ph.d qualifying presentation -...

91
Ph.D Defense Optimal Cross-Layer Resource Allocation for Real- Time Video Transmission over Packet Lossy Networks Fan Zhai Dept. Electrical & Computer Engineering Northwestern University Feb. 9, 2004

Upload: others

Post on 27-May-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

Ph.D Defense

Optimal Cross-Layer Resource Allocation for Real-Time Video Transmission over Packet Lossy Networks

Fan ZhaiDept. Electrical & Computer Engineering

Northwestern UniversityFeb. 9, 2004

Page 2: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

2

Current Streaming Video Applications

VideoconferencingDistance learning

Base Station

NetworkVideophone

Web Server

video video decoderdecoder

Network

video video encoderencoderOn-demand streaming

Page 3: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

3

Emerging Streaming Video ApplicationsAnywhere, Anytime and Anyone

Edge server

Edge server

Data Farms / Storage

Web Server

Media ServerWireless Comm Server

Cellular mobile networks: 2.5G, 3G, 4G systemsWireless LANs: IEEE 802.11, Hiper LAN 2, Bluetooth

Page 4: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

4

Video Transmission System

Transport layer

video input

Receiver side Sender side

Network

Application layer

Video encoder

Transport layer

Application layer

Video decoder

Rate control

video packet

transportpacket

videooutput

Encoder: compressionRate control: to constraint bit rate based on estimated CSI Protocol stack: RTP/UDP/IPNetwork: packet loss and delayDecoder: display video in real-time; error concealmentMax end-to-end delay (setup time): application-dependent

Page 5: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

5

Challenges and Approaches

ApproachesNetwork-adaptiveError control• Unequal error protection

Cross-layer design

ChallengesBandwidth (limited, time-varying)

• Internet: congestion• Wireless: fading, shadowingQoS (packet loss, delay)• Distortion• Strict end-to end delay constraint

Limited resources• Internet: bandwidth, buffer• Wireless: battery,bandwidth

Page 6: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

6

Cross-Layer Design

Error control ComponentsError resilient source coding

adapt source coding to channel

FEC (forward error correction)modify channel characteristics

ARQ (delay constraint)Power control

modify channel characteristics

Modulation, Rate adaptationQoS support

reserve resource to support QoS

Error concealmentrecover/conceal the error at decoder

Page 7: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

7

Related Work

Optimization on each error control component•Error resilient source coding: R. Zhang, et al, ’00•FEC: B. Hong, et al ’02•ARQ: P. A. Chou, et al, ’01•Error concealment: Y. Wang et al, ’00

Cross-layer design•Joint source-channel coding: M. Gallant, et al, IEEE CSVT’01•Joint source coding and power control: Y. Eisenberg, et al, CSVT’02•Joint source-channel coding and power control:Y.S. Chan, et al, JSAC ’02, sub•Joint source-channel coding and power control:S. Appadwedula, et al, ICIP’98

Difference in our work•The available error control components are considered in an integrated manner•We consider error resilient source coding•We consider error concealment

Page 8: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

8

Presentation Outline

Resource-distortion optimization frameworkInternet: JSCC -- Joint source-channel coding Wireless: JSCCPA -- Joint source-channel coding and power allocation DiffServ: JSCPC -- Joint source coding and packet classificationExtensions to scalable video transmissionConclusions and future work

Page 9: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

9

Resource-Distortion Optimization

End-to-End Distortion

Cost Constraint

General formulation

µ : Source coding parameter vectorν : Resource allocation parameter vectorC0 is explicitly determined by specific applicationT0 is more implicitly determined by the application• obtained from higher-level rate controller, which

is not incorporated into this work.

0

0

},{

),( ),( s.t.

)],([min

TTCC

DE

≤≤

νµνµ

νµνµ

Transmission Delay Constraint

Page 10: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

10

End-to-End DistortionConsider end-to-end distortion

Original Encoded Decoded

Distortion of the i-th pixel in the n-th frame

])~E[(]~E[2)(])~E[(]E[ 2)()()(2)(2)()()( ni

ni

ni

ni

ni

ni

ni ffffffd +−=−=

Distortion for the k-th packet that has M pixelsMdD M

in

ik /]E[]E[1

)(∑ ==

Page 11: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

11

ROPE (Recursive Optimal Per-pixel Estimate)

1st order expected value (same fashion for 2nd order)• Intra:• Inter:

In order to calculate the distortion for one frame, only need

the 1st order and 2nd order expected reconstructed pixel value

in the previous frameThis algorithm is per-pixel accurate and can fully capture error propagation.

• R. Zhang, S.L. Regunathan, and K. Rose, “Video coding with optimal inter/intra-mode switching for packet loss resilience,” IEEE J. Select. Areas Commun., June 2000.

]~E[])~E[ˆ)(1(]~E[ )1()1()()( −− ++−= nik

nj

nik

ni ffef ρρ

]~E[]~E[)1(]~E[ )1()()( −+−= nik

nik

ni fff ρρ

Page 12: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

12

Expected Distortion

Expected distortionif the packet is

received

Expected distortionif the packet is

lostProbability of LossProbability of Reception

Expected distortion for the k-th packet

[ ] ( ) [ ] [ ]kLkkRkk D E ρ D Eρ DE ,,1 +−=

E[DR,k], E[DL,k] : depends on source coding parameter µk

ρk(ε, ν): depends on CSI and resource allocation parameter

Prob of loss for Prob of loss fortransport packet source/video packet

νkε ρk

FEC parameter

Page 13: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

13

Distortion Estimation Based on Feedbacks

Expectations are taken with respect to the updated probability distribution of channel losses given the available feedback

Page 14: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

14

Transmission Delay and Cost

Transmission Delay:

∑=

=M

k T

kkkk

RPµBC

1

)()( νEnergy:

Transmissionrate

∑=

=M

k T

kk

RµB T

1

)(

Number of bits

Number of packets in a frame

Packet index

Source codingparameter

Power allocationparameter

Transmission power

Page 15: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

15

Motion-Compensated Video Encoder

Page 16: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

16

Motion-compensated Video Decoder

Page 17: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

17

Motion-compensated Video Codec

Frame n Frame n-1

P

Motion vector

I

kµSource coding parameter • Prediction mode (Intra, Inter, Skip)• Quantization stepsize

Different encoding modes result in different levels of coding efficiency and error robustness

Page 18: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

18

Channel ModelNetwork model

• Independent time-invariant packet erasure channelPacket loss

• Internet: • Before FEC : ε -- Bernoulli process• After FEC :

• Wireless:

• i.i.d fading

• Bk : Packet size

• pe,k: BER after channel coding (depending FEC, channel SNR, and fading model)

kBkek p )1(1 ,−−=ρ

),( kk vf ερ =

Page 19: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

19

Channel Model—InternetNetwork model :

• Independent time-invariant packet erasure + random delays• Receiver responds to a received/lost packet with a

positive/negative acknowledgement. • Perfect feedback channel:constant delay and no error

})({)1( τεερ >−+= kTP nk ∆

ε

ε−1

t

)(tf

minFTT ∞

Packet delay–Exponential distribution: fast decaying tail–Gamma distribution–Pareto distribution: slowly decaying (heavy) tail

Packet Loss–Bernoulli–2-state Markov (Gilbert)–High-order Markov

Page 20: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

20

Channel Model—Wireless

Packet-erasure channel, from the point of view of the applicationsChannel BER (Bit Error Rate)

⎟⎟⎠

⎞⎜⎜⎝

+−=

b

b

ENEα

α

0

121BER

)2(BER0N

EQ b=

Rayleigh fading

AWGN

Probability of Packet Losskep ,

kB: BER after channel coding

: Packet sizekB

kek p )1(1 ,−−=ρ

Wireless channel: probability of packet loss depends on source coding parameter, channel coding parameter, and power level

Page 21: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

21

Implementation IssuesPacketization: each row of blocks (GOB) is packetized into a packet

Error concealment: temporal concealment, median motion vectors

Packet k-1 (recvd)

Packet k (lost)

Expected distortion

]E[]E[)1(]E[ ,, kLkRk DDD kk ρρ +−=

]E[]E[)1(]E[)1(]E[ ,,1, 1 kZkCkkRk DDDD kkkk −+−+−= − ρρρρρ

Page 22: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

22

Internet Video Transmission

T ra n sp o r t la y e r

T ra n sp o r t la y e r

V id e o in p u t

V id e oo u tp u t

V id e o e n c o d e r

V id e o d e c o d e r

E rro r c o n c e a lm e n t

E rro r re s ilie n tS o u rc e c o d in g

I n te r n e t

A p p lic a t io n la y e r F E C

A p p lic a t io n la y e r

We jointly consider error resilient source coding, FEC, and error concealment

Page 23: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

23

Joint Source-Channel CodingShannon’s separation theorem does not strictly hold due to the delay and complexity constraints

Source rateD1

D2

R2 R1 R3

D3

Overall distortion

R4

D4

D5

R5

Error rate The total bandwidth for source and channel rates is the same for the three curves

Overall distortion = source distortion + channel distortion

Optimal bit allocation depends on the channel characteristics

Page 24: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

24

Sequential Joint Source-Channel Coding

Step 1: Bit allocation between source and channel)]([min

}{νDE

R∈ν

0/)(/))(()( .. TRBRBTts TcTs ≤+= ννµν

Step 2: Source coding based on given bit budget

0,/)()( .. sTss TRBTts ≤= µµ

)]([min}{

µDEQ∈µ

Bs : source bitsBc : channel bitsTs,0: transmission delay constraint for the source

µ : source coding parameterν : channel coding parameterT0: transmission delay constraint

Page 25: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

25

Integrated Joint Source-Channel Coding

Solve (1) Bit allocation between source and channel and (2) source coding and channel coding, in one step

0/),(),( .. TRBTts T ≤= vµvµ

)],([min},{

νµνµ

DERQ ∈∈

B: total bits used for both source and channel coding

RT : transmission rate

T0 : transmission delay constraint for this frame

F. Zhai, Y. Eisenberg, T. N. Pappas, R. Berry, A. K. Katsaggelos, “An integrated joint source-channel coding framework for video transmission over packet lossy networks,” IEEE ICIP’04, submitted.

Page 26: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

26

Experimental Results

System 1: Integrated JSCC)],([min

},{νµ

νµDE

RQ ∈∈

System 2: Fixed channel coding rate

System 3: Sequential JSCC

)]([min}{ 0µ

µ ν,DEQ∈

)]([min}{

νDER∈ν

0/)(/))(()( .. TRBRBTts TcTs ≤+= ννµν

0,/)()( .. sTss TRBTts ≤= µµ

)]([min}{

µDEQ∈µ

Page 27: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

27

Experimental ResultsAverage PSNR vs. transport packet loss probability

System 1 vs. System 2 with indicated channel ratesSystem 1 vs. System 2 and 3

(RT=480 kbps, F=15 fps, cr in the legend denotes channel rates).

Page 28: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

28

Experimental ResultsAverage PSNR vs. transmission rate

System 1 vs. System 2 with indicated channel ratesSystem 1 vs. System 2 and 3

(ε=0.15, F=15 fps, cr in the legend denotes channel rates).

Page 29: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

29

JSCC—Packetization

Packet 1

Packet M

GOB 1

GOB M

Packet N-1 (Parity)

Packet N (Parity)

1sB

2sB

3sB

MsB

1cB

2cB

Stuffing bits

Largest data packet size

Packet 1 Packet N

GOB 1

GOB M

2cB2

sB

1sB 1

cB

3cB3

sB

MsB

1l

2l

3l

Ml

1v 1c

Packet 2

m bits

Packetization scheme 1 Packetization scheme 2

∑−−

=

−−−⎟⎟⎠

⎞⎜⎜⎝

⎛ −−=

−=kN

i

iNi

b

iNkNP

1

0

1 ))1(1

1(

),1(

εεε

ερ

∑−

=

−−⎟⎟⎠

⎞⎜⎜⎝

⎛−=

=kvN

i

iNi

kb

k

iNvNP

0)1(1

),(

εε

ρ

RS(N,M) RS(N,vk)

F. Zhai, Y. Eisenberg, C. E. Luna, T. N. Pappas, R. Berry, A. K. Katsaggelos, “Packetization schemes for forward error correction in Internet video streaming,” Proc. 41st Allerton Conf. Communication, Control, and Computing, Oct. 2003.

Page 30: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

30

JSCC — Solution AlgorithmLagrangian relaxation and DP

∑∑==

+=M

kTk

M

kk RµBDEJ kk

11},{/),()],([min νλνµ

νµ

Packetization 1

⎭⎬⎫

⎩⎨⎧

= ∑∑==

M

kk

M

kk ,νJJ

1}{}{1

*

}{)(minmin)|(min µµ

µννν

Packetization 2

∑∑=

−=

−=M

kkkk

M

kk ,ν,ν,µµJJ kk

11},{1},{

)(minmin 1νµνµ

Page 31: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

31

Experimental Results

Packetization scheme 1 vs 2

R1

R2

R3

Transmission rate 360Kbps Transmission rate 480Kbps

RTP/UDP/IP header = 40bytes

Page 32: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

32

FEC vs. ARQFEC:

• Usually preferred for real-time video applications• Cannot completely avoid packet loss• Incur constant overhead even when the channel has no loss• Depend on the accurate CSI estimation

ARQ:

• Can automatically adapt to the channel loss characteristics

• Longer delay

• Useful for long end-to-end delay applications, e.g., on-demand video streaming

• Useful for short RTT situations, e.g., LAN

Page 33: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

33

JSCC—Hybrid FEC/Retransmission

T ransport layer

T ransport layer

Video input

V ideooutput

Video encoder

Video decoder

E rror concealm en t

E rror resilien tS ource cod ing

Internet

Application layer FEC ,AR Q

Application layer

We jointly consider error resilient source coding, FEC, application-layer ARQ, and error concealment

F. Zhai, Y. Eisenberg, T. N. Pappas, R. Berry, and A. K. Katsaggelos, “Rate-distortion optimized hybrid error control for real-time packetized video transmission,” IEEE ICC’04, accepted.

Page 34: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

34

Delay-Constraint Retransmission

Time

Frame 1 2 3 4 …

Frame 1 2 3 4…

Tmax

Encoder

Decoderw(4)

w(4)+T_re(1)

w(4)+T_re(1)+ T_re(2)

TF

TF

Current time

Tmax: Maximum end-to-end delay (imposed by application)

w(n): waiting time for the n-th frame in the encoder buffer

T_re(n): transmission delay for retransmitting packets in the n-th frame

TF : One frame’s time (=1/TF)

Page 35: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

35

Problem Formulation

⎪⎪⎪

⎪⎪⎪

≤++

=−+−≤+

+=

∑∑∑

∑∑

∑∑∑

== =

−−

= =

−−

==

−−

=

max1

)(

1 1

)()()(

max1 1

)()()(

1

)(

1

)()(

0

)(

},,{

...1 )1( s.t.

)],([)]([][min

TTTw

AjTjATTw

DEDEDE

M

k

nk

A

i

M

k

ink

ink

n

F

j

i

M

k

ink

ink

n

M

k

nk

A

i

ininA

i

in

σ

σ

γγ

µσσµ

A: # of frames that retransmission is eligible

σ(n)={σ1(n),…,σM

(n)}∈{0,1} : Retrans parameter vector for frame n

γ : FEC parameter (using RS code)

Tk(n): Transmission delay for packet k in frame n.

Tmax can be replaced by Tmax-∆T(n), where ∆T(n) is decided by a rate controller.

Page 36: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

36

Problem Formulation

⎪⎪⎩

⎪⎪⎨

≤+

+=

∑∑∑

∑∑∑

== =

−−

==

−−

=

)(0

1

)(

1 1

)()(

1

)(

1

)()(

0

)(

},,{

s.t.

)],([)]([][min

nM

k

nk

A

i

M

k

ink

ink

M

k

nk

A

i

ininA

i

in

TTT

DEDEDE

σ

γγ

µσσµ

We assume T0(n) is given from higher-level rate controller

Optimization with a sliding window of A+1 frames

Optimization decisions: retransmission policy for the first Aframes, and source coding and FEC for the current frameBased on the updated probabilities of packet loss, recalculate the expected distortion of all packets in the windowOptimization window shifts at the frame level

Page 37: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

37

Probability of Packet Loss for the Current FrameProbability of packet loss

)(,

)(,

)( nRETk

nFECk

nk ρρρ = Due to

retransmissionDue to FEC

The probability of loss in future retransmissions can only be estimated since the acknowledgement information and retransmission decisions are not available in the encoding of the current frame

mnRETk ερ =)(

,

2)1(~

RTTAm

+=

Approximation formula

The estimate of the total number of retransmissions

Page 38: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

38

Estimating m~

Average PSNR vs. m~

QCIF Foreman sequence at F=15 fps, RT=480 kbps and A=4

Page 39: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

39

Estimating m~

Average PSNR vs. m~

QCIF Akiyo sequence at F=15 fps, RT=360 kbps and A=4

Page 40: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

40

Probability of Packet Loss for the Past FrameProbability of packet loss

)(,

)(,

)( nRETk

nUPDk

nk ρρρ = Due to

retransmissionUpdated loss probability based on feedback

ρ (n)k,UPD can be accurately calculated

ρ (n)k,RET can be calculated using the similar way as before

Page 41: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

41

Probability of Packet Loss for the Past FrameAssume protected by RS(N, M),

• L: # packets lost• V: # retransmitted packets• J=L+M-N

)()(,

inkin

RETk

=− σερIf V<J

If V=J

If V>J⎩⎨⎧

=−−=

=−

−−

1 if )1(10 if

)(

)()(

, ink

J

inkin

RETk σεσε

ρ

⎪⎪⎩

⎪⎪⎨

=−⎟⎟⎠

⎞⎜⎜⎝

=−⎟⎟⎠

⎞⎜⎜⎝

=−

+−=−

−+−=

1 if )1(

0 if )1(

)(1j

)(1j

)(,

ink

V

JVjVj

ink

V

JVjVj

inRETk

jV

jV

Vj

σεε

σεερ

Page 42: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

42

Solution Algorithm

Lagrangian Relaxation

⎭⎬⎫

⎩⎨⎧

++

+=

∑∑∑

∑∑∑

== =

−−

==

−−

=

M

k

nk

A

i

M

k

ink

ink

M

k

nk

A

i

ininA

i

in

TT

DEDEJ

1

)(

1 1

)()(

1

)(

1

)()(

0

)(

},,{

)],([)]([min

σλ

γγ

µσσµ

Minimization of the Lagrangian

⎭⎬⎫

⎩⎨⎧

+= ∑∑∑==

−−

=

−M

k

nk

A

i

ininA

i

in JJJ1

)(

}{}{1

)()(

}{0

)(

},,{),(minmin)](minmin γ

γγµσ

µσσµ

Retransmission Exhaustive

searchFEC

Exhaustive search

Source codingDP

Page 43: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

43

Simulation – Hybrid FEC/Retransmission

NFNR– Neither FEC Nor Retransmission

)]([min 00}{σµ

µ,,DE γ

Pure Retransmission

)]([min 0}{σ,µ

σµγ,DE

,

Pure FEC)],,([min 0}{

σµµ

γγ

DE,

HFSR (Hybrid FEC and Selective Retransmission))],,([min

},{σµ

σµγ

γDE

,

Page 44: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

44

Sensitivity to RTTAverage PSNR vs. RTT

ε=0.02 ε=0.2

RT=480 kbps, F=15 fps , QCIF Foreman

Page 45: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

45

Sensitivity to Packet Loss RateAverage PSNR vs. probability of transport packet loss ε

RT=480 kbps, F=15 fps , QCIF ForemanRTT=TF RTT=3TF

Page 46: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

46

Sensitivity to Transmission RateAverage PSNR vs. channel transmission rate RT

RTT=TF RTT=3TF

ε=0.2, F=15 fps , QCIF Foreman

Page 47: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

47

JSCC– Conclusions

Retransmission is suitable for short network RTT, low probability of packet loss, and low transmission rate.

FEC is more suitable otherwise.

The proposed hybrid FEC/selective retransmission scheme outperforms both (average gain: 0.7 dB in PSNR).

In our simulations, we assume the CSI is accurately estimated, which favors FEC, because ARQ does not require accurate CSI.

Page 48: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

48

Wireless Video Transmission

T r a n s p o r t l a y e r

T r a n s p o r t l a y e r

V id e o in p u t

V id e oo u t p u t

V i d e o e n c o d e r

V id e o d e c o d e r

E r r o r c o n c e a lm e n t

P o w e r c o n t r o l

E r r o r r e s i l i e n tS o u r c e c o d in g

W i r e l e s sN e t w o r k s

A p p l i c a t i o n l a y e r

F E C

A p p l i c a t i o n l a y e r

P h y s i c a l l a y e r

P h y s i c a l l a y e r

L i n k l a y e r L i n k l a y e r F E C

JSCCPA– Jointly Source-Channel Coding and Power Allocation

F. Zhai, Y. Eisenberg, T. N. Pappas, R. Berry, A. K. Katsaggelos, “Joint source-channel coding and power allocation for energy efficient wireless video communications,” Allerton Conf. Communication, Control, and Computing, Oct. 2003.

Page 49: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

49

Hybrid Wireless Network

kBbkkkk p )1(1),,( −−=ηνµβ

At the IP level, the hybrid network can be modeled as the combination of two independent packet erasure channels: the wired part with loss rate α and the wireless part with loss rate β

Overall probability of loss for a transport packet

Probability of loss for a transport packet in the wireless channel

We need Product FEC to combat different types of channel error

kk βααε )1( −+=

Base Station

Wiredchannel

αβ

Page 50: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

50

Transport-Layer Packetization

Packet 1

Packet M

GOB 1

GOB M

Packet N-1 (Parity)

Packet N (Parity)

1sB

2sB

3sB

MsB

1cB

2cB

Stuffing bits

Largest data packet size R

S co

ding

One row corresponds to one source packetInter-packet FECRS coding RS(N,M)—transport-layer FECTransport-layer FEC parameter: γ

Page 51: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

51

Link-Layer Packetization

Packet 1

P acket M

GO B 1

GO B M

2,cB2,sB

1,sB 1,cB

MsB ,

3,sB

McB ,

Parity packet

Parity packet

RCPC coding

1, −NsB

NsB ,

1, −NcB

NcB ,

One row corresponds to one source/transport packetIntra-packet FECRCPC coding—link-layer FECLink-layer FEC parameter vector },...,{ 1 Nνν=ν

Page 52: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

52

Problem Formulation – Hybrid Network

0

)(

1

0

)(

1

},,,{

/

/ s.t.

)],,,([min

TRBT

CRPBC

DE

N

kTk

N

kTkk

≤=

≤=

=

=

γ

γ

γγ ηνµ

ηνµ

µ ={µ1,…,µM} : Source coding parameter vectorγ ∈{(N1,M),.., (Nq,M)} : Transport-layer FEC parameterν ={ν1,…, νN} : Link-layer FEC parameter vectorη ={η1,…, ηN} : Power level parameter vector

Page 53: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

53

Solution AlgorithmLagrangian relaxation

)()(][),,,,,( 020121 TTCCDEL −+−+= λλλλγ ηνµ

• Have proposed an iterative search algorithm to solve the above problem (Allerton’03)

Minimization of the Lagrangian

),,,,,(min),( 21},,,{21 λλγλλγ

ηνµηνµ

Lg =

Page 54: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

54

Solution AlgorithmLagrangian relaxation

)()(][),,,,,( 020121 TTCCDEL −+−+= λλλλγ ηνµ

Minimization of Lagrangian

),,,,,(min),( 21},,,{21 λλγλλγ

ηνµηνµ

Lg =

Dual Problem),(max 21}0,0{ 21

λλλλ

g≥≥

Goal: find the convex-hull solutionThe duel problem is concavecomplementary slackness applies

Page 55: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

55

Algorithm– Lagrangian relaxation

case (a) case (b)

λ1

λ 2

C=C0

T=T0

λ 1

λ 2

T=T0

C=C 0

λ1

λ2

C=C0

T=T0

λ1

λ2

T=T0

C=C0

case (c) case (d)

Page 56: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

56

Algorithm– Lagrangian Relaxation

Step 1 (case a, d): Let 2λ =0, find *1λ to satisfy 0

*1 ))0,(( CHC ≤λ .

If 0*1 ))0,(( THT ≤λ , )0,( *

1λH corresponds to the optimal solution. Otherwise,

Step 2: (case b, d): Let 1λ =0, find *2λ to satisfy 0

*2 )),0(( THT ≤λ .

If 0*1 ))0,(( CHC ≤λ , ),0( *

1λH corresponds to the optimal solution. Otherwise, Step 3 (case c):

i. Let 01 =lλ , *

11 λλ =r , 02 =bλ , *

22 λλ =t . ii. 2/)( 111

rlm λλλ += , find *2λ within [ b

2λ , t2λ ] to satisfy 0

*21 )),(( THT m ≤λλ .

iii. If 0*21 )),(( CHC m >λλ , then let ml

11 λλ = , *22 λλ =t , and go to step 3ii.

Otherwise, iv. If ελλ −< 0

*21 )),(( CHC m (ε is a relatively small number), then let

mr11 λλ = , *

22 λλ =b , and go to step 3ii. Otherwise, v. The optimal solution corresponds to ),( *

21 λλmH .

Page 57: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

57

Calculation of Probability of Packet Loss

∑ ∑ ∏ ∏∑+−= ∈ ∈ ∈+−= ⎟

⎜⎜

⎛−==

N

MNj kNIQ Qi Qlli

N

MNjbk

jtj

tj

tj

jNP1 ),(

)(

1)()1( ),(),,,( εεγρ

γ

γ

ηνµ

the t-th subset with jelements of Q(N)⎟⎟

⎞⎜⎜⎝

⎛==

jN

tNjNQtj ,...,1,,...,1 ),(

}||),(|)({),( jQNQkNQQkNI tj

tj

tjj =∈∈=

Loss probability of a source packet depends on the parameters chosen for all the other packets in the frame

• εk differs from packet to packet

• Inter-packet dependency introduced by inter-packet FEC

Page 58: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

58

Calculation of Probability of Packet Loss

∑ ∑ ∏ ∏

+−= ∈ ∈ ∈

+−=

⎟⎟

⎜⎜

⎛−=

=

N

MNj kNIQ Qi Qlli

N

MNjbk

jtj

tj

tj

jNP

1 ),(

)(

1)(

)1(

),(),,,(

εε

γργ

γ

ηνµ

Probability that the k-th packet is correctly decoded by the RCPC decoder and the total number transport packets that are not correctly received from the group of N packets is j

),( jNPb

},3,2,1{)(3},3,2{)(3},3,1{)(3},2,1{)(3

{3}(3){2},(3) ,{1}(3) },3,2,1{)3(13

32

22

12

31

21

11

====

====

QQQQ

QQQQ

Page 59: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

59

Minimization of the Lagrangian– Hybrid

Iterative descent algorithm (alternating variables)

),...,,,,...,(minarg )()(1

)(1

)(1

)()(

tN

tii

ti

t

x

ti xxxxxLx

t +−=

Step 1: Set x(0) corresponds to any initial state

Step 2: let tn=(t mod N) (round-robin style)

if i≠tn, let ; otherwise, for i=tn)1()( −= n

in

i xx

Step 3: If not convergence, go back to Step 2

},...,,{ 21 Nxxxx = Parameter selected for the N packets

at step t,...1,0for },...,,{ )()(2

)(1

)( == txxxx tN

ttt

Page 60: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

60

Experimental Setup

“Real Time” Applications• Short-delay applications, where ARQ is not applicable

• Delay constraint equals one frame timeChannel Model

• Flat Rayleigh fading channel with AWGN• i.i.d. channel fading• RTT = 2TF , which preclude retransmission

Page 61: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

61

Experimental SetupPerformance of RCPC (in BER) over a

Rayleigh fading channel with interleaving

SNR(dB) 2 6 10 14 18

Cr = 1/2Cr = 4/7Cr = 2/3Cr = 4/5

1.4*10-3

1.1*10-1

3.2*10-1

4.2*10-1

2.2*10-5

5.3*10-4

7.4*10-3

4.0*10-2

2.1*10-6

4.1*10-5

1.7*10-4

6.6*10-4

2.4*10-7

1.2*10-5

3.5*10-5

1.1*10-4

6.4*10-8

3.8*10-6

1.2*10-5

3.6*10-5

Generator polynomial (133, 171), mother code rate ½, and puncturing rate 4Soft Viterbi decoding in conjunction with BPSK

Page 62: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

62

PFEC vs. Link-Layer FEC

Approach 1 – Link Layer FEC (LFEC)

)],,,([min 00}{ηνµ

νµγDE

,

Approach 2 – Product FEC (PFEC)

)],,,([min 0},{ηνµ

νµγ

γDE

,

F. Zhai, Y. Eisenberg, T.N. Pappas, R. Berry, A..K. Katsaggelos, “Rate-distortion optimized product code forward error correction for video transmission over IP-based wireless networks,” IEEE ICASSP’04, accepted.

Page 63: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

63

PFEC vs. LFEC

Average PSNR vs. channel SNRAverage PSNR vs. α

QCIF Foreman, 30 fps

Page 64: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

64

UEP vs. EEP

Approach 1 – EEP-PFEC

)],,,([min 00},{ηνµ

µγ

γDE

Approach 2 – UEP-PFEC

)],,,([min 0},{ηνµ

νµγ

γDE

,

Page 65: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

65

UEP vs. EEP

PSNR vs. channel SNR, α=0.1

QCIF Foreman, 30 fps

Page 66: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

66

Problem Formulations—Wireless Channel

01

01

},,{

/

/ s.t.

)],,([min

TRBT

CRPBC

DE

M

kTk

M

kTkk

≤=

≤=

=

=

ηνµηνµ

Page 67: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

67

Solution Algorithm–– Wireless

Lagrangian relaxation

∑∑ ==++==

M

k kkkM

k k TCDEJL1 211

][),,( λληνµ

Dynamic Programming

),,,,,( 111 kkkkkkkk JJ ηνµηνµ −−−=

Page 68: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

68

Simulation 1– Wireless Channel

Goal: To show the benefit by adjusting power levels

System 1 -- Optimal error-resilient source coding

)],,([min 00}{ηνµ

µDE

System 2 -- Joint source coding and power allocation

)],,([min 0},{ηνµ

ηµDE

Page 69: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

69

Simulation 1

PSNR vs. transmission rate

(reference SNR = 12 dB)PSNR vs. channel SNR

(Transmission rate = 360 kbps)QCIF Foreman, 30 fps

Page 70: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

70

Simulation 1

Allocation of power level (1,2,3,4,5) in percentage in JSCPA system

Ref SNR(dB)

6 12 20

Cr = 1/2Cr = 4/7Cr = 2/3Cr = 4/5

(2.4,18.5,73.9,5.1,0)(18,0,14.3,66.1,1.6)

(40,0,0,13,47)(45.8,0,0,0,54.2)

(12.6,32.4,34,19.6,1.4)(2.3,29.9,56.4,11,0.3)(0.7,14,66,18.7,0.6)

(2,4,41.8,47.3,5)

(62.3,0,12.9,0.24.8)(10,35,39.2,13.4,2.3)

(11.6,10.8,69.1,6.9,1.6)(8.2,31.5,43.8,15.3,1.3)

The reference power level 3Each value here denotes the percentage of packets using the corresponding transmission power level.The transmission power is proportional to the power level parameter

Page 71: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

71

Simulation 2

Goal: To show the benefit by adjusting channel rates

System 2 -- Joint source coding and power allocation

)],,([min 0},{ηνµ

ηµDE

System 3 -- JSCC and power allocation (JSCCPA)

)],,([min},,{

ηνµηνµ

DE

Page 72: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

72

Simulation 2

PSNR vs. channel SNR(transmission rate = 360 kbps)

PSNR vs. transmission rate(reference SNR = 12 dB)

QCIF Foreman, 30 fps

Page 73: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

73

Simulation 2

Channel Coding rates in percentages in JSCCPA system

Ref SNR(dB)

6 8 10 12 14 16 18 20

6.761.331.30.7

4.735.057.72.6

1.65.6

69.623.2

1.017.873.97.3

19.669.610.8

0

Cr = 1/2Cr = 4/7Cr = 2/3Cr = 4/5

96.23.800

67.731.90.40

41.257.31.50

The better channel, the less channel coding protection

Page 74: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

74

JSCCPA– Conclusions

Optimal cross-layer resource allocation to provide UEP for wireless video transmission

• Error resilient source coding• Transport-layer FEC• Link-layer FEC• Physical-layer power allocation• Error concealment

Transport-layer FEC (inter-packet FEC) is not necessary if the wired link has no error.Adapting either power or link-layer FEC (instead both) may be adequate to achieve the near-optimal result in some situations.

Page 75: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

75

DiffServ Video Transmission

T ra nsport layer

T ransport la yer

V ideo inpu t

V ideoou tpu t

V ideo encoder

V ideo dec oder

E rror con cea lm en t

E rror res ilien tS ou rce cod in g

D iffS e rvN etw ork

A pplica tion layer

A pplica tion la yer

Q oS S u p p ort

JSCPC– Jointly Source Coding and Packet Classification

F. Zhai, C. E. Luna, Y. Eisenberg, T. N. Pappas, R. Berry, A. K. Katsaggelos, “Joint source coding and packet classification for real-time video transmission over differentiated services networks,” IEEE Trans. Multimedia, to appear, 2004

Page 76: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

76

Differentiated Services Networks

Allocating resources discriminatorily to aggregated traffic flowsMultiple service classes: different class has different end-to-end statistical behaviorSender is charged for each transmitted bit based on its service class

Page 77: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

77

Delay Components

ddbnebe TTTTTT ∆+∆+∆+∆+∆=Constant end-to-end delay:

Encoderbuffer

decoder buffer

videoinput

videooutput

videoencoder

videodecoder

∆Tn ∆Tdb ∆Td ∆Teb ∆Te

networks

kTp (M-k+1)TpTmax=T-(M+1)Tp

Frame level

Packet levelAn example(M=6, k=3)

max)1()()()( TTMTkTkTkT pdbneb =+−=++ ∆∆∆

max)()()( 0)( :delay excessive avoid to TkTkTkTkT nebdb ≤+=⇒≥ ∆∆∆∆

Page 78: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

78

Delay Components—cont.

Packet departures

k-1 k

k-1

w(k-1)

k Bk-1(µk-1)/Rk-1(πk-1)

Tp w(k)

Time

Packet arrivals

Bk-2(µk-2)/Rk-2(πk-2)

k-2

k

kk

RB

kwkTeb

)()()( :delaybuffer encoder

µ+=∆

k

kk

RB

kwTkTTk eb

)()()()( :delaynetwork allowablemax maxmax

µτ −−=∆−=

pTR

Bkwkw

k

kk−+−=

−−

1

11 )()1()( : timewaiting

µ

Page 79: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

79

JSCPC– Solution Algorithm

Lagrangian relaxation 1

∑=

++=M

kkkk TCDL

12121},{

}{),,,(min λλλλµπµπ

Lagrangian relaxation 2

∑=

+=M

kkk CDL

1},{},{min),(min λλ

πµπµπ,µ

01

.. TTtsM

kk ≤∑

=

Dependency of the Lagrangian

∑=

=M

kkJL

121},{),,,(min λλµπ

µπ

),,,,...,,( 1111 kkkkkk JJ µπµπµπ −−=

Page 80: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

80

JSCPC— Solution Algorithm contd.

q1

c3

q2

q1

c3

q2

q1

c2

q2

q1

c1

q2

q1

c1

q2

q1

c2

q2

q1

c2

q2

q1

c1

q2

q1

c3

q2

k-1 k k+1

Page 81: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

81

JSCPC— Solution Algorithm contd.

),,,,...,,( 1111 kkkkkk JJ µπµπµπ −−=

]E[]E[)1(]E[)1(]E[ ,,, 11 kZkCkRk DDDD kkkkk −− +−+−= ρρρρρ

))(,,,,( 11 kwJJ kkkkkk πµπµ −−=

Do DP with respect to “system state”, w(k), instead of to choice of source coding parameters and service classes

)}()({)1( kkTP nk τεερ >∆−+=

peb TkwTR

BkwTkTTk

k

kk++−=−−=∆−= )1(

)()()()( maxmaxmax

µτ

pTR

Bkwkw

k

kk−+−=

−−

1

11 )()1()(

µ

Page 82: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

82

JSCPC— Solution Algorithm contd.

0011

)( )( : )()( TMsTkTjTksM

k

k

j

≤⇒≤= ∑∑==

p

k

jp

p

TkkswTkjTw

TkTkwkw

)1()1()1()1()()1(

)1()1()(1

1

−−−+=−−+=

−−+−=

∑−

=

DP solution

∑∑==

∈−−=

M

k

M

kkwkukwJkJ kkkk

11))}(()({))(,,,,()(min 11 πµπµ

U

)})1(,min()()()(

0:)({))(( 0max pp kTwTTTkwRB

kukwkk

kk−+≤−+≤×∈=

πµ

QΠU

MkTTkwkw p ,...,1for )1()1()( 0 =≤−+−

Page 83: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

83

JSCPC— Solution Algorithm contd.

w3

w4

Packet 2 Packet 3

w1

w2

w3

w4

w1

w2

after pruning

Intra

Inter

Intra

Inter

Intra

Inter

Inter

Intra

w2

Packet 1

initial condition

w3

w4

Packet k-1 Packet k Packet k+1

w1

w2

w3

w4

w1

w2

w3

w4

w1

w2

after pruning

Intra

Inter

Intra

Inter

Intra

Intra

Inter

Inter

Intra

Inter

Inter

Inter

Inter

Intra

Intra

Intra

Page 84: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

84

JSCPC — Experimental Results

Minimum distortion approach Minimum cost approach

QCIF Foreman, F=30 fps, reference class = 3

Page 85: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

85

JSCPC — Experimental Results

minimum distortion approach

minimum cost approach

Page 86: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

86

Distribution of packet classification

minimum distortion approach

minimum cost approach

Page 87: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

87

Internet Scalable VideoJSCC based on H.263+ SNR scalability codec

I

P

P

EI

EP

EP

Base layer

Enhancement layer:

Problem Formulation

)],([)],([][min )()()()()()(

},,,{ )()()()(

eeebbb DEDEDEeebb

νµνµνµνµ

+=

)(0

)( s.t. bb TT ≤

0)()( TTT eb ≤+

F. Zhai, R. Berry, T. N. Pappas, and A. K. Katsaggeos, “Rate-distortion optimized error control scheme for scalable video streaming over the Internet,” Proc. IEEE ICME, July 2003

Page 88: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

88

Wireless Scalable VideoOptimal power allocation based on MPEG-4 FGS codec

I

B

Base layer

FGS layer:

P

B

P

Rmax . . . . . . .

Rmin

FGST

layer:

{ }][min )()(

}{ )(

eb

PED

ei

∆−

0 s.t. EE tot =

Problem Formulation

Assume base layer is pre-encoded and always received correctlyC. Costa, Y. Eisenberg, F. Zhai, and A. K. Katsaggelos, “Energy efficient wireless transmission of MPEG-4 Fine Granular Scalable video,” IEEE ICC’04, 2004, accepted.

Page 89: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

89

ConclusionsObjective:

• Optimal error control to achieve the best video qualityMethod:

• Optimal cross-layer resource allocationBase:

• Resource-distortion optimization frameworkScope:

• End-system design for video communicationHave studied following applications:

• JSCC—Internet video (Allerton’03, ICC’04, ICIP’04, TIM’04)• JSCCPA—wireless video (Allerton’03, ICASSP’04)• JSCPC– DiffServ video (ICIP’03, TMM’04)• Scalable video (ICME’03, ICC’04)

Page 90: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

90

Future Work

Rate control• Incorporate rate control into the optimization framework

Channel model• Take into account the correlation of packet loss, e.g.,

Gilbert model Cross-layer Design

• Consider modifying the current network protocols: Link-layer ARQ, UDPLite,

Page 91: Ph.D qualifying presentation - users.ece.northwestern.eduusers.ece.northwestern.edu/~fzhai/publications/PhD_Defense.pdf · Presentation Outline ¾Resource-distortion optimization

91

Q&A

Thank You!