresentinthe

atmosphere;cloudcoverpercentageoflow-levelclouds(blue),middle-levelclouds(green),andhigh-levelclouds(red)inthepast30years.(ISCCP2011)

TheCLAWhypothesisismeanttobeaglobalconceptsupportingLovelock’sGaiaTheory(1995),whichistheunifyingtheorydepictingtheimportanceofmarineandterrestrialbiomassincontributingtoclimateregulation.Puttingthelong-termgeologicaltimelineintoperspective,Lovelock(2006)describesinterglacialperiodsasEarth’sfeverorsickstate,andglacialperiodsasEarth’shealthystate.WhentheEarthisinaglacialperiod,thereismoreicereflectingmoresunlight,resultinginalowerglobaltemperature.Onceoceansrecede,morelandandforestsarecreatedaswellasstrongeroceancurrents,ultimatelyallowingformorebiomasstocontributetoclimateregulation.Ina'feverstate'orinterglacialperiod,theEarthhaslessiceloweringplanetaryalbedoandconsequentlyweakeningtheEarth’sbioticclimateregulation.Theanti-CLAWhypothesisbetterrepresentsawarmerperiodbecauseseawatertendstobelesssalty,lessnutrientabundant,andwarmer.Phytoplanktonandothermarinephotosynthesizerswillhypotheticallyhaveaweakereffectinclimateregulation.Inadditiontothis,humanshaveessentiallyremovedasignificantamountofthenaturalecosystemandreplaceditwithfarmsandurbanlandscape.ItispossiblethathundredsofyearsofchangingthelandandoceancouldhaveunprecedentedeffectsontheabilityforanaturalnegativefeedbackmechanismliketheonedescribedbytheCLAWhypothesis,tocombatcarbondioxidefluxesandotherseverechangesintheenvironment.

Page 8: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 50

ThecombinedeffectsofstronganthropogenicactivityandinterglacialperioddynamicsprobablyhaveweakenedtheCLAWmechanismtoapointwhereitmaynothaveasignificanteffectonclimateregulation.Inotherwords,ifaCLAWmechanismwasoccurringbeforehumansstartedchangingthecompositionoftheatmosphere,itmaynothaveanoticeableeffecttodayandwouldnotbeobservableincloudcoveragedata(e.g.Figure5)6.HypotheticalRelationshipBetweenGrowthandtheCLAWandanti-CLAWHypothesesCombined,thereviewedinformationrevealstherelationshipbetweenbothhypotheseswithphytoplanktongrowthasafunctionoftemperature.Essentially,theresearchimpliesthattheCLAWmechanismactsupuntilanoptimaltemperature,atwhichthatpointtheanti-CLAWhypothesisisactivated,assumingthatheavynutrientstratificationisnotalreadylimitinggrowthattheoptimaltemperature.AsshowninFigure6,whiletheCLAWmechanismisinaction,thereisadownwardpressureornegativefeedbackactinginattempttoreturntoregularenvironmentaltemperatures.WhileundertheCLAWhypothesis,phytoplanktonwouldincreasereproductionwithincreasedtemperaturesintheirenvironment,excludingtheeffectofnutrientstratification.Inthecasethattemperaturedoescontinuetoincreasepasttheoptimaltemperature,theanti-CLAWmechanismgoesintoeffectcausingapositivefeedback,pushingphytoplanktongrowthtozero.Thisrelationshipwouldbemosteffectivewithcoccolithophoridalgaebecausegrowthpeaksarealowertemperaturewherestratificationisnotasheavilylimitingaswoulditbewithothertaxonomicgroups.

Figure6.HypotheticalrelationshipforphytoplanktongrowthasafunctionoftemperaturerelativetotheCLAW(blue)andanti-CLAWmechanisms(red)inaction.Note:the

Page 9: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 51

temperaturerangewhereeithermechanismisfunctionalissubjecttoshiftdependingonthespeciesandenvironment.7.ConclusionTounderstandtherelationshipbetweentheCLAWandanti-CLAWhypotheseswithdifferentmarinephytoplanktongroups,onemustreviewthephysiologicalcapabilitiesandlimitsofthesetaxonomicgroupsrelatedtorisingtemperatures.ThepurposeofthispaperwastoshowthatthephysiologyofphytoplanktoncloselycorrelateswithboththeCLAWandanti-CLAWhypothesesasafunctionoftemperatureandgrowth(asdescribedinFigure6).Coccolithophorescansufficientlyreproduceincolderwaterand,byproducinghighlevelsofDMSP,cancontributetocloudformation.Whentemperaturesreachrangesofabout16-21°C,phytoplanktongrowthisatitsoptimumlevelafterthisoptimumlevelispassed,phytoplanktongrowthbeginstodeclineduetotheinaccessibilityofnutrientsinstratifiedwater;inotherwords,theCLAWmechanismgiveswaytotheanti-CLAWmechanism.Toconclude,coccolithophoridalgaephysiologyshowsthatbothhypothesescanexistasbiogeochemicaloceanprocesses,ratherthanonlyone.Futureresearchshouldbeperformedoveralong-termperiod,spanningseveralyears,lookingatthecorrelationbetweenchlorophyll-aconcentration,cloudcoverage,NSS-aerosols,andDMSlevels.Inadditiontothestudyneedinglongtermfunding,itwouldalsoneedtohaveaccesstoamultitudeofsatellitedataandoceanobservationbuoysthatareabletorecordinformationsuchasDMSlevelsandNSS-aerosolsintheatmosphere.Sincephytoplankton-bornCCNhaveonlybeenstudiedonarelativelysmallscale,along-termstudysuchasthiscouldgreatlyimprovetheunderstandingabouttherolethatphytoplanktonplayinregulatingtheclimate;furthermore,helpingcreatebettermodelsthatpredicthowlifeonEarthwillreacttothecurrentclimatewarmingcrisis.ReferencesAdmiraalW.1977.InfluenceofLightandTemperatureontheGrowthRateofEstuarine

BenthicDiatomsinCulture.MarBiol.39:1-9.AyersGP,CaineyJM.2007.TheCLAWhypothesis:areviewofmajordevelopments.Environ

Chem.4:366-374.AyersGP,GrasJL.1991.SeasonalRelationshipbetweencloudcondensationnucleiand

aerosolmethanesulphonateinmarineair.Nature.353:834-835.AyersGP,IveyJP,GilletRW.1991.Coherencebetweenseasonalcyclesofdimethyl

sulphide,methanesulphonate,andsulphateinmarineair.Nature.349:404-406.BingzhangC.2015.Patternsofthermallimitsofphytoplankton.J.PlanktonRes.37(2):285-

292.BoydPW,RynearsonTA,ArmstrongEA,FuF,HayashiK,ZhangxiH,HutchinsDA,Kudela

RM,LitchmanE,MulhollandMR,etal.2013.Marinephytoplanktontemperature

Page 10: Phytoplankton Climate Regulation in Positive and Negative ... · PDF fileA. Stoer \ Oceans First, Issue 4, 2017, pgs. 43-52. 44 the anti-CLAW hypothesis proposes that phytoplankton

A.Stoer\OceansFirst,Issue4,2017,pgs.43-52. 52

versusgrowthresponsesfrompolartotropicalwaters-outcomeofascientificcommunity-widestudy.PLoSONE.8(5):e63091.[about17p.].

CharlsonRJ,LovelockJE,AndreaeMO,StephenG.1987.Oceanicphytoplankton

atmosphericsulphur,cloudalbedoandclimate.Nature.326(6114):655-661.CoxRA.1997.Atmosphericsulphurandclimate-whathavewelearned?PhilTransRSoc

Lond.352:251-254.DongfangY,PeigangW.2004.Influenceofseawatertemperatureonphytoplanktongrowth

inJiaozhouBay,China.ChinJOceanolLimn.22(2):166-175.LovelockJ.1995.AgesofGaia:AbiographyofourlivingEarth.NewYork:OxfordUniversity

Press.LovelockJ.2006.TherevengeofGaia:Earth’sclimatecrisis&thefateofhumanity.New

York:BasicBooksPublishing.MiaoZ,YangD.2009.Solarlight,seawatertemperature,andnutrients,whichoneismore

importantinaffectingphytoplanktongrowth?ChinJOceanolLimn.27(4):825-831.MeskhidzeN,NenesA.2006.PhytoplanktonandcloudinessintheSouthernOcean.

Science.314(5804):1419-1423.LeePA,RudisillJR,NeeleyAR,MaucherJM,HutchinsDA,FengY,HareCE,LeblancK,Rose

JM,WilhelmSW.2009.EffectsofincreasedCO2andtemperatureontheNorthAtlanticyangSpringBloom.III.Dimethylsulfoniopropionate.MarEcoProgSer.388:41-49.

PinkerRT,ZhangB,DuttonEG.Dosatellitesdetecttrendsinsurfacesolarradiation?

Science.308(5723):850-854.RuthP.1971.Theeffectsofincreasinglightandtemperatureonthestructureofdiatom

communities.ASLO.16(2):405-421.TheInternationalSatelliteCloudClimatologyProject(ISCCP).2011.

www.climate4you.com.[nodatemodified;accessed2016Dec1].http://www.climate4you.com/ClimateAndClouds.htm#Cloudalbedo

XieY,TilstoneGH,WiddicombeC,WoodwardE,HarrisC,BarnesBK.2015.Effectsof

increasesintemperatureandnutrientsonphytoplanktoncommunitystructureandphotosynthesisinthewesternEnglishChannel.MarEcolProgSer.519:61-73.

YangXandZhuM.1990.Thedevelopmentofphytoplanktonmetabolismstudy.JOceano

HuanghaiandBohaiSeas.3:65-72.


Top Related