physics of cavity solitons in semiconductors l.a. lugiato, g. tissoni, m. brambilla, t. maggipinto...

46
Physics of CAVITY SOLITONS Physics of CAVITY SOLITONS in Semiconductors in Semiconductors L.A. Lugiato, G. Tissoni, M. L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto Brambilla, T. Maggipinto INFM, Italy INFM, Italy R. Kuscelewicz, S. Barbay R. Kuscelewicz, S. Barbay LPN, CNRS LPN, CNRS X. Hachair, S. Barland, L. Furfaro, X. Hachair, S. Barland, L. Furfaro, M. Giudici, J. Tredicce M. Giudici, J. Tredicce INLN, CNRS INLN, CNRS R. Jäegger R. Jäegger ULM Photonics, Germany ULM Photonics, Germany FUNFACS FUNFACS

Post on 21-Dec-2015

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Physics of CAVITY SOLITONS in Physics of CAVITY SOLITONS in SemiconductorsSemiconductors

• L.A. Lugiato, G. Tissoni, M. L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto Brambilla, T. Maggipinto INFM, ItalyINFM, Italy

• R. Kuscelewicz, S. Barbay R. Kuscelewicz, S. Barbay LPN, CNRSLPN, CNRS

• X. Hachair, S. Barland, L. Furfaro, M. X. Hachair, S. Barland, L. Furfaro, M. Giudici, J. Tredicce Giudici, J. Tredicce INLN, CNRSINLN, CNRS

• R. Jäegger R. Jäegger ULM Photonics, GermanyULM Photonics, Germany

FUNFACS FUNFACS

Page 2: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Spatially Extended SystemSpatially Extended System

• Property:Property:Correlation length Correlation length much smaller much smaller

than than the size of the the size of the systemsystem

Page 3: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Some Nonlinear EffectsSome Nonlinear Effects

1.1. Strong non linearityStrong non linearity2.2. Strong competing Strong competing

mechanisms: mechanisms: Dispersion-non linearity Dispersion-non linearity Diffraction-non linearityDiffraction-non linearity

Possible results: Possible results: a. a. pattern formationpattern formationb. b. bistability between bistability between

patternspatternsc.c. Localized structures, Localized structures, (Rosanov, (Rosanov, Opt. Spectrosc.Opt. Spectrosc. 6565, ,

449-450 (1988))449-450 (1988))

Page 4: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Nonlinear medium

Holding beam

Writingpulses

Output

Mirror Mirror

Optical resonator

Cavity Solitons

Optical Cavity Soliton:

How to generate them? (in theory)

Page 5: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,
Page 6: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Patterns versus Cavity Patterns versus Cavity SolitonsSolitons• Optical patterns may Optical patterns may

display an array of display an array of light spots, but the light spots, but the intensity peaks are intensity peaks are strongly correlated strongly correlated with one another, so with one another, so that they cannot be that they cannot be manipulated as manipulated as independent objects.independent objects.

Page 7: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

S. Barland, et al. Nature, 2002

Page 8: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,
Page 9: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Theoretical ModelTheoretical Model

NdENINt

N

EiEENiETit

EI

22

2

||,Im

,1

Brambilla, M., et al. Phys. Rev. Lett. 79, 2042-2045 (1997). Spinelli, L. et al. Phys. Rev. A 58, 2542-2559 (1998).

Page 10: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Where can we find solitons?Where can we find solitons?

Page 11: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Patterns in VCSEL with Patterns in VCSEL with InjectionInjection

Ackemann, T., et al. Opt. Lett. 25, 814-816 (2000).

Page 12: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

CS can also appear spontaneously ...........

In this animation we reduce the injection level of the holding beam starting from values where patterns are stable and ending to homogeneous solutions which is the only stable solution for low holding beam levels. During this excursion we cross the region where CSs exist. It is interesting to see how pattern evolves into CS decreasing the parameters. Qualitatively this animation confirms the interpretation of CS as “elements or remains of bifurcating patterns”.

Experiment Numerics

Page 13: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

The holding beam HB has been tilted in order to vectorially compensate the force exerted on CS by the cavity length gradient across the cavity.

Page 14: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

  

 Properties of Cavity Solitons and Localized Structures. 

1.- Spatially localized (of course). 2.- Single addressable objects. A single peak structure can be switch on and off independently of the others if the parameter values are « well » choosen. 3.- Intensity or phase gradients can control their position and/or speed of motion. 

Page 15: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

They move ..............

In order to control CSs positions we inject an holding beam in In order to control CSs positions we inject an holding beam in form of interferenceform of interference

fringes. The fringe pattern is moved in front of the VCSEL fringes. The fringe pattern is moved in front of the VCSEL allowing for repositioning ofallowing for repositioning of

CSs. As the pattern is moved the spatial frequency of the CSs. As the pattern is moved the spatial frequency of the fringes is gradually decreasedfringes is gradually decreased

• As the fringes are moved CSs follow the peak of HB intensity for a wide distance.

• CSs “feel” the fringes as their width are comparable to the CSs width

• They disappear for exiting from the spatial region where they are stable or for collision against pattern or against other CSs.

• Impurities make the path rather random

X. Hachair, et al. PRA (2004)

Page 16: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Analysis of the switching process/2

The switch-on time of CS after application of the WB is composed by the CS buildup time and a delay time between the WB application and the start of the CS rising front.

CS buildup time results around 600 ps, both in experiment and theory.

Delay time is a function of parameters, such as WB phase (relative to the HB), WB power and current injection level.

CS build-up time and delay time

0 2 4 6 8 10 12 14 16 18 200,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

t (ns)

Experiment Theory

Page 17: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

0,0 0,3 0,6 0,9 1,2 1,5 1,8 2,1 2,4 2,7 3,00,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

|E|

t (ns)

= 0o

= 57o (1 rad)

= 70o (1.22 rad)

Analysis of the switching process/3

WB phase (relative to the the holding beam) is a critical parameter: delay time is minimum when = 0 both in experiment and theory

(Optimal phase is 0)

Delay time vs phase

ExperimentTheory

X. Hachair at al. Submitted (2005)

Page 18: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,40,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5 Solid lines: intracavity field |E| at centerDashed lines: total injected field EI at center

t (ns)

Analysis of the switching process/4

Delay time vs WB power

Delay time decreases when WB power is increased, both in experiment and theory

Experiment Theory

Page 19: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,00,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

t (ns)

|E| I = 1.97 I = 2 I = 2.01

Analysis of the switching process/5

In the experiment, delay time decreases when bias is increased Experiment and theory disagree....

Delay time vs pumping current

Experiment Theory

Page 20: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,40,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2,4

|ES|

I

Homogeneous steady state curve (black stable, red unstable) and CS branch as a function of the injected current. I = 1 is transparency, I = 2.11 is the lasing threshold. CS branch extends from I = 1.97 to I = 2.01.The injected field is EI = 0.75obtained at I = 2.

Page 21: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

• Numerical results Numerical results obtained by obtained by including including

temperature temperature variations induced variations induced by the excitation by the excitation current:current:

the switch on time the switch on time decreases as we decreases as we increase the increase the currentcurrent

Page 22: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Quantitative Quantitative Changes in the Changes in the switch on time due switch on time due to noise effects. to noise effects.

Page 23: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

VCSEL above thresholdVCSEL above threshold

Page 24: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Cavity Solitons in a VCSEL Cavity Solitons in a VCSEL above thresholdabove threshold

Page 25: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Temporal oscillationsTemporal oscillations

Page 26: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Correlation measurementsCorrelation measurements

Without holding beam With holding beam

Page 27: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Soliton CorrelationsSoliton Correlations

Page 28: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

They also may appear They also may appear spontaneously and they can be spontaneously and they can be movedmoved

Page 29: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Correlated structureCorrelated structure

Page 30: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Fronts between a pattern and a Fronts between a pattern and a homogeneous solutionhomogeneous solution

If the fronts are stable, it is possible to create a localized state. The number of high intensity peaks inside the localized structure depends on the distance between the fronts.

Page 31: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Stability of a front Stability of a front Y. Pommeau, Y. Pommeau,

INTERACTION BETWEEN FRONTSCoullet, P., Riera, C., Tresser, C. Stable Static Localized Structures in One Dimension. Phys. Rev. Lett. 84, 3069-3072 (2000).

Page 32: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Front InteractionFront InteractionM. Clerc, submitted (2005)M. Clerc, submitted (2005)

Page 33: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Conclusions

We have proven experimentally and theoretically that Cavity Solitons in VCSELS below and above laser threshold are robust structures that can be switched on and off by all optical control, and move under the influence of intensity gradients.

The CS switching process has been analyzed in details:CS build-up time is on the order of half nanosecond,

while the delay time after WB excitation depends critically on parameters, such as the relative phase between HB and WB, the current injection level, the WB energy

• We are able to generate single and multiple peak localized structures structures and to control their generation

Page 34: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Robin Loznal / The Daily Inter

Page 35: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

I hope you enjoyed the I hope you enjoyed the presentationpresentation

• If not, please If not, please ….do not kill ….do not kill me!!me!!

• If Yes, If Yes,

Thank you Thank you

Page 36: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,
Page 37: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

• CAVITY SOLITON is aCAVITY SOLITON is a

LOCALIZED STRUCTURELOCALIZED STRUCTURE

A pattern that can « live » A pattern that can « live » independently in an spatially independently in an spatially extended systemextended system

Page 38: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

CS in Semiconductors: possible CS in Semiconductors: possible applicationsapplications

• Reconfigurable buffer memoryReconfigurable buffer memory

• Serial-parallel converterSerial-parallel converter

• Shift registerShift register

• All-optical processorAll-optical processor

Page 39: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,
Page 40: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Numerical simulation showing the intracavity field amplitude. The initial condition are filaments obtained at EI = 0.9, the evolution (1 ns) is with EI = 0.75.

Page 41: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Analysis of the switching process/1

WB is a Gaussian pulse injected into the cavity for 100 ns. Time to reach the stationary value is 700 psWB width: 10 - 20 m WB power: 10 -160 W (HB power: 8.5 mW)

t

WB peak intensity vs time

0

p

0

700 ps 100 ns

To analyse the switching process in details, an EOM (Electro-Optical Modulator) has been used to replace the AOM (Acusto Optical Modulator).

Page 42: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

1.      Ackemann, T. et al. J. Opt. B: Quantum Semiclass. Opt. 2, 406-412 (2000).

Page 43: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Spatially resolved spectra

Page 44: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

Including Including (x)=(x)=00-- x x

Ei = 1.8 Ei= 2.00 = -1 = 5

Page 45: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

• Introduce the current Introduce the current crowding effect:crowding effect:

I = I(r)= I = I(r)= IIoo-Xexp[-r-Xexp[-r22/r/r0022]]

where r=xwhere r=x22+y+y22. . Io: Io: ~20% above~20% above thresholdthreshold

• Intensity distribution Intensity distribution when pumping above when pumping above thresholdthreshold

Page 46: Physics of CAVITY SOLITONS in Semiconductors L.A. Lugiato, G. Tissoni, M. Brambilla, T. Maggipinto INFM, Italy L.A. Lugiato, G. Tissoni, M. Brambilla,

 

LOCALIZED STRUCTURES 

 Coullet, P., Riera, C., Tresser, C. Stable Static Localized Structures in One Dimension. Phys. Rev. Lett. 84, 3069-3072 (2000). SPATIAL STRUCTURES (CONCENTRATED IN RELATIVELY SMALL REGION OF AN EXTENDED SYSTEM) CREATED BY STABLE FRONTS CONNECTING TWO SPATIAL STRUCTURES

 

-2,5

-1,5

-0,5

0,5

1,5

0 7,5 15 22,5 30 37,5 45 52,5