grb in the swift era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · mészáros grb-gen06 grb in...

60
Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Upload: others

Post on 22-Mar-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

GRBin the Swift Era

and beyond

Peter MészárosPennsylvania State University

1

Page 2: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros Tok06

GRB: basic numbers• Rate: ~ 1/day inside a Hubble radius• Distance: 0.1 ≤ z ≤ 6.3 ! → D ~ 10 28 cm • Fluence: ~10-4 -10-7 erg/cm2

~ 1 ph/cm2 (g-rays !)• Energy output: 1053 (Ω/4π) D2

28.5 F-5 erg but, jet: (Ωj/4π) ~ 10-2 → E γ,tot ~ 1051 erg

→ E γ,tot ~ LΘ x 1010 year ~ Lgal x 1 year• Rate[GRB (γ-obs)] ~10-6(2π/ Ω) /yr/gal →1/day (z ≤ 3) but Rate [GRB (uncollimated)] ~ 10-4 /yr/gal, while Rate [SN (core collapse] ~ 1O-2/yr/gal, or 107 /yr ~ 1/s (z <3)

Page 3: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

3

Page 4: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

`

←↓Short (tg< 2 s)

→↑Long (tg >2 s)

GRB: standard paradigm Bimodal distribution of tγ duration

3d group? ↓

Page 5: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

BH + accr. Torus Jet

• Both collapsar or merger → BH+accr.torus→fireball

• Massive rot. *: sideways pressure confines/channel outflow → fireball Jet

• Nuclear density hot torus → can have nn→e± jet

• Hot infall →convective dynamo → B~1015 G, twisted

(thread BH?) →Alfvénic or e±pγ jet• (Note: magnetar might do similar)

Page 6: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

Explosion FIREBALL

• E γ ~ 1051 Ω-2 D2

28.5 F-5 erg • R0 ~ c t0 ~ 107 t-3 cm Huge energy in very small volume • τγγ ~ (Eγ/R3

0mec2)σTR0 >> 1 → Fireball: e±,γ,p relativistic gas• Lγ~Eγ/t0 >> LEdd → expanding (v~c) fireball (Cavallo & Rees, 1978 MN 183:359)

• Observe Eγ> 10 GeV …but γγ→e±, degrade 10 GeV →0.5 MeV? Eγ Et >2(mec2)2/(1-cosΘ)~4(mec2)2/Θ2

Ultrarelativistic flow → Γ ≥ Θ-1 ~ 102

(Fenimore etal 93; Baring & Harding 94)

Page 7: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Relativistic Outflows• Energy-impulse tensor : Tik = w ui uk + p gik , ui : 4-velocity, gik= metric, g11=g22=g33=-g00=1, others 0; ultra-rel. enthalpy: w = 4p ∝ n4/3 ; w, p, n : in comoving-frame • 1-D motion : ui=(γ,u,0,0), where u = Γ (v/c), v = 3-velocity, A= outflow channel cross section : • Impulse flux Q=(w u2 +p) A energy flux L= wu Γ c A particle number flux J= n u A• Isentropic flow : L, J constant → w Γ /n = constant (relativistic Bernoulli equation); for ultra-rel. equ. of state p ∝ w ∝ n4/3 , and cross section A ∝ r2 → n ∝ 1 / r2 Γ comoving density drops → Γ ∝ r “bulk” Lorentz factor initially grows with r.

• But, eventually saturates, Γ→Ej/Mjc2 ~ constant

Γ

r

Page 8: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Shock formation• Collisionless shocks (rarefied gas)• “Internal” shock waves: where ? If two gas shells ejected with Δ Γ = Γ1-Γ2~ Γ, starting at time

intervals Δt ~tv ,, they collide at ris ,

ris ~ 2 c Δt Γ 2 ~ 2 c tv Γ 2 ~ 1O12 t-3 Γ 22 cm (internal shock) [Alternative picture: magnetic dissipation, reconnection]

• “External shock”: merged ejected shells coast out to res, where they have swept up enough enough external matter to slow down, E=(4p/3)res

3 next mp c2 Γ 2,

res~ (3E/4pnextmpc2)1/3 Γ-2/3 ~ 3.1O16(E51/nO)1/3 Γ2-2/3 cm

(external shock)

Page 9: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-glast06

XO

R

Internal Shock

Fireball Model: long GRBs

External Shock

Collisions betw. diff. parts of the flow

The Flow decelerating into the surrounding medium

GRB Afterglow

E.g., recent review on GRB-Swift results & implications: Mészáros, 2006, Rev.Prog.Phys 69:2259 (astro-ph/0605208 )

Page 10: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Internal & External Shocksin optically thin medium :

LONG-TERM BEHAVIOR

• Internal shocks (or other, e.g. magnetic dissipation) at radius ri~1012cm

→γ-rays (burst, tγ ~sec)

• External shocks at re ~1016cm; progressively decelerate, get

weaker and redder in time (Rees & Meszaros 92)

• Decreasing Doppler boost: → roughly, expect radio @ ~1 week , optical @ ~1 day (Paczynski, & Rhoads 93, Katz 94)

• PREDICTION : Full quantitative theory of:• External forward shock spectrum softens in time: X-ray, optical, radio … →long fading afterglow (t ~ min, hr, day, month)• External reverse shock (less

relativistic, cooler, denser): Prompt Optical → quick fading ( t ~ mins) (Meszaros & Rees 1997 ApJ 476,232)

Γ

rrc ri re

Int

Ext

Page 11: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Standard External Forw. & Rev. Shock Synchroton & IC spectrum

Lower energy:Synchrotron(reverse: eV, forward: MeV)

Higher energy:Inv. Compton (forward: GeV)

R:sy

F:sy

F:IC

Page 12: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Shock Photon Spectrum• Non-thermal power law

spectrum, both in int. and ext. shocks, due to

• Synchrotron, peak at ~200 keV (or ~ eV?)

• Inv. Compton, peak ~ GeV (or ~200 keV ?

• Sy peak location, ratio Sy/IC dep. on Bsh , γe, Γ

• Peak softens with time• Ratio Sy/IC decr w. time

E

E2NE

Sy

IC

t

tF

E

E

X,OR g

Page 13: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

GRB 970228 : BeppoSAX Discovery of an afterglow

• X-ray location:2-3 arcmin → raster

• →optical (arcsec) & radio location

• Can identify host galaxy, redshift

• located at cosmological dist. NEW ERA!Feb 28 March 3

F_x ~3E-12 erg.cm2/keV/s , decr. By 1/20

(Costa et al 1997, Nature 387:783)

Page 14: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

GRB afterglow blast wave model

• Simplest case: adiabatic forward shock synchrotron rad’n from shock-accel. non-thermal e-

• F(ν,t) ∝ ν-β t -α • α = (3/2) β • Parameters E0, εe, εB,

(β=(p-1)/2)GRB 970228 as blast wave: Wijers, Rees & Mészárosl 97 MNRAS 288:L51 fit to

Mészáros, Rees 97 ApJ 476:232 model

Page 15: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

Snapshot Afterglow Fits

• Simplest case: tcool(γm)>texp, where N(γ)∝γ-p for

γ>γm (i.e. γc(ool) >γm) • 3 breaks: νa(bs), νm, νc

• Fν ∝ ν2 (ν5/2) ; ν<νa ; ∝ν1/3 ; νa<ν<νm ; ∝ν-(p-1)/2 ; νm<ν<νc ∝ν-p/2 ; ν>νc

(Mészáros, Rees & Wijers ’98 ApJ 499:301)

Sari, Piran, Narayan ’98 ApJ(Let) 497:L17)

Break frequency decreases in time (at rate dep. on whether ext medium homog. or wind (e.g. n∝r-2 )

Page 16: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

Collapsar & SN : a direct link - but always ?

• Core collapse of star w. Mt~30 Msun

→ BH + disk (if fast rot.core) → jet (MHD? baryonic? high Γ, + SNR envelope eject (?)• 3D hydro simulations (Newtonian SR) show that baryonic jet w. high G can be formed/escape• SNR: not seen numerically yet (but: several suggestive observations, e.g. late l.c. hump + reddening; and ..• Direct observational (spectroscopic)

detections of GRB/ccSN

Collapsar & SN ANIMATION

Credit: Derek Fox & NASA

Page 17: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

GRB 030329 - SN 2003dh & others• 2nd Nearest “unequivocal”

cosmological GRB: z=0.17• GRB-SN association: “strong”• Fluence:10-4 erg cm-2 , among highest in BATSE, but tγ~30s, nearby; Eg,iso~1050.5erg:

~typical,• ESN2003dh,iso ~1052.3 erg ~ ESN1998bw,iso («grb980425) vsn,ej ~0.1c (→ “hypernova”)• GRB-SN simultaneous? at most: < 2 days off-set (from opt. lightcurve)

( → i.e. not a “supra-nova”)• But: might be 2-stage (<2 day delay) *- NS-BH collapse ? → ν predictions may test this !

• Some others: GRB 031203/SN2003lw;

- GRB 060218/SN2006aj; ...

Collapsar & ccSN :

Page 18: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

Light curve break: Jet Edge Effects

• Monochromatic break in light curve time power law behavior

• expect Γ∝t-3/8, as long as ϑlight cone

~Γ-1 < ϑjet, (spherical approx is valid)

• “see” jet edge at Γ ~ ϑjet-1

• Before edge, F ν∝(r/Γ)2.Iν • After edge, Fν∝ (r ϑjet)2.Iν ,

→ Fν steeper by Γ2∝t-3/4

• After edge, also side exp. → further steepen Fν ∝t-p

Page 19: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

GRB 030329:• evidence for

SN • evidence for refreshed shock and • evidence for 2-comp. jet: ϑγ ~5o

< ϑradio ~17o

Berger etal 03, Nature 426, 154

More recently (Swift): several XR light-curve breaks, but: conflicting evidence for (a?)chromatic breaks

Page 20: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

Jet Collimation& Energetics

• ↑Jet opening angle inv. corr. w. Lγ (iso)

• ← Lγ(corr) ~ const.

• Mean collim. “correction” <(4π/2ΔΩj)> ~ 10-2

• GRB030329: 2-comp. jet? ϑg~5o < ϑradio ~17o

• → Etotal = Eγ+Ekin ~ const.

( → quasi-standard candle )

Berger etal 03

Frail et al 01

Page 21: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

Epk vs Eγtot Better correl. than Epk vs Eγiso (?)Ghirlanda, Ghisellini, Lazatti, aph/0405602 (see also Friedman & Bloom, aph/0408413) Epk ∝ Eγ0.7

Page 22: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

z-measures?

• Variability V vs. Eγ, iso (Fenimore, Ramirez-Ruiz, Reichart..)

• Lag vs. Eγiso (Norris, Bonnell,..)

• Hardness (Epk) vs. Eγ,iso (Amati etal, Bagoly etal, Schmidt..)

• Epk vs. Eγ ,jet (Ghirlanda et al 04) • Epk vs. Eiso vs. tbreak (Liang & Zhang 05)

• Epk vs Eiso vs. t0.45 (Firmani et al, 06; where t0.45 ~ V)

Page 23: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

Reasons for Amati - Ghirlanda?• E.g, internal shocks, Ep ~ Esy ~ ΓB'γe

2 ~ΓB' ~ B ~ U1/2

~ (L/r2) 1/2 ~ L1/2 tv-1 Γ-2 (Zhang, Mészáros 02 ApJ 581, 1236)

( since r~ ctv Γ2 - but, is tv , Γ ~ const. for diff. L? )• E.g photospheric characteristic temperature, Ep ~ Γ T’ ~ Γ (L/Γ2 rph

2)1/4 ~ Γ2L-1/4 (since rph ~ L/Γ3 ) ; if use Frail : L ~ θ-2 , and causality : Γ~ θ-1

→ Ep ~ L 3/4 (Rees, Mészáros 05 ApJ 628, 847)

• If photosphere is at known radius of WR *, Ep ~ Γ T’ ~ Γ (L/Γ2 R*

2)1/4 ~ Γ1/2 L1/4 ; bulk of fluid moves at Γ~3-1/2 θ-1 since outside that KH mix → Ep ~ L 1/2 (Thompson astroph/0507387;

Thompson, Meszaros & Rees, aph/0608....)

Page 24: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

9mag! (z=1.6)

GRB

Optical Flash : GRB 990123

ROTSE

(Akerlof et al. 1999; Meszaros & Rees 1997; Sari & Piran 1999; Kobayashi 2000)

Page 25: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

Prompt Optical Flashes

• GRB 990123 → bright (9th mag) prompt opt. transient (Akerlof etal 99)

– 1st 10 min: decay steeper than forw. shock • Interpreted as reverse external shock

(pred : Mészáros&Rees ’97) • 99-02: Great Desert: Lack of flashes, upper limits mv~12-15

• but: New generation robotic tels: ROTSE III, Super-LOTIS, RAPTOR, KAIT, TAROT, NEAT, Faulkes, REM; etc

• → more prompt optical flashes, e.g. : GRB 021004, 021211 ; and new “semi- prompt” flashes : GRB 030418, 30723 : ≠ GRB 990123 ! → t >211, 50 s resp, see forw. shock only? • and now... Swift era: GRB 041219A (Raptor; Vestrand 05); GRB 050319 (Raptor; Wozniak et al 05) GRB 050401 (Rotse III, Quimby et al, 05) GRB 050801 (Rotse III, Rykoff et al 05) GRB 050904 (TAROT, Gendre et al, 06) GRB 060206 (Raptor, Wozniak et al, 06)

Akerlof etal ’99

­

Kulkarni et al ’99 ­

nFn

n

Sy (rev)

Sy (forw)

0 X,g

Page 26: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

Cosmology with GRBs?High-z GRB distance measures

Lamb, Reichart 00

•Positive K-correction: → flux ~ constant at z ≳ 3•Optical/UV: Ly α cutoff → redshift out to z<5 for Swift•Forward shock exp. fluxes¯

O/IR Ciardi & Loeb 00

Page 27: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

IR & XR hi-z detectabilityXR detectability ¯

V-band

K-band

JWST

ROTSE

O/IR zx detectability

Chandra

Swift

Gou et al, 03, ApJ 604:508

Page 28: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros, L’Aqu05

BAT: Energy Range: 15-150kevFoV: 2.0 srBurst Detection Rate: 100 bursts/yr

UVOT: Wavelength Range: 170-650nm

Three instrumentsGamma-ray, X-ray and optical/UV

Slew time: 20-70 s !

XRT: Energy Range: 0.2-10 keV

SWIFT

Launched Nov 04

>95% of triggers yield XRT det>50% triggers yield UVOT det.

Page 29: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

SWIFT: New Results

• > 140 new afterglows localized since launch• Redshifts for >40 long GRB and 4 short GRB• <zlong> ~2.4-2.8, which is 2x Beppo-Sax distance (i.e. significantly fainter & redder, than Beppo-Sax afterglows!)• <zshort> ~0.1-0.7; Lshort~ 10-2 Llong ; compact merger• XR light curves (102s-104s): new features (both long and short) - steep + shallow decay, flares → evidence for continued activity?

In the period 1 min < t < hrs,new features show up, which may be natural extensions of thestandard burst & AG model (or ..?)

Page 30: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

SWIFT: New Results, cont.

• Short bursts localized, hosts identified, redshifts measured

• VHZ (very high redshift) bursts: several >5, one 6.29

• Prompt optical/IR flashes (one very bright)• GRB/SN, at least two spectroscopic, more ...

Page 31: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

New features seen by Swift :A Generic X-ray Lightcurve

~ -3

~ -0.5

~ - 1.3

~ -2102 – 103 s 104 – 105 s

105 – 106 s

( 1 min ≤ t ≤ hours )

oldnew

BUT: not all features in all bursts

Page 32: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Afterglow: when does it start?

• standard interpretation: AG starts at tdec ~ (3/4) (rdec/2 c Γ2 ) (1+z) ~ (3/8 c Γ2)(3E/4π n mp c2 Γ2)1/3 (1+z) ~ 102 (E52/n0)1/3 Γ2

-8/3 (1+z) s

• But, for prompt duration T=Tγ =Toutflow ~ T90 - “Thin shell”: T < tdec → AG start at tdec above - “Thick shell”: T > tdec → AG start at T~Tγ~T90

Page 33: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Example : GRB 050315

0

12

34

Vaughn et al. 2005

t -0.4t -0.7

ν -0.73±0.11

t -5.2

ν -1.9±0.9

Page 34: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Initial steep drop:Fx ∝ (t-t0 )-α

• Current bet: tail end of GRB (high latitude emission) :

radiation from outside main beam, θ>Γ-1

- arrives at t ~ Rθ2/2c later than from θ~0, - is softer by D~t-1 (Nousek et al 05, Zhang et al 05, Panaitescu et al 05))

• expect α=2+β , where F~ tανβ (Kumar, Panaitescu 00)

~ OK , generally; departures may be understood• Possible alternatives: - Cocoon radiation escape (Pe’er, et al, ApJ 06 in press, aph/...)

- Photopion rapid cooling --> drop (Dermer, 06, aph/....)

Page 35: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Initial rapid decay:

High latitude emission

Radiation Components:

• 1 : Prompt γ-rays (GRB) from l.o.s. angles θ < Γ-1

• 2 : tail-end of GRB, from high latitude emission : γ-rays emited promptly, but from angles θ >Γ-1 ; arrive at time

t ~ Rθ2/2c later than from θ~0, and is softer by D~t-1; expect

α=2+β , ~ OK

• 3 : afterglow, from forward shock at l.o.s.angles θ < Γ-1 ;

later than (or partially overlap with) high latitude comp. (2)

11

2

3

Page 36: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

High latitude issues…• Time slope α depends on choice of t0 → can fit t0 such that slope is satisfied

i.e., determine tdec ? (Liang et al astroph/0602142)

• When T > tdec (and also when T< tdec) can have an admixture of (a) afterglow (l.o.s) θ<Γ-1 , and (b) high latitude θ>Γ-1 components. Generally βprompt <βsteep , so can accommodate steeper decays than 2+ βprompt (O’Brien et al, 05)

• Flares: t0 fit can give pulse ejection time by engine (Liang et al 06)

• Structured jet: for on-beam viewing jet shape has little effect, but off-beam can get shallower slope (Dyks et al aph/0511699)

• From initial steep decay slope, t0 constraints suggest t0 ~ ttrigger, may infer prompt emission radius Rγ (Lazzati, Begelman aph/0511658)

Page 37: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

37

Liang, et alaph/0602142

Retrofit:The t0 which fits the steep decay slope generally agrees with the onset of the rising segment of the last peak before the decay

Page 38: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Shallow decay

• Slope 0.3 ≤ α ≤ 1 : likely due to “refreshed shock” … I.e. the forward afterglow shock receives continued

reinforcement from late-arriving ejecta NOTE: late arriving, but not necessarily late ejected! (Rees-Meszaros 98, Panaitescu, PM, MJR 98, Kumar-Piran 00, Sari-Meszaros 00,

Nousek et al 05, Zhang et al 05, Granot-Kumar 05)

Page 39: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Shallow decay (0.2 ≤ α ≤ 1)

• Probably due to refreshed shocks, due either to:

• Long duration ejection (t ~ tflat ) ; or• Short duration ejection (t ~ tγ), but with range of Γ,

e.g. M(Γ)~ Γ-s , E(Γ) ~ Γ-s+1 , for ρ~r-g ext. medium :

e.g. FS: α=[-4-4s+g+sg+β(24-7g+sg)]/[2(7+s-2g)]

Rees+PM, 98 ApJ 496, L1 ; Sari +PM, 00, ApJ 535, L33 ; Zhang +PM 01, ApJ 552, L35

Slow Γ,refreshed→

Note : Fit to Swift data ⇒ Γ distrib. may be a broken power law(Granot, Kumar astro-ph/0511049)

Page 40: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Refreshed (shallow decay)• Note : EXshallow ≤ Eγprompt [O’Brien, et al, 06]. But in order for refreshed shock to dominate the afterglow, energy input in refreshed component needs exceed that in prompt • ⇒ either - rad’n. effic. εγ > εx (eg prompt is Poynting dominated ?..)

or - fraction of refreshed shock energy undetected (IR? GeV?…) or - preactivity evacuates cavity, or fraction of energy into electrons ∝t1/2 (Ioka et al, astro-ph/0511749

• Alternative : shallow decay due to emission from anisotropic jet lines of sight just outside sharp edge of main bright jet (Eichler-Granot astroph/0509857)

• Other possibilities:

- Ekin underestimated (also in BATSE), so εγ is reasonable relative to εx

- Two-component jet (narrow-fast/broad-slow) (Granot, et al, astroph/0601056)

Page 41: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Giant X-ray Flare: GRB050502b

500x increase!

GRB Fluence:8E-7 ergs/cm2

Flare Fluence:9E-7 ergs/cm2

Burrows et al. 2005, Science; Falcone et al. 2005, ApJ

Page 42: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

XR Flares• Main puzzles: - large energy Exfl ≤ 0.1-1 Eγprompt

- steep rise/decay F∝ (t-t0)α, α~±3-6 • Possible causes: - refreshed (forward) shocks (rise & decay too shallow)

- reverse IC component (one shot affair- where is forward?)

- interaction with external matter ( rise/decay slope?)

- continued central engine activity, e.g. internal shocks, dissipation (difficult for central engine, but address temp. slope, total energy - less problematic than others ?)

Page 43: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

XR Flare triggers?

• Gravitational instability → disk fragmentation → lumpy accretion

(Perna, Armitage, B.Zhang)

• MHD accretion- magnetic tension (“springy”) → lumpy accretion

(Proga & Begelman, Fan, Proga &B.Zhang)

• Short bursts: BH-NS disr (SPH GR numerical) → prompt accretion + extended tail → delayed lumpy accretion (Davies, et al 05; Lee et al 00, Rosswog et al 04; Laguna, Rasio 05)

Page 44: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

MHD accretion?

(Proga & Begelman 03)

Accretion rate

time

Page 45: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Main Possible Explanations of long GRB afterglow new features

• Initial drop: likely due to tail end of GRB (high latitude emission) : rad’n from θ>Γ-1 arrives at t ~ Rθ2/2c later than from θ~0, is softer by D~t-1; expect α=2+β , ~ OK

• Shallow decay: probably “refreshed shocks”, either from Longer ejection (t ~ tflat ) ; or Short ejection (t ~ tγ), but with range

of Γ, e.g. M(Γ)~ Γ-s , E(Γ) ~ Γ-s+1

• Flares: likely due to continued central engine activity : main constraints: very sharp rise and decline (t±3 ←→ t±6)

• But: remains work in progress- depending also on new observations

Page 46: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Short & Long Afterglows

• Big question: are they the same?• 0th order answer: looks like yes - initial steep decay - XR flares - “normal forward shock” decay - jet break • But: 1st order differences are interesting - Avg. kin. energy/solid angle x100 smaller - Avg. jet angle x2 larger than in long bursts (Fox et al 05, Panaitescu 05)

Page 47: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Short Bursts

- Hosts: E , Irr , SFR (compat. W. NS merg, but: some SGR, other?)- Redshift : < 0.1 to ~ 0.7- XR, OT, RT: yes (mostly)- XR l.c.: similar to long bursts? (XR bumps too- late engine?)

050724 050509b

050709b

Page 48: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

SHB afterglow fits• So far, > 11 shb afterglows, 5-6 hosts ( D. Fox talk, Nature 05)

• AG fits for 050709 (Irr), 050724 (E) (Panaitescu, aph/0511588)

Using fluxes and break times, standard ag model: Γ = 6.5 (E50/n0)1/8 td-3/8 , θj=Γ(tb)-1

→ θj = 9o (n0/E50)1/8 tbd 3/8 ,

Ej = πθj2E ~ 1049 n0

1/4 (E50 tbd)3/4 erg High /low dens. soln’s: 050709 : θj >6o , 10-4 < n < 10-1 cm-3 , E~3-300 x 1050 erg/s

θj >2o , n < 10-5 cm-3 , E~2-10 x 1049 erg/sr

050724 : θj >8o , 10-1 < n < 103 cm-3 , E~1-50 x 1049 erg/sr • but: GRB 050724 (Grupe et al, 06, in prep.) Chandra late obs.:

no break seen.• while: GRB 051221A : Swift + 2 Chandra obs. : well defined

jet break appears @ 4 days ⇒ θj ~ 7 o, Ej ~ 2. 1049 erg

Page 49: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Short burst paradigm:

NS-NS or NS-BH

merger

BH + accretion

• Paradigm seems compatible with hosts, and (for Kerr BH-NS) some simulations suggest extended activity & flares ⇒

simulationLaguna, Rasio 06;( Preliminary )

Page 50: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

BH-NS merger?(Laguna & Rasio ‘06)

50Schwarz.BH-NS Kerr-proBH-NS

Page 51: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Prompt optical afterglows

• ⇐ expected behavior: reverse shock causes prompt (10’s of sec) bright (mV ≥ 9) optical flash, decaying much faster than long-lasting forward shock optical afterglow (Mészáros-Rees 97)

• First seen in GRB 990123 ⇐ Rotse (Akerlof et al 99), and few

other bursts, but rare : why?• Could be that - rev.shock hi-mag→suppress? - pair formation →spec. to IR ? - rev. shock rel. →spec. to UV ?• Latest : GRB 050904 (z=6.29) shows prompt bright opt flash !

Gou et al 04

R

F

γ O

O

Page 52: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

long burst from

Swift ( z=6.29 ): GRB050904

• Discovered/localized by Swift BAT, XRT, UVOT• Prompt ground I,R band TAROT,

P60 upper limits, • Detection J=17 mag FUN/SOAR,

VLT → photometric z >6• Spectroscopy Subaru 8.5 m @ t=3.5 day : z = 6.29 !

(“usual” low z grb)

(time-dilated hi-z grb) Most distant

Page 53: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

GRB 050904 as an XR beacon

• At a redshift z=6.29 (~reionization; most distant

known known QSR: z~ 6.4)• GRB 050904 X-ray flux

exceeded that of the brightest known X-ray QSO

SDSS J0130+0524,

by up to x105 , for days

← SDSS J0130 (multiplied by 100)

[ Watson et al 06 ApJ 637:L69 ]

Page 54: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

• Prompt O/UV flash as bright as 990123 (~ 9th mag!) at same z (rev. shock..)• Eiso ~ 1054 erg, similarly very high ;decay similarly steep (~ t-3)• Observed at 800-1000 nm by TAROT (25 cm tel.!) [Boer et al, astro-ph/0510381]

TAROT (O/UV) ↑

Swift XRT ↓

Page 55: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

• Need high Eiso ~ 1054 erg ? (or small beam?)• If reverse shock rest frame spectrum in UV

(relativistic reverse shock?) → ground detection @ O/IR: need high z (or else need enough rest-frame spectrum extending

redwards of Lyα, so not absorbed)• Need burst with strong flares (weak “smooth” afterglow

component)?• Other non-obs. or weak flash: pair formation, or weak

field in ejecta → rest-frame spectrum shifted to IR?

Why 050904 and 990123 ?

Page 56: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Origin of prompt Opt-flash• 4 prompt optical flashes have been measured while the

gamma-rays were still in progress• in some (GRB 050904, Boer et al, astro-ph/0510381; also

GRB 041219a, Vestrand et al, astroph/0503521) - prompt optical l.c. correlates with gamma-rays ⇒ emission from the same region? (e.g. internal shock? )

• in others (GRB 050401, Rykoff et al astroph/0508495, GRB 990123, Akerloff et al 00)

- prompt optical l.c. does NOT correlate with gamma-rays

⇒ emission from different region ? (e.g. reverse shock?)

56

Page 57: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Different prompt gamma/opt correlations?

57Vestrand et al, 06, aph/0503521

Page 58: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

GRB 060218 / SN 2006aj

• Long(est) BAT T90 = 2100 s duration• XRT after 100 s, rising to max at ~1000s, followed by

steep decay, then PL decay• UVOT brightening to UV plateau @ 30ks

and later O plateau @ 40ks, decay to minimum @200ks, rebrightening @700ks

• XR non-thermal plus increasing BB component which dominates before the steep decay @1000s (kTBB ~ 0.17 keV)

58

Campana et al, Nature in press, astro-ph/0603279

Page 59: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

GRB 060218/ SN 2006aj

Interpreted as shock break-out of an anisotropic, semi-relativistic component from an optically thick progenitor stellar wind (Campana et al 06;

Note: Fan-Piran alternate model: their objections apply to spherical single component, whereas here assumed 2+ components, anisotropic semirelativistic + spher. envelope)

UVOT

BB comp. temp. & radius

Page 60: GRB in the Swift Era and beyondpersonal.psu.edu/nnp/grb-gen06-sh.pdf · Mészáros grb-gen06 GRB in the Swift Era and beyond Peter Mészáros Pennsylvania State University 1

Mészáros grb-gen06

Conclusions• Swift is significantly expanding our view & understanding of afterglows• New early XR, O features appear to be understandable within context

of standard afterglow model, with (not quite mastered) extensionsUnderstanding of new XR “smooth” features is reasonable, but fluiddynamics remains controversial - and MHD may play a large role.

• XR flares are significant challenge, also for progenitor, central engine • Relation of early XRT, UVOT to BAT flux levels pose challenges to

prompt GRB gamma-ray mechanisms (efficiencies, etc..)• Commonality & differences between short and long GRB afterglow

features will yield important clues, need much further work (diff. due to lower Eiso, broader θjet, E vs. Irr, Sp hosts?) • Information on long and short GRB jet breaks (collimation) not very

extensive yet, possibly due to higher avg. z and lower fluxes?• O/UV late afterglows largely support forward shock AG interpretation• Prompt O/IR flash detection may hold vital clues (rareness? reverse

shock interpretation? other..?)• Potential for high-z IGM probing, SFR mapping appears poised for

transition from wish to actual data to be modeled → cosmology.