peter mészáros pennsylvania state university

61
Peter Mészáros Pennsylvania State University Astrophysical Sources of TeV to GZK neutrinos

Upload: kasie

Post on 14-Jan-2016

31 views

Category:

Documents


3 download

DESCRIPTION

Astrophysical Sources of TeV to GZK neutrinos. Peter Mészáros Pennsylvania State University. Energy (eV ). CMB. 1 TeV. Radio. Visible. Flux. 400 microwave photons per cm 3. GeV g -rays. [slides: Halzen 03]. n. / / / / / / / / / / / / / / / / /. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Peter Mészáros Pennsylvania State University

Peter MészárosPennsylvania State University

Astrophysical Sources of TeV to GZK neutrinos

Page 2: Peter Mészáros Pennsylvania State University

Energy (eV)

Rad

io

CM

B

Vis

ible

GeV

-r

ays

1 TeV

Flu

x 400 microwave photons per cm3

[slides: Halzen 03]

Page 3: Peter Mészáros Pennsylvania State University

TeV sources!

cosmic rays

/////////////////

Page 4: Peter Mészáros Pennsylvania State University

++CMB,IRCMB,IR ee++ ++ e e--

• Photons above Photons above 1 TeV1 TeV do not do not reach us from reach us from

beyond 10-30 Milion light-years, beyond 10-30 Milion light-years, due to their due to their

interaction with IR diffuse interaction with IR diffuse background light. background light.

• Photons abovePhotons above 10103 3 TeVTeV energy energy do not reach do not reach

us from the edge of our galaxy us from the edge of our galaxy because of interaction with the because of interaction with the microwave background.microwave background.

Page 5: Peter Mészáros Pennsylvania State University

Cosmic Cosmic Ray Ray

spectrumspectrumAtmospheric

neutrinos

Extragalactic flux sets scale for manyaccelerator models

Page 6: Peter Mészáros Pennsylvania State University

CR spectrum

GZK cutoff or not ?

Page 7: Peter Mészáros Pennsylvania State University

[Slides: Waxman 04]

Page 8: Peter Mészáros Pennsylvania State University

Acceleration toAcceleration to 10 102121eV?eV?

~102 Joules ~ 0.01 MGUT

dense regions with exceptionalgravitational force creating relativisticflows of charged particles, e.g.

•coalescing black holes/neutron stars•dense cores of exploding stars•supermassive black holes

Page 9: Peter Mészáros Pennsylvania State University

CR acceleration

Page 10: Peter Mészáros Pennsylvania State University
Page 11: Peter Mészáros Pennsylvania State University

For a few seconds, a GRB dominates the gamma-ray brightness of

the entire Universe

Fig. Credit: Tyce DeYoung

Page 12: Peter Mészáros Pennsylvania State University
Page 13: Peter Mészáros Pennsylvania State University

[Waxman 95]

[Frail et al 00]

Page 14: Peter Mészáros Pennsylvania State University
Page 15: Peter Mészáros Pennsylvania State University

GZK Sources

• Sources: GRB √ ; AGN.... #?

• Rate: RGRB (z=0)~ 0.5 Gpc-3 yr-1

~ 0.5 10-3 (D/100 Mpc)-3 yr-1

• But, arrival time dispersion:

tdis~3 107yr (B/10-9 G)2 (B/10 Mpc)

(D/100MPC)2 (Ep/1020 eV)-2

• NGRB(>Ep, <D) ~ R. tdisp

~104 B-92 B10 D100

2 Ep202

• GZK event rate: ~ 1 /Km2 /100 yr)

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

[Waxman 95]

Page 16: Peter Mészáros Pennsylvania State University
Page 17: Peter Mészáros Pennsylvania State University

CR data vs. model

[slide: Waxman 05]

Page 18: Peter Mészáros Pennsylvania State University
Page 19: Peter Mészáros Pennsylvania State University

(see talk by S. Coutu)

Page 20: Peter Mészáros Pennsylvania State University

Next : how and where are neutrino beams made ??

[ Halzen 02 ]

Lab

Page 21: Peter Mészáros Pennsylvania State University

radiationenvelopingblack hole

black hole

Page 22: Peter Mészáros Pennsylvania State University

Irrespective of the cosmic-ray sources, some fraction will produceIrrespective of the cosmic-ray sources, some fraction will produce pions (and neutrinos) as they escape from the acceleration sitepions (and neutrinos) as they escape from the acceleration site• through hadronic collisions with gasthrough hadronic collisions with gas• through photoproduction with ambient photonsthrough photoproduction with ambient photonsCosmic rays interact with interstellar light/matter even if theyCosmic rays interact with interstellar light/matter even if they escape the sourceescape the source

• Transparent:Transparent:protons (EeV cosmic-rays) ~ photons protons (EeV cosmic-rays) ~ photons (TeV point sources) ~neutrinos(TeV point sources) ~neutrinos

• Obscured sourcesObscured sources• Hidden sourcesHidden sources

Unlike gammas, neutrinos provide unambiguous evidence for cosmic ray acceleration!

Sources:Sources:

Page 23: Peter Mészáros Pennsylvania State University
Page 24: Peter Mészáros Pennsylvania State University
Page 25: Peter Mészáros Pennsylvania State University

Detection principleDetection principle

p

+ N +X

Neutrino passes through the

earth

Interacts near the detector to

produce a muon

Cherenkov light is

observed

Page 26: Peter Mészáros Pennsylvania State University

Cherenkov light from muons and cascadesCherenkov light from muons and cascades

• Maximum likelihood method

• Use expected time profiles of photon flight times

cascade

Reconstruction

muon

Page 27: Peter Mészáros Pennsylvania State University

NNevents events ~ ~ PP-->-->Area TimeArea Time

Neutrino flux Neutrino flux requiredrequired to observe N events: to observe N events:

5x10-12

Area (km2) Time (yr)

ergcm2/s

nntarget target RangeRange

~ 10~ 10-4 -4 for 100 TeV neutrinosfor 100 TeV neutrinos

Detection Probability:Detection Probability:

Nevents=

Page 28: Peter Mészáros Pennsylvania State University

Aerial view of South Pole

AMANDA

Dome

Skiway(for planes!)

SouthPole

1 km

ANTARTICA, South Pole Station:

Amanda & IceCubeANTARTICA, South Pole Station:

Amanda & IceCube

IceCube

Page 29: Peter Mészáros Pennsylvania State University

Building AMANDA: The Optical Building AMANDA: The Optical Module and the StringModule and the String

Page 30: Peter Mészáros Pennsylvania State University

• Hot-water-drill 2km-deep holes & insert strings of PMTs in pressure vessels.

– AMANDA-B10: 302 PMTs, completed in 1997• Old & new A-B10

results presented– AMANDA-II: 677

PMTs, completed in 2000• Prelimin. results

presented • AMANDA challenges:

– Natural medium– Remote location– Unfettered bkgd.

source– Prototype detector

AMANDA-II

The AMANDA Detector

Page 31: Peter Mészáros Pennsylvania State University

IceCubeIceCube

1400 m1400 m

2400 m2400 m

AMANDAAMANDA

South PoleSouth Pole

IceTopIceTop

RunwayRunway• 80 Strings80 Strings

• 4800 PMT4800 PMT • Instrumented volume: Instrumented volume:

1 km3 (1 Gton)1 km3 (1 Gton)

• IceCube is designed to IceCube is designed to detect neutrinos of all detect neutrinos of all flavors at energies from flavors at energies from 101077 eV (SN) to 10 eV (SN) to 102020 eV eV

Page 32: Peter Mészáros Pennsylvania State University

even neutronseven neutrons do not escapedo not escape

neutronsneutrons escapeescape

neutrinos associated with the source of the cosmic rays?neutrinos associated with the source of the cosmic rays?

Page 33: Peter Mészáros Pennsylvania State University

Neutrino ID (solid)Neutrino ID (solid)Energy and angle (shaded)Energy and angle (shaded)

Neu

trin

o fl

avor

•FilledFilled area: particle id, direction, energyarea: particle id, direction, energy

•Shaded area: energy onlyShaded area: energy only

Page 34: Peter Mészáros Pennsylvania State University
Page 35: Peter Mészáros Pennsylvania State University

KM3NeT

• Km3 water Cherenkov detector• Deployment approx. 2010• Complement ICECUBE: sc,abs~(100,10) H20, sc,abs~(20,100) Ice

• Northern site: at lower E , complementary sky coverage

•EU collaboration•Site :Mediterranean Sea• based on: NESTOR, NEMO, ANTARES

Page 36: Peter Mészáros Pennsylvania State University
Page 37: Peter Mészáros Pennsylvania State University

p + ,p → UHE , • If protons present in (baryonic) jet → p+ Fermi accelerated (as are e-)• p, → → ,→e,,e, (-res.: Ep E 0.3 GeV2 in jet frame)

→ E,br 1014 eV for MeV s (int. shock)

→ E,br 1018 eV for 100 eV s (ext. rev. sh.) ICECUBE • →0 →2 → cascade GLAST, ACTs.. (Waxman-Bahcall 1997;99; Boettcher-Dermer 1998; 00; )

• Test hadronic content of jets (are they pure MHD/e , or baryonic …?)• Test acceleration physics (injection effic., e, B..) • Test scattering length (magnetic inhomog. scale?..or non-Fermi?..)• Test shock radius: cascade cut-off:

~ GeV (internal shock) ; ~ TeV (ext shock/IGM)

→ photon cut-off: diagnostic for int. vs. ext-rev shock

Page 38: Peter Mészáros Pennsylvania State University

UHE in GRB 6 possible collapsar GRB -sites

• 1) at collapse, make GW + thermal s (MeV)• 2) If jet outflow is baryonic, have p,n → p,n relative drift, pp/pn collisions → inelastic nuclear collisions → VHE (GeV)

• 3 Int. shocks while jet is inside can accel. protons → p, pp/pn collisions

→ UHE (TeV)• 4 Int. shocks outside accel. protons → p collisions → UHE (100 TeV)

• 5) ← Ext. rev. shock → EeV (1018 eV)

• 6) If supranova shell present outside (SN ocurred >2 days before GRB?) → p, pp of jet protons on shell targets → UHE (> TeV) [..now constrained]

e- capt p,n

p, pp

p

1,2

3,4

5,6

Page 39: Peter Mészáros Pennsylvania State University

“Hadronic” GRB Fireballs:

Thermal p,n decoupling → VHE ,• p,n in fireball move together while tpn < texp (rad. acts on p, elastic scatt.

couples p,n)• p,n decouple when tpn >texp , where pn1, vrel c, pn inelastic; this occurs

for > ~400 (Derishev etal 99; Bahcall,Meszaros 00; Fuller etal 00)

• Inelastic pn ±,e±,e ,

→ 0 → 2 : 5-10 GeV → ICECUBE?

det @ z1, R7/yr from all GRB, but only if larger PMT density

-rays: 02 , → GLAST,

10 GeV, detect @ z < 0.1

(Bahcall & Meszaros 2000 PRL 85:1362); Lemoine 2002; Beloborodov, 2002

pn

pn

rdec

Page 40: Peter Mészáros Pennsylvania State University

While jet is inside progenitor:

Page 41: Peter Mészáros Pennsylvania State University

(2) Jet inside star: GRB , Precursor

• Jet propagating through progenitor, BEFORE emerging from stellar envelope, can have int. shocks which accel. p+ → p on unobserved X-rays , → ±, pp, pn on stellar envelope → ±,

few TeV neutrino precursor • If progenitor has H-layer R1012 cm (BSG) →

Rate( , TeV ) prec > Rate( , 100 TeV )int.shock

( easier to detect in ICECUBE )• but, if WR (He core), R1011 cm → Rate( , TeV) prec < Rate( , 100 TeV ) int.shock

→ test progen. size (e.g. @ high z : popIII?)

• If jet DOES NOT escape ⇒ “choked” jet, s escape, s don’t → “hidden

source”

• If jet break-out: → photon flashes

(3) Blue - spectrum: ~100 TeV p,→ from shocks outside star

Meszaros , Waxman 01 PRL 17 1102

Razzaque, Mészáros, Waxman 03 PRD 68, 3OO1)

WR

H

Page 42: Peter Mészáros Pennsylvania State University

When jet is outside progenitor star: GRB internal & external shocks

Page 43: Peter Mészáros Pennsylvania State University

s from p in internal & external shocks in GRB

• Shocks accelerate p+ (as well as the e- which produce MeV )

-res.: E’p E’ 0.3GeV2 in comoving frame, in lab:

→ Ep ≥ 3x106 Γ22 GeV

→ E ≥ 1.5x102 Γ22 TeV

• Internal shock p,MeV

→ ~100 TeV s• External shock p,UV

→ ~ 0.1-1 EeV s

• Diffuse flux: detect in km3Waxman, Bahcall 97 PRL

Page 44: Peter Mészáros Pennsylvania State University

GRB 030329: precursor(& pre-SN shell?) with ICECUBE

Razzaque, Mészáros, Waxman 03 PRD 69, 23001

Burst of L1051 erg/s, ESN 1052.5 erg, @ z0.17, 68o

Prob.of interaction

Flux of

Page 45: Peter Mészáros Pennsylvania State University

Core collapse SN : slow jets? • Maybe all core coll. (or Ib/c) SN

resemble (watered-down) GRB?• Evidence for asymmetric expansion

of c.c. (Ib/c) SNR: slow jets Γ~ few ?

• If so, accel protons while jet inside star, p→πμ→ μ (TeV)

• Diffuse flux: might be interesting (if 100% SNII make jets), but, more interestingly:• individual SN in nearby (2-3 Mpc)

gals, e.g. M82, NGC253, detectable (if have slow jets), at a rate ~ 1 SN/few yr, fluence ~ 100 up-muons/SN, negligible background, in km3

detectors - ICECUBE, KM3NeT

Razzaque, Mészáros, Waxman ‘04, PRL 93, 181101; (err: ‘05, PRL 94, 9903)Ando, Beacom (Kaons from pp - astro-ph/0502521)

Page 46: Peter Mészáros Pennsylvania State University

Diffuse UHE from pop.III collapse• At z~5-30(?) pop.III , M ~ 30-300 M , core coll →BH+ accr.• Buried jets→p→ , → -bursts (but: dep. on stellar rot.rate)• Eiso~1054-1056 (?) erg (dep. on BH mass, dM/dt)• Detect high z star formation,

primordial IMF • Recent (8/04) : can constrain

w. AMANDA latest results: → Eiso~1056 erg only for ≤1%, → Eiso≥1054 erg for ≤ 50% !

Schneider, Guetta, Ferrara aph/0201342

Recent AMANDA u.l.

Page 47: Peter Mészáros Pennsylvania State University

AGN as UHE sources• Big brother of GRB: massive

BH (107-108 Msun ) fed by an accretion disk → jet –• But, jet jet,agn ~10-20 (while grb ~ 102-103 )• UV photons from disk; in

addition, line clouds provide extra photons

(+back-scatter)• Typical (“leptonic”) model: SSC (sync-self-compton);

SEC(sync-exter.compton)

Page 48: Peter Mészáros Pennsylvania State University

Radio-loud blazars (jet nearly head-on):

Mrk 501 • 1997 flare: TeV;

(GeV: upper lim only w EGRET)

• GeV detected sometime @ quiescence

• ←Typical “astrophysical” SSC or ESC

“leptonic” jet

model fit

• But: competing

“hadronic” jet

model fits

Page 49: Peter Mészáros Pennsylvania State University

Radio-loud hadronic Blazar models (PSB-proton synchrotron blazar - -ray spectrum from cascades)

• Full : synchrotron SED (target photons)• Dash: p-sync. casc.; Dash-3 dot: ±-sync. casc; Dots:

0 casc; Dash-dot: ± casc(Muecke, et al, Apph, astro-ph/0206164 )

Page 50: Peter Mészáros Pennsylvania State University

Mrk 501 : protypical HBL

• a) PSB: Quiet state • b) PSB: Flare state e-sync targets + p-sync + p, casacdes, casacdes & sync (Muecke et al,

a-ph/0206164)

• c) → LEP:Flare state → e-sync + e-Inv. Compton scatt (Ghisellini et al, e.g.

A&A 386, 833 (2002) etc – “standard” astrophysical. picture

Page 51: Peter Mészáros Pennsylvania State University

Radio-quiet (core) AGN s

• AGN are powered by accretion

on massive (106-108 M ) BHs • 90% of AGNs are radio-quiet

(no jets), core X-ray• Core emission model: aborted

jet → cloud collisions →shocks →

p accel → p → Diffuse flux: already

constrained by latest AMANDA results

Alvarez-Muñiz & Mészáros, 2004, PRD 70, 123001

Page 52: Peter Mészáros Pennsylvania State University

Other Implications of GRB UHE • Special relativity: simultaneity of arrival of , tested to t < 1 s (10-3 s in short bursts)• Time delay due to i mass:

t (i ) ~ 10-12 (D/100Mpc)(Ei/100TeV)-2(mi /eV)2 s (whereas for SN 1987a t (i )~ 10-8 s )

• Vacuum oscillations: at source exp. N ~ 2Ne

at observer exp. ratios , upgoing appearance• → sensitive to

m2 <10-16 (E/100TeV)(100Mpc/D) eV2

(for m 0.1 eV due to finite pion life mixing is caused by decoherence rather than oscillation)

Page 53: Peter Mészáros Pennsylvania State University

GZK neutrinos:

GZKbrick wall

GZK neutrinos probably 2nd most likely source of UHE neutrinos!

they are a guaranteed source!!

•Two predictions–1. There is a brick wall for the highest energy cosmic rays. We should observe energies below about 1020 eV.–2. Reactions that limit the cosmic ray energies produce neutrinos as a by-product

•Ultra-high energy cosmic rays:–Origin; unknown, but

•Standard Model: –Ordinary charged particles accelerated by distant sources: AGN, GRBs…

•If so: GZK neutrinos are the signature

–Probably necessary and sufficient to confirm standard GZK model

(Courtesy A. Silvestri via D. Saltzberg)

Page 54: Peter Mészáros Pennsylvania State University

What do we need for a GZK detector?

Askaryan process: coherent radio Cherenkov emission:EM cascades produce a charge asymmetry radio pulseProcess is coherent Quadratic rise of power with cascade energyNeutrinos can shower in radio-transparent media:

air, ice, rock salt, etc.RF economy of scale very competitive for giant detectors

How can we get the ~100-1000 km3 sr yr exposures needed to detect GZK neutrinos at an acceptable rate?

ANSWER

Standard model GZK: : <1 per km2 per day

Only 1 in 500 interact in ice

QUESTION:

Both AMANDA-II or IceCube may expect to see 1 event every 2 years in its fiducial volume—requires astronomical level of patience!

Page 55: Peter Mészáros Pennsylvania State University

from GZK CRs to GZK s

Seckel & Stanev astroph/050244

2 ≠CR models same GZK fit

≠ GZK flux

Page 56: Peter Mészáros Pennsylvania State University

ANtarctic Impulsive Transient Antenna

• NASA funding started 2003 for full launch in 2006 • ANITA-lite succesfully launched & tested Dec 2003

600 km radius,1.1 million km2

Page 57: Peter Mészáros Pennsylvania State University

ANITA concept

Antarctic Ice at f<1GHz, T<-30C Nearly Lossless RF transmission Negligible scattering largest homogenous, RF-transmissive solid mass in the world!

Page 58: Peter Mészáros Pennsylvania State University
Page 59: Peter Mészáros Pennsylvania State University

EUSO• ISS project

ESA/NASA/RSA/JSA; precursor for OWL (free-flyer)

• 5.1019 – 1021 eV EECRs, EENUs

• Monocular 2.5m Fresnel lens, measure EAS through atm. fluor

• Thresh: 3.1019 eV; Effic. @ 1020 eV : 300-1000 event/yr

• Launch: 2010-12, but: shuttle ?• Possibly: JSA

unmanned shuttle

Page 60: Peter Mészáros Pennsylvania State University

CR & bounds

Page 61: Peter Mészáros Pennsylvania State University

Summary: UHE • GRBs 1020 eV protons

- Predictions 103 km2 area detectors

- Experiments: HiRes, Auger, EUSO/OWL

• GRBs 10 GeV, 1 Tev, 100 TeV, 1018 eV ’s

- Flux 1 Gton detectors

- Exp’s: AMANDA, IceCube, Antares, Nestor, Nemo detection

- GRBs: CR puzzle, GRB progenitors & physics

- physics: appearance

- Cross sections at E > LHC