pe lab manual 2013 autonomous

Upload: vikas-singh-bhadoria

Post on 03-Jun-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    1/127

    POWER ELECTRONICS

    Laboratory Manual

    Department of Electrical and Electronics Engineering

    Gokaraju Rangaraju I nstitute of Engineer ing & Technology

    BACHUPALLY, MIYAPUR, HYDERABAD-500072

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    2/127

    POWER ELECTRONICS

    LABORATORY

    Name:______________________________

    Roll No:_________________ Section:____

    Branch:____ Academic year:___________

    Gokaraju Rangaraju I nstitute ofEngineer ing & Technology

    BACHUPALLY, MIYAPUR, HYDERABAD-500072

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    3/127

    CONTENTSName of the experiment PAGE NO

    1) Generation of Cosine Waveform 4

    2) Design of DC power supply circuit 7

    3) Inverse Cosine control Scheme 10

    SIMULATION CIRCUITS

    4) 1-Phase Half Wave controlled converter with R-load 16

    5) 1-Phase Half Wave controlled converter with RL-load 20

    6) 1-Phase Full controlled converter with R-load 24

    7) 1-Phase Full controlled converter with RL-load 28

    8) 1-Phase semi converter with RL-load 33

    9) 1-Phase AC Voltage controller with R-Load 37

    10) 1-Phase AC voltage controller using RL-load 41

    11) 1-Phase Cyclo converter using R-Load 45

    12) 555- Timer Triggering circuit 49

    HARDWARE DESIGN CIRCUITS USING THE TRIGGERING CIRCUITSPROJECT WORK

    13) AC voltage controller Using UJT triggering circuit 54

    14) Semi converter using UJT triggering circuit 57

    15) Full controlled converter Using UJT Triggering circuit 60

    16) Basic Step Down chopper using 555Timer 63

    17) Basic Step up chopper using 555-Timer 66

    18) Semi Converter using Inverse Cosine Control scheme 69

    19) Half wave controlled converter using Inverse Cosine control scheme 72

    20) Full controlled converter using Inverse Cosine control scheme 75

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    4/127

    EXPERIMENT-1

    GENERATION OF COSINE WAVEFORM

    AIM:To Generate cosine waveform

    APPARATUS:

    230V AC supply

    230/8-0-8 Center tapped Transformer

    10k resistor

    0.22uF, 63V capacitor

    47uF, 63V capacitor

    GPCB

    BURGER STICKS

    CRO

    CRO probes -2

    CIRCUIT DIAGRAM:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    5/127

    THEORY:

    Generation of the cosine wave form is required for the inverse cosine control scheme. Usually adopted in line

    commutated thyristor control circuits.

    WAVEFORMS:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    6/127

    Waveforms:

    Result:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    7/127

    EXPERIMENT-2

    DESIGN OF DC-POWER SUPPLY

    AIM: Design of DC- power supply circuit

    APPARATUS:

    PCB

    Center tapped transformer 230/15-0-15

    230V AC power supply

    7812, 7912 voltage regulators

    1N4007 Diodes

    1000uF, 35V capacitors 2

    220uF, 35V capacitors 2

    0.1uf capacitors 4

    CRO

    CRO probes

    JUMPERS

    CIRCUIT DIAGRAM:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    8/127

    THEORY:

    The circuit Diagram for generation of 12V DC power supply is shown. It consists of AC

    supply, center tapped transformer, diode bridge rectifier, voltage regulators, capacitors.

    230V, 50Hz AC supply is given to primary side of center tapped transformer. This voltage is stepped

    down to a voltage of 15VAC, 50Hz which is available at the secondary side of the transformer. This15VAC voltage is converted to DC voltage by using a diode bridge rectifier as shown. The capacitors

    are used to eliminate the filters and Harmonics. The output voltage (15V) of bridge rectifier is

    regulated to 12DC by using voltage regulators 7812 and 7912.

    We can observe the +12V DC at the output terminal of regulator 7812 and -12V DC at the output

    terminal of regulator 7912.

    WAVEFORMS:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    9/127

    Waveforms:

    Result:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    10/127

    EXPERIMENT-3

    INVERSE COSINE CONTROL SCHEME

    AIM: Design of Firing Circuit to Trigger a Thyristor using Inverse cosine method

    APPARATUS:

    Transformers 230/12-0-12 2

    CRO probes, CRO

    Connecting wires, multimeter

    Soldering Rod, lead

    Resistors:

    2.2k 4 0.5w

    10k 4 0.5w

    47k 4 0.5w

    4.7k 3

    820k 2

    27k 2

    22k 4

    3.3 ohms 2

    220 ohms 2

    1k 6

    100 ohms 4

    Potentiometer

    10K 1 1w

    Capacitors:

    0.022pf 2

    0.1uf 2

    47uf 2

    DIODES: 1N4148 14

    Z10 2

    ICS

    LM741 2

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    11/127

    LM339 1

    LM555N 2

    Transistors:

    2222A 2

    2218 2

    Pulse Transformer

    1:1:1 2

    IC bases:

    16 pin 1

    8 pin 4

    Burg sticks 4 strips

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    12/127

    CIRCUIT DIAGRAM:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    13/127

    THEORY:

    Thecircuitdiagram of firing pulse generation is as shown in above figure. Firing

    pulses are generated by using inverse cosine control scheme. Cosine wave is given as

    input to this firing circuit .This is compared with the DC voltage to generate firing

    pulses. The pulses in the positive half cycle are generated by comparing the Inverse

    cosine wave with the DC voltage and pulses in the negative half cycle are generated by

    comparing the cosine wave with the DC voltage. By varying the DC voltage value

    from +12v to -12v the firing angle is varied accordingly. These pulses are given as

    triggering pulses to the Thyristors.

    WAVEFORMS:

    Case1: Firing angle ()

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    15/127

    Waveforms:

    Result:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    16/127

    Experiment No 4

    1-PHASE HALF WAVE CONTROLLED CONVERTER

    WITH R-LOAD

    Aim: To study the performance of a single phase half wave controlled converterwith R-load.

    Apparatus: 1. Power Electronics Trainer Kit2. Firing Circuit3. CRO

    Circuit Diagram:

    Theory:

    In the period 0 < t/; the SCR is forward biased. Thencurrent through the load and voltage drop across the load are zero, and all the

    supply voltage appears between the anode and cathode of the SCR. Let the SCR be

    triggered at an angle of (0

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    17/127

    Procedure:

    1. Connect the circuit as shown in the circuit diagram.

    2. Give the firing pulses accordingly at a suitable firing angle from the firing circuit.

    3. Observe the load voltage on the CRO and note down the firing angle.

    4. Draw the waveforms and calculate the Average and RMS value of output voltage.

    Calculations:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    18/127

    WAVEFORMS:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    19/127

    Waveforms:

    Result:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    20/127

    Experiment No 5

    1-PHASE HALF WAVE CONTROLLED CONVERTER

    WITH RL-LOAD

    Aim: To study the performance of a single phase half wave controlled converterwith RL-load.

    Apparatus: 1. Power Electronics Trainer Kit2. Firing Circuit

    3. CRO

    4. CRO probes

    Circuit Diagram: Vs = 1-Phase 50Hz, 230V supply

    Theory:

    In the period 0 < t/; the SCR is forward biased. Then current through the load

    and voltage drop across the load are zero, and all the supply voltage appears

    between the anode and cathode of the SCR. Let the SCR be triggered at an angle of

    (0

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    21/127

    of Inductor, energy is stored during the positive Half cycle and this stored energy is

    supplied to the SCR to remain in conducting mode even if the supply is negative.

    This amount of energy stored depends on the value of inductor. That is more the

    value of inductor more is the energy stored and SCR will remain in conducting state

    up to the angle .The load current continues to flow until the energy stored in the

    Inductor becomes zero.

    After the current becomes zero SCR is reverse biased and load voltage is Zero

    hence, total supply voltage appears across the SCR up to 2.

    Again during the third positive Half cycle supply is positive, SCR is forward biased

    and if we give triggering SCR starts conducting and this cycle repeats.

    Here is called Extinction Angle.

    Procedure:

    1. Connect the circuit as shown in the circuit diagram.

    2. Give the firing pulses accordingly at a suitable firing angle from the firing circuit.

    3. Observe the load voltage on the CRO and note down the firing angle and Extinction

    angle.

    4. Draw the waveforms and calculate the Average and RMS value of output voltage.

    Calculations:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    22/127

    WAVEFORMS:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    23/127

    Waveforms:

    Result:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    24/127

    Experiment No 6

    1-PHASE FULL CONTROLLED CONVERTER WITH R-

    LOAD

    Aim: To study the performance of a single phase Full wave controlled converterwith R-load.

    Apparatus: 1. Power Electronics Trainer Kit2. Firing Circuit

    3. CRO

    Circuit Diagram:

    Theory:

    In the period 0 < t/; the SCRs T1 and T2 are forward

    biased and the SCRs T3 and T4 are reverse biased. Then current through the load

    and voltage drop across the load are zero. Let the SCRs T1 and T2 be triggered at

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    25/127

    an angle of (0

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    26/127

    WAVEFORMS:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    27/127

    Waveforms:

    Result:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    28/127

    Experiment No 7

    1-PHASE FULL CONTROLLED CONVERTER WITH RL-LOAD

    Aim: To study the performance of a single phase Full wave controlled converterwith RL-load.

    Apparatus: 1. Power Electronics Trainer Kit2. Firing Circuit3. CRO

    Circuit Diagram:

    Theory:In the period 0 < t /; the SCRs T1 and T2 are forward

    biased and the SCRs T3 and T4 are reverse biased. Then current through the load

    and voltage drop across the load are zero. Let the SCRs T1 and T2 be triggered at

    an angle of (0

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    29/127

    across the SCRs is zero when they are conducting (SCR is assumed ideal).

    In the period ( /

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    30/127

    Calculations:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    31/127

    WAVEFORMS:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    32/127

    Waveforms:

    Result:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    33/127

    Experiment No 8

    1-PHASE SEMI CONVERTER WITH RL-LOAD

    Aim: To study the performance of a single phase Semi converter with RL-load.

    Apparatus: 1. Power Electronics Trainer Kit2. Firing Circuit

    3. CRO

    Circuit Diagram:

    Theory:

    In the period 0 < t/; the SCRs T1 and Diode D1 are forward biased and the

    SCR T2 and Diode D2 are reverse biased. Then current through the load and

    voltage drop across the load are zero. Let the SCR T1 be triggered at an angle of

    (0

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    34/127

    (+)/

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    35/127

    WAVEFORMS:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    36/127

    Waveforms:

    Result:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    37/127

    Experiment No 9

    1-PHASE AC VOLTAGE CONTROLLER WITH R-LOAD

    Aim: To study the performance of a single phase AC Voltage controller with R-load.

    Apparatus: 1. Power Electronics Trainer Kit2. Firing Circuit3. CRO

    Circuit Diagram:

    Theory:In the period 0 < t/; The SCR T1 is forward biased and SCR T2 is reverse

    biased. Let the T1be triggered at an angle of (0

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    38/127

    Procedure:

    1. Connect the circuit as shown in the circuit diagram.

    2. Give the firing pulses accordingly at a suitable firing angle from the firing circuit.

    3. Observe the load voltage on the CRO and note down the firing angle.

    4. Draw the waveforms and calculate the RMS value of output voltage.

    Calculations:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    39/127

    WAVEFORMS:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    40/127

    Waveforms:

    Result:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    41/127

    Experiment No 10

    1-PHASE AC VOLTAGE CONTROLLER WITH RL-

    LOAD

    Aim: To study the performance of a single phase AC Voltage controller withRL-load.

    Apparatus: 1. Power Electronics Trainer Kit2. Firing Circuit3. CRO

    Circuit Diagram:

    Theory:In the period 0 < t/; the SCRs T1 is forward biased and the SCR T2 is reverse

    biased. Then current through the load and voltage drop across the load are zero. Let

    the SCR T1 be triggered at an angle of (0

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    42/127

    remain in conducting state up to the angle for Discontinuous conduction mode

    (

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    43/127

    WAVEFORMS:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    44/127

    Waveforms:

    Result:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    45/127

    Experiment No 11

    1-PHASE STEP DOWN CYCLO CONVERTER WITH R-

    LOAD

    Aim: To study the performance of a single phase Cyclo converter with R-load.Apparatus: 1. Power Electronics Trainer Kit

    2. Firing Circuit3. CRO

    Circuit Diagram:

    Theory:Cyclo converter is a circuit which converts the input voltage at one frequency to the

    output vtage at different frequecy.

    During the positive half cycle Thyristors P1, N2 are forward biased and Thyristors

    P2 and N1 are reverse biased. The circuit is designed for step down cyclo converter

    for a output frequency of = .To get the desired frequency the Thyristors are

    triggered accordingly.

    During the first positive half cycle P1 and N2 are forward biased and to get the

    positive output voltage, P1 is triggered at an angle of (+). During the next

    positive half cycle P2 and N1 are forward biased, to get required output voltage

    thyristor P2 is triggered. In the next half cycle P1 is triggered next N1,N2 and again

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    46/127

    N1 are triggered accordingly. This process repeats.

    Procedure:

    1. Connect the circuit as shown in the circuit diagram.

    2. Give the firing pulses accordingly at a suitable firing angle from the firing circuit.

    3. Observe the load voltage on the CRO and note down the firing angle.

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    47/127

    WAVEFORMS:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    48/127

    Waveforms:

    Result:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    49/127

    Experiment No 12

    555- TIMER TRIGGERING CIRCUIT

    Aim: To generate pulses using 555 Timer Circuit

    Apparatus: 1. Power Electronics Trainer Kit2. Firing Circuit3. CRO

    Circuit Diagram:

    Output

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    50/127

    Theory:

    The 555 has three main operating modes, Monostable, Astable, and Bistable. Each mode represents a

    different type of circuit that has a particular output.

    Astable mode:

    AnAstable Circuithas no stable state - hence the name "astable". The output continually switches

    state between high and low without without any intervention from the user, called a 'square' wave.

    This type of circuit could be used to give a mechanism intermittent motion by switching a motor on

    and off at regular intervals. It can also be used to flash lamps and LEDs, and is useful as a 'clock'

    pulse for other digital ICs and circuits.

    Output Waveforms in Astable Mode:

    Monostable mode

    AMonostable Circuitproduces one pulse of a set length in response to a trigger input such as a push

    button. The output of the circuit stays in the low state until there is a trigger input, hence the name

    "monostable" meaning "one stable state". his type of circuit is ideal for use in a "push to operate"

    system for a model displayed at exhibitions. A visitor can push a button to start a model's mechanismmoving, and the mechanism will automatically switch off after a set time.

    Output Waveforms in Monostable Mode:

    http://www.555-timer-circuits.com/operating-modes.htmlhttp://www.555-timer-circuits.com/operating-modes.htmlhttp://www.555-timer-circuits.com/operating-modes.htmlhttp://www.555-timer-circuits.com/operating-modes.htmlhttp://www.555-timer-circuits.com/operating-modes.htmlhttp://www.555-timer-circuits.com/operating-modes.htmlhttp://www.555-timer-circuits.com/operating-modes.htmlhttp://www.555-timer-circuits.com/operating-modes.html
  • 8/11/2019 PE Lab Manual 2013 Autonomous

    51/127

    Procedure:

    1. Connect the firing circuit as shown in the circuit diagram

    2. Simulate it using Multisim

    3. Observe the pulses at the output

    4. Vary the circuit parameters to observe the changes.

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    52/127

    Waveforms:

    Results:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    53/127

    HARDWARE CIRCUIT DESIGNS

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    54/127

    Experiment No 13

    AC VOLTAGE CONTROLLER USING UJT TRIGGERING

    CIRCUIT

    Aim:

    Circuit Diagram:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    55/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    56/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    57/127

    Experiment No 14

    SEMI CONVERTER USING UJT TRIGGERING

    CIRCUIT

    Aim:

    Circuit Diagram:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    58/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    59/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    60/127

    Experiment No 15

    FULL CONTROLLED CONVERTER USING UJT

    TRIGGERING CIRCUIT

    Aim:

    Circuit Diagram:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    61/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    62/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    63/127

    Experiment No 16

    BASIC STEP DOWN CHOPPER USING 555TIMER

    Aim:

    Circuit Diagram:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    64/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    65/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    66/127

    Experiment No 17

    BASIC STEP UP CHOPPER USING 555-TIMER

    Aim:

    Circuit Diagram:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    67/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    68/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    69/127

    Experiment No 18

    SEMI CONVERTER USING INVERSE COSINE

    CONTROL SCHEME

    Aim:

    Circuit Diagram:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    70/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    71/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    72/127

    Experiment No 19

    HALF WAVE CONTROLLED CONVERTER USING

    INVERSE COSINE CONTROL SCHEME

    Aim:

    Circuit Diagram:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    73/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    74/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    75/127

    Experiment No 20

    FULL CONTROLLED CONVERTER USING INVERSE

    COSINE CONTROL SCHEME

    Aim:

    Circuit Diagram:

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    76/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    77/127

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    78/127

    DATA SHEETS

    2N2222

    MUR 110

    1N4148

    IRFZ44

    LM 7815

    TL 494C

    LM339

    LM555

    TYN612

    TL3843

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    79/127

    PIN DESCRIPTION

    1 emitter

    2 base

    3 collector, connected to case

    NPN switching transistors 2N2222; 2N2222A

    FEATURES

    High current (max. 800 mA)

    Low voltage (max. 40 V).

    APPLICATIONS

    Linear amplification and switching.

    PINNING

    DESCRIPTION1

    3

    PNP complement: 2N2907A. 2

    3 MAM2641

    Fig.1 Simplified outline (TO-18) and symbol.

    QUICK REFERENCE DATA

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

    VCBO collector-base voltage

    2N2222

    2N2222A

    open emitter

    60

    75

    V

    V

    VCEO collector-emitter voltage

    2N2222

    2N2222A

    open base

    30

    40

    V

    V

    IC collector current (DC) 800 mA

    Ptot total power dissipation Tamb 25 C 500 mW

    hFE DC current gain IC =10mA;VCE =10 V 75

    fT transition frequency

    2N2222

    2N2222A

    IC = 20 mA; VCE = 20 V; f = 100 MHz

    250

    300

    MHz

    MHz

    toff

    turn-off time ICon = 150 mA; IBon = 15 mA; IBoff = 15 mA 250 ns

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    80/127

    NPN switching transistors 2N2222; 2N2222A

    LIMITING VALUES

    In accordance with the Absolute Maximum Rating System (IEC 134).

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

    VCBO collector-base voltage

    2N2222

    2N2222A

    open emitter

    60

    75

    V

    V

    VCEO collector-emitter voltage

    2N2222

    2N2222A

    open base

    30

    40

    V

    V

    VEBO emitter-base voltage

    2N22222N2222A

    open collector

    56

    VV

    IC collector current (DC) 800 mA

    ICM peak collector current 800 mA

    IBM peak base current 200 mA

    Ptot total power dissipation Tamb 25 C 500 mW

    Tcase 25 C 1.2 W

    Tstg storage temperature 65 +150 C

    Tj junction temperature 200 C

    Tamb operating ambient temperature 65 +150 C

    THERMAL CHARACTERISTICS

    SYMBOL PARAMETER CONDITIONS VALUE UNIT

    Rth j-a thermal resistance from junction to ambient in free air 350 K/W

    Rth j-c thermal resistance from junction to case 146 K/W

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    81/127

    NPN switching transistors 2N2222; 2N2222A

    CHARACTERISTICS

    Tj = 25 C unless otherwise specified.

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

    ICBO collector cut-off current

    2N2222 IE =0;VCB =50V 10 nA

    IE = 0; VCB = 50 V; Tamb = 150 C 10 A

    ICBO collector cut-off current

    2N2222A IE =0;VCB =60V 10 nA

    IE = 0; VCB = 60 V; Tamb = 150 C 10 A

    IEBO emitter cut-off current IC =0;VEB =3V 10 nA

    hFE DC current gain IC =0.1mA;VCE =10 V 35IC =1mA;VCE =10 V 50

    IC =10mA;VCE =10V 75

    IC = 150 mA; VCE = 1 V; note 1 50

    IC = 150 mA; VCE = 10 V; note 1 100 300

    hFE DC current gain

    2N2222A

    IC = 10 mA; VCE = 10 V; Tamb = 55 C

    35

    hFE DC current gain

    2N2222

    2N2222A

    IC = 500 mA; VCE = 10 V; note 1

    30

    40

    VCEsat collector-emitter saturation voltage2N2222 IC = 150 mA; IB = 15 mA; note 1 400 mV

    IC = 500 mA; IB = 50 mA; note 1 1.6 V

    VCEsat collector-emitter saturation voltage

    2N2222A IC = 150 mA; IB = 15 mA; note 1 300 mV

    IC = 500 mA; IB = 50 mA; note 1 1 V

    VBEsat base-emitter saturation voltage

    2N2222 IC = 150 mA; IB = 15 mA; note 1 1.3 V

    IC = 500 mA; IB = 50 mA; note 1 2.6 V

    VBEsat base-emitter saturation voltage

    2N2222A IC

    = 150 mA; IB

    = 15 mA; note 1

    0.6 1.2 V

    IC = 500 mA; IB = 50 mA; note 1 2 V

    Cc collector capacitance IE = ie = 0; VCB = 10 V; f = 1 MHz 8 pF

    Ce emitter capacitance

    2N2222A

    IC = ic = 0; VEB = 500 mV; f = 1 MHz

    25 pF

    fT transition frequency

    2N2222

    2N2222A

    IC = 20 mA; VCE = 20 V; f = 100 MHz

    250

    300

    MHz

    MHz

    F noise figure

    2N2222A

    IC = 200 A; VCE = 5 V; RS = 2 k ;

    f = 1 kHz; B = 200 Hz 4 dB

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    82/127

    NPN switching transistors 2N2222; 2N2222A

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNITSwitching times (between 10% and 90% levels); see Fig.2

    ton turn-on time ICon = 150 mA; IBon = 15 mA; IBoff = 15 mA 35 ns

    Td delay time 10 ns

    Tr rise time 25 ns

    toff turn-off time 250 ns

    Ts storage time 200 ns

    Tf fall time 60 ns

    Note

    1. Pulse test: tp 300 s; 0.02.

    VBB VCC

    (probe)

    RB RC

    Vo (probe)oscilloscope oscilloscope

    450

    R2V

    i DUT

    450

    R1

    MLB826

    Vi = 9.5 V; T = 500 s; tp = 10 s; tr = tf 3 ns.

    R1 = 68 ; R2 = 325 ; RB = 325

    ; RC = 160 . VBB = 3.5 V; VCC = 29.5 V.

    Oscilloscope input impedance Zi = 50 .

    Fig.2 Test circuit for switching times.

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    83/127

    w MA M B M

    NPN switching transistors 2N2222; 2N2222A

    PACKAGE OUTLINE

    Metal-can cylindrical single-ended package; 3 leads SOT18/13

    j seating plane

    B

    1b

    k

    2D1

    3

    a

    A D A L

    0 5 10 mm

    scale

    DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

    UNIT A a b D D1 j k L w

    mm 5.314.74 2.54

    0.470.41

    5.455.30

    4.704.55

    1.030.94

    1.10.9

    15.012.7 0.40 45

    OUTLINEVERSION

    REFERENCES

    IEC JEDEC EIAJ

    EUROPEAN

    PROJECTIONISSUE DATE

    SOT18/13 B11/C7 type 3 TO-1897-04-18

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    84/127

    MCC

    Part Number

    Maximum

    RecurrentPeak Reverse

    Voltage

    Maximum

    RMS Voltage

    Maximum DC

    Blocking

    Voltage

    MUR105 50V 35V 50VMUR110 100V 70V 100VMUR115 150V 105V 150VMUR120 200V 140V 200VMUR140 400V 280V 400VMUR160 600V 420V 600VMUR180 800V 560V 800V

    MUR1100 1000V 700V 1000V

    Average Forward

    CurrentIF(AV) 1 A TA = 55 C

    Peak Forward SurgeCurrent

    IFSM 35A 8.3ms, half sine

    Maximum

    Instantaneous

    Forward VoltageMUR105-115

    MUR120-160MUR180-1100

    VF .975V1.35V1.75V

    IFM = 1.0A;

    TA = 25 C

    Max imum DCReverse Current AtRated DC Blocking

    Voltage

    IR 5 A50 A

    TA = 25 C

    TA = 150 C

    Maximum ReverseRecovery Time

    MUR105-120MUR140-160

    MUR180-1100

    Trr 45ns60ns

    75ns

    IF=0.5A, IR=1.0A,Irr=0.25A

    Typical Junction

    CapacitanceCJ 20pF

    Measured at

    1.0MHz, VR=4.0V

    M C C MUR105

    THRU

    MUR1100

    FeaturesHigh Surge Capability

    Low Forward Voltage DropHigh Current Capability

    Super Fast Switching Speed For High Efficiency

    Maximum RatingsOperating Temperature: -50 C to +150 C

    Storage Temperature: -50 C to +150 C

    1 Amp Super Fast

    Recovery Rectifier

    50 to 1000 Volts

    DO-41

    D

    Electrical Characteristics @ 25 C Unless Otherwise Specified ACathode

    Mark

    B

    D

    C

    DIMENSIONS

    DIMINCHES MM

    NOTEMIN MAX MIN MAXA .166 .205 4.10 5.20B .080 .107 2.00 2.70C .028 .034 .70 .90D 1.000 --- 25.40 ---

    *Pulse Test: Pulse Width 300 sec, Duty Cycle 1%

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    85/127

    TJ=25

    MUR105 thru MUR1100 M C CFigure 1

    Typical Forward Characteristics

    20

    10

    6 1.5

    Figure 2

    Forward Derating Curve

    Amps

    4

    2

    1

    .6

    .4

    .2

    .06

    25 C

    MUR105-115

    MUR180-1100

    MUR120-160

    Amps

    1.25

    1.0

    .75

    .5

    Single Phase, Half Wave

    60Hz Resistive or Inductive Load

    .040

    25 50 75 100 125 150 175

    .02

    .01.5 .7 .9 1.1 1.3 1.5

    Volts

    C

    Average Forward Rectified Current - Amperes versus

    Ambient Temperature - C

    Instantaneous Forward Current - Amperes versusInstantaneous Forward Voltage - Volts

    Figure 3

    Junction Capacitance

    100

    60

    40

    20

    pF10

    6

    4

    2

    1.1 .2 .4 1 2 4

    Volts

    10 20 40 100 200 400 1000

    Junction Capacitance - pF versus

    Reverse Voltage - Volts

    http://www.mccsemi.com/
  • 8/11/2019 PE Lab Manual 2013 Autonomous

    86/127

    TA 15 C

    TA 10 C

    MUR105 thru MUR110M C C

    100

    60

    40

    Figure 4

    Typical Reverse Characteristics

    Figure 5Peak Forward Surge Current

    60

    50

    20

    10

    6

    4

    2

    Amps 1

    .6

    40

    30

    Amps20

    10

    0

    1 2 4 6 8 10 20

    Cycles

    40 60 80 100

    .4

    .2

    .1

    .06

    .04

    TA=

    Peak Forward Surge Current - Amperes versus

    Number Of Cycles At 60Hz - Cycles

    .02

    .0120 40 60 80 100 120 140

    Volts

    Instantaneous Reverse Leakage Current - MicroAmperes

    versus

    Figure 6

    Reverse Recovery Time Characteristic And Test Circuit Diagram

    50 10

    +0.5Atrr

    25VdcPulse

    Generator

    Note 2

    0

    -0.25

    1

    Notes:

    1. Rise Time = 7ns max.

    Oscilloscope

    Note 1-1.0

    1cmSet Time Base for 20/100ns/cm

    Input impedance = 1 megohm, 22pF

    2. Rise Time = 10ns max.

    Source impedance = 50 ohms

    3. Resistors are non-inductive

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    87/127

    TYPE NUMBER MARKING CODE

    1N4148 1N4148PH or 4148PH

    1N4448 1N4448

    High-speed diodes 1N4148; 1N4448

    FEATURES

    Hermetically sealed leaded glass SOD27 (DO-35)package

    High switching speed: max. 4 ns

    General application

    Cont inuous reverse voltage: max. 100 V

    Repet i t ive peak reverse voltage: max. 100 V

    Repet i t ive peak forward current: max. 450 mA.

    APPLICATIONS

    High-speed switching.

    DESCRIPTION

    The 1N4148 and 1N4448 are high-speed switching diodes

    fabricated in planar technology, and encapsulated in

    hermetically sealed leaded glass SOD27 (DO-35)

    packages.

    k a

    The diodes are type branded.

    Fig.1 Simplified outline (SOD27; DO-35) and

    symbol.

    MARKING

    MAM246

    ORDERING INFORMATION

    TYPE NUMBER PACKAGENAME DESCRIPTION VERSION

    1N4148

    hermetically sealed glass package; axial leaded; 2 leads SOD27

    1N4448

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    88/127

    High-speed diodes 1N4148; 1N4448

    LIMITING VALUES

    In accordance with the Absolute Maximum Rating System (IEC 60134).

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

    VRRM repetitive peak reverse voltage 100 V

    VR continuous reverse voltage 100 V

    IF continuous forward current see Fig.2; note 1 200 mA

    IFRM repetitive peak forward current 450 mA

    IFSM non-repetitive peak forward current square wave; Tj = 25 C prior tosurge; see Fig.4

    t = 1 s

    t = 1 ms

    t = 1 s

    4

    1

    0.5

    A

    A

    APtot total power dissipation Tamb = 25 C; note 1 500 mW

    Tstg storage temperature 65 +200 CTj junction temperature 200 C

    Note

    1. Device mounted on an FR4 printed-circuit board; lead length 10 mm.

    ELECTRICAL CHARACTERISTICS

    Tj = 25 C unless otherwise specified.

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

    VF forward voltage

    1N4148

    1N4448

    see Fig.3

    IF = 10 mA

    IF = 5 mA

    IF = 100 mA

    0.62

    1

    0.72

    1

    V

    V

    V

    IR reverse current VR = 20 V; see Fig.5 25 nA

    VR = 20 V; Tj = 150 C; see Fig.5 50 AIR reverse current; 1N4448 VR = 20 V; Tj = 100 C; see Fig.5 3 ACd diode capacitance f = 1 MHz; VR = 0 V; see Fig.6 4 pF

    Trr reverse recovery time when switched from IF = 10 mA toIR = 60 mA; RL = 100 ;

    measured at IR = 1 mA; see Fig.7

    4 ns

    Vfr forward recovery voltage when switched from IF = 50 mA;tr = 20 ns; see Fig.8

    2.5 V

    THERMAL CHARACTERISTICS

    SYMBOL PARAMETER CONDITIONS VALUE UNIT

    Rth(j-tp) thermal resistance from junction to tie-point lead length 10 mm 240 K/W

    Rth(j-a) thermal resistance from junction to ambient lead length 10 mm; note 1 350 K/W

    Note

    1. Device mounted on a printed-circuit board without metallization pad.

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    89/127

    (1) (2) (3)

    High-speed diodes 1N4148; 1N4448

    GRAPHICAL DATA

    300mbg451

    600MBG464

    IF

    (mA)

    IF(mA)

    200 400

    100 200

    00 100 200

    Tamb (C)

    00 1 VF (V)

    2

    Device mounted on an FR4 printed-circuit board; lead length 10 mm.

    Fig.2 Maximum permissible continuous forward

    current as a function of ambient

    temperature.

    (1) Tj = 175 C; typical values.(2) Tj = 25 C; typical values.(3) Tj = 25 C; maximum values.

    Fig.3 Forward current as a function of forwardvoltage.

    102MBG704

    IFSM(A)

    10

    1

    101

    1 10 102 103 tp (s)104

    Based on square wave currents.

    Tj = 25 C prior to surge.

    Fig.4 Maximum permissible non-repetitive peak forward current as a function of pulse duration.

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    90/127

    High-speed diodes 1N4148; 1N4448

    103

    IR

    mgd2901.2

    Cd

    MGD004

    (A)

    102

    (pF)

    1.0

    (1)

    10(2)

    0.8

    1

    101

    0.6

    1020 100

    Tj (C)200

    0.40 10

    VR (V)20

    (1) VR = 75 V; typical values.

    (2) VR = 20 V; typical values. f = 1 MHz; Tj = 25 C.

    Fig.5 Reverse current as a function of junction

    temperature.

    Fig.6 Diode capacitance as a function of reverse

    voltage; typical values.

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    91/127

    High-speed diodes 1N4148; 1N4448

    D.U.T.

    RS

    = 50 IFSAMPLING

    OSCILLOSCOPE

    t r t p

    10%

    t

    I F t rrt

    V = VR IF x RSR

    i= 50

    VRMGA881

    90%

    input signal output signal

    (1)

    (1) IR = 1 mA.

    Fig.7 Reverse recovery voltage test circuit and waveforms.

    I

    RS

    = 50

    1 k

    D.U.T.

    450

    OSCILLOSCOPE

    Ri= 50

    I90%

    V

    Vfr

    MGA882

    10%

    t r

    tt p

    inputsignal

    t

    outputsignal

    Fig.8 Forward recovery voltage test circuit and waveforms.

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    92/127

    UNIT bmax.

    D

    max.G1

    max.L

    min.

    mm 0.56 1.85 4.25 25.4

    High-speed diodes 1N4148; 1N4448

    PACKAGE OUTLINE

    Hermetically sealed glass package; axial leaded; 2 leads SOD27

    (1)

    b

    D L G1 L

    DIMENSIONS (mm are the original dimensions)

    0 1 2 mm

    scale

    Note

    1. The marking band indicates the cathode.

    OUTLINE

    VERSIONREFERENCES EUROPEAN

    PROJECTION ISSUE DATEIEC JEDEC JEITA

    SOD27 A24 DO-35 SC-40 97-06-0905-12-22

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    93/127

    SYMBOL PARAMETER MAX. UNIT

    VDSIDPtotTjRDS(ON)

    Drain-source voltageDrain current (DC)Total power dissipationJunction temperatureDrain-source on-state

    resistance VGS = 10 V

    5549

    11017522

    VAWCm

    PIN DESCRIPTION

    1

    2

    3

    tab

    gate

    drain

    source

    drain

    N-channel enhancement mode IRFZ44NTrenchMOSTM transistor

    GENERAL DESCRIPTION QUICK REFERENCE DATA

    N-channel enhancement modestandard level field-effect powertransistor in a plastic envelope usingtrench technology. The devicefeatures very low on-state resistanceand has integral zener diodes givingESD protection up to 2kV. It is

    intended for use in switched modepower supplies and general purposeswitching applications.

    PINNING - TO220AB PIN CONFIGURATION SYMBOL

    dtab

    g

    1 2 3 s

    LIMITING VALUESLimiting values in accordance with the Absolute Maximum System (IEC 134)

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

    VDSVDGRVGSIDID

    IDM PtotTstg, Tj

    Drain-source voltageDrain-gate voltageGate-source voltageDrain current (DC)Drain current (DC)

    Drain current (pulse peak value)Total power dissipationStorage & operating temperature

    -RGS = 20 k-Tmb = 25 CTmb = 100 C

    Tmb = 25 CTmb = 25 C-

    -----

    --- 55

    5555204935

    160110175

    VVVAA

    AWC

    ESD LIMITING VALUE

    SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

    VC Electrostatic discharge capacitorvoltage, all pins

    Human body model(100 pF, 1.5 k )

    - 2 kV

    THERMAL RESISTANCES

    SYMBOL PARAMETER CONDITIONS TYP. MAX. UNIT

    Rth j-mb

    R

    Thermal resistance junction tomounting baseThermal resistance junction to

    -

    in free air

    -

    60

    1.4 K/W

    K/W

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    94/127

    N-channel enhancement mode IRFZ44NTrenchMOSTM transistor

    STATIC CHARACTERISTICSTj= 25C unless otherwise specified

    SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT

    V(BR)DSS

    VGS(TO)

    IDSS IGSS

    V(BR)GSSRDS(ON)

    Drain-source breakdownvoltageGate threshold voltage

    Zero gate voltage drain current

    Gate source leakage current

    Gate source breakdown voltageDrain-source on-stateresistance

    VGS = 0 V; ID = 0.25 mA;Tj = -55C

    VDS = VGS; ID = 1 mATj = 175CTj = -55C

    VDS = 55 V; VGS = 0 V;Tj = 175C

    VGS = 10 V; VDS = 0 VTj = 175C

    IG = 1 mA;VGS = 10 V; ID = 25 A

    Tj = 175C

    55502.01.0-----

    16--

    --

    3.0--

    0.05-

    0.04--

    15-

    --

    4.0-

    4.410500120-

    2242

    VVVV

    AAAAV

    mm

    DYNAMIC CHARACTERISTICSTmb = 25C unless otherwise specified

    SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT

    gfs Forward transconductance VDS = 25 V; ID = 25 A 6 - - S

    Ciss

    CossCrss

    Input capacitance

    Output capacitanceFeedback capacitance

    VGS = 0 V; VDS = 25 V; f = 1 MHz -

    --

    1350

    330155

    1800

    400215

    pF

    pFpF

    QgQgsQgd

    Total gate chargeGate-cource chargeGate-drain (miller) charge

    VDD = 44 V; ID = 50 A; VGS = 10 V ---

    ---

    621526

    nCnCnC

    td ontrtd offtf

    Turn-on delay timeTurn-on rise timeTurn-off delay timeTurn-off fall time

    VDD = 30 V; ID = 25 A;VGS = 10 V; RG = 10Resistive load

    ----

    18504030

    26755040

    nsnsnsns

    Ld

    Ld

    Ls

    Internal drain inductance

    Internal drain inductance

    Internal source inductance

    Measured from contact screw ontab to centre of dieMeasured from drain lead 6 mm

    from package to centre of dieMeasured from source lead 6 mmfrom package to source bond pad

    -

    -

    -

    3.5

    4.5

    7.5

    -

    -

    -

    nH

    nH

    nH

    REVERSE DIODE LIMITING VALUES AND CHARACTERISTICS

    Tj = 25C unless otherwise specified

    SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT

    IDR

    IDRMVSD

    Continuous reverse draincurrentPulsed reverse drain currentDiode forward voltage IF = 25 A; VGS = 0 V

    IF = 40 A; VGS = 0 V

    -

    ---

    -

    -0.951.0

    49

    1601.2-

    A

    AV

    trrQrr

    Reverse recovery timeReverse recovery charge

    IF = 40 A; -dIF/dt = 100 A/ s;VGS = -10 V; VR = 30 V

    --

    470.15

    --

    nsC

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    95/127

    N-channel enhancement mode IRFZ44NTrenchMOSTM transistor

    AVALANCHE LIMITING VALUE

    SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT

    WDSS Drain-source non-repetitiveunclamped inductive turn-offenergy

    ID = 45 A; VDD 25 V;VGS = 10 V; RGS = 50 ; Tmb = 25 C

    - - 110 mJ

    120

    110100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    PD% Normalised Power Derating

    0 20 40 60 80 100 120 140 160 180

    Tmb / C

    1000

    ID/A

    100

    10

    1

    RDS(ON) =VDS/ID

    DC

    1 10 VDS/V

    tp =

    1 us

    10us

    100 us

    1 ms

    10ms

    100ms

    100

    Fig.1. Normalised power dissipation.

    PD% = 100 PD/PD 25 C = f(Tmb)Fig.3. Safe operating area. Tmb = 25 C

    ID & IDM = f(VDS); IDM single pulse; parameter tp

    120

    110

    100

    90

    80

    70

    60

    50

    40

    30

    2010

    0

    ID% Normalised Current Derating10

    1

    0.1

    0.01

    Zth/(K/W)

    0.5

    0.2

    0.1

    0.05

    0.02

    0

    PD tp

    T

    D =tpT

    t

    0 20 40 60 80 100 120 140 160 180

    Tmb / C

    Fig.2. Normalised continuous drain current.ID% = 100 ID/ID 25 C= f(Tmb); conditions: VGS 10 V

    0.0011E-06 0.0001 0.01 1 100

    t/s

    Fig.4. Transient thermal impedance.Zth j-mb = f(t); parameter D = tp/T

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    96/127

    BUK959-60

    BUK759-60

    16

    10

    9

    8.5VGS/V =

    VGS/V=

    6

    6.57

    89

    10

    Tj/C = 175 25

    max.

    typ.

    N-channel enhancement mode IRFZ44NTrenchMOSTM transistor

    100

    ID/A

    80

    60

    40

    20

    00 2 4

    VDS/V6 8 10

    8.0

    7.5

    7.0

    6.5

    6.0

    5.5

    5.04.54.0

    30

    gfs/S

    25

    20

    15

    10

    5

    00 20 40 60 80 100

    ID/A

    Fig.5. Typical output characteristics, Tj = 25 C.ID = f(VDS); parameter VGS

    Fig.8. Typical transconductance, Tj = 25 C.gfs = f(ID); conditions: VDS = 25 V

    RDS(ON)/mOhm 40 2.5

    aRds(on) normlised to 25degC

    35

    2

    30

    25 1.5

    20

    1

    15

    100 10 20 30 40 50 60 70 80 90

    ID/A

    0.5

    -100 -50 0 50 100 150 200Tmb / degC

    Fig.6. Typical on-state resistance, Tj = 25 C.RDS(ON) = f(ID); parameter VGS

    Fig.9. Normalised drain-source on-state resistance.a = RDS(ON)/RDS(ON)25 C= f(Tj); ID = 25 A; VGS = 10 V

    100

    ID/A

    80

    VGS(TO) / V

    5

    4

    60 3

    40 2

    20 1

    00 2 4 6 8 10 12

    VGS/V

    Fig.7. Typical transfer characteristics.ID = f(VGS) ; conditions: VDS = 25 V; parameter Tj

    0-100 -50 0 50 100 150 200

    Tj / C

    Fig.10. Gate threshold voltage.VGS(TO) = f(Tj); conditions: ID = 1 mA; VDS = VGS

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    97/127

    Tj/C = 175 25

    VDS = 14V

    VDS = 4V

    Thousand

    s

    pF

    +

    N-channel enhancement mode IRFZ44NTrenchMOSTM transistor

    1E-01Sub-Threshold Conduction 100

    IF/A

    80

    1E-02

    1E-032% typ 98%

    60

    40

    1E-04

    20

    1E-05

    1E-060 1 2 3 4 5

    Fig.11. Sub-threshold drain current.

    00 0.2 0.4 0.6 0.8 1 1.2 1.4

    VSDS/V

    Fig.14. Typical reverse diode current.ID = f(VGS); conditions: Tj = 25 C; VDS = VGS IF = f(VSDS); conditions: VGS = 0 V; parameter Tj

    2.5

    2

    1.5

    1

    .5

    00.01 0.1 1 VDS/V

    Ciss

    Coss

    Crss

    10 100

    120

    110

    100

    90

    80

    7060

    50

    40

    30

    20

    10

    0

    WDSS%

    20 40 60 80 100 120 140 160 180

    Tmb / C

    Fig.12. Typical capacitances, Ciss, Coss, Crss.C = f(VDS); conditions: VGS = 0 V; f = 1 MHz

    Fig.15. Normalised avalanche energy rating.WDSS% = f(Tmb); conditions: ID = 49 A

    12

    VGS/V

    10

    8

    6

    4

    VGS

    0

    L

    VDS

    T.U.T.

    VDD

    --ID/100

    2 RGSR 01

    shunt

    00 10 20

    QG/nC30 40 50

    Fig.13. Typical turn-on gate-charge characteristics. Fig.16. Avalanche energy test circuit.2 BV BV V

    VGS = f(QG); conditions: ID = 50 A; parameter VDSWDSS 0.5 LID DSS DSS DD

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    98/127

    N-channel enhancement mode IRFZ44NTrenchMOSTM transistor

    +VDD

    RD

    VGS

    0

    VDS

    -

    RGT.U.T.

    Fig.17. Switching test circuit.

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    99/127

    N-channel enhancement mode IRFZ44NTrenchMOSTM transistor

    MECHANICAL DATA

    Dimensions in mm

    Net Mass: 2 g

    10,3

    max

    3,71,3

    4,5max

    2,8 5,9min

    15,8max

    3,0 max

    not tinned

    1,3

    max 1 2 3

    3,0

    13,5min

    (2x)

    2,54 2,54

    0,9 max (3x)0,6

    2,4

    Fig.18. SOT78 (TO220AB); pin 2 connected to mounting base.

    Notes1. Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent

    damage to MOS gate oxide.2. Refer to mounting instructions for SOT78 (TO220) envelopes.3. Epoxy meets UL94 V0 at 1/8".

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    100/127

    LM78XXSeries

    VoltageRegulators

    May 2000

    LM78XX

    Series Voltage Regulators

    General DescriptionThe LM78XX series of three terminal regulators is available

    with several fixed output voltages making them useful in a

    wide range of applications. One of these is local on card

    regulation, eliminating the distribution problems associated

    with single point regulation. The voltages available allow

    these regulators to be used in logic systems, instrumenta-

    tion, HiFi, and other solid state electronic equipment. Al-

    though designed primarily as fixed voltage regulators these

    devices can be used with external components to obtain ad-

    justable voltages and currents.

    The LM78XX series is available in an aluminum TO-3 pack-

    age which will allow over 1.0A load current if adequate heat

    sinking is provided. Current limiting is included to limit the

    peak output current to a safe value. Safe area protection forthe output transistor is provided to limit internal power dissi-

    pation. If internal power dissipation becomes too high for the

    heat sinking provided, the thermal shutdown circuit takes

    over preventing the IC from overheating.

    Considerable effort was expanded to make the LM78XX se-

    ries of regulators easy to use and minimize the number of

    external components. It is not necessary to bypass the out-

    put, although this does improve transient response. Input by-passing is needed only if the regulator is located far from the

    filter capacitor of the power supply.

    For output voltage other than 5V, 12V and 15V the LM117

    series provides an output voltage range from 1.2V to 57V.

    Featuresn Output current in excess of 1A

    n Internal thermal overload protection

    n No external components required

    n Output transistor safe area protection

    n Internal short circuit current limit

    n Available in the aluminum TO-3 package

    Voltage Range

    LM7805C 5V

    LM7812C 12V

    LM7815C 15V

    Connection Diagrams

    Metal Can Package

    TO-3 (K) Aluminum

    Plastic Package

    TO-220 (T)

    DS007746-2Top View

    DS007746-3

    Bottom View

    Order Number LM7805CK,

    LM7812CK or LM7815CK

    See NS Package Number KC02A

    Order Number LM7805CT,

    LM7812CT or LM7815CT

    See NS Package Number T03B

    2000 National Semiconductor Corporation DS007746 www.national.com

    http://www.national.com/http://www.national.com/
  • 8/11/2019 PE Lab Manual 2013 Autonomous

    101/127

    LM78XX

    Schematic

    DS007746-1

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    102/127

    LM78XX

    Absolute Maximum Ratings (Note 3) Maximum Junction TemperatureIf Military/Aerospace specified devices are required, (K Package) 150C

    please contact the National Semiconductor Sales Office/ (T Package) 150C

    Distributors for availability and specifications. Storage Temperature Range 65C to +150C

    Input Voltage Lead Temperature (Soldering, 10 sec.)

    (VO = 5V, 12V and 15V) 35VTO-3 Package K 300C

    Internal Power Dissipation (Note 1) Internally Limited TO-220 Package T 230C

    Operating Temperature Range (TA) 0C to +70C

    Electrical Characteristics LM78XXC (Note 2)0C TJ 125C unless otherwise noted.

    Output Voltage 5V 12V 15VUnitsInput Voltage (unless otherwise noted) 10V 19V 23V

    Symbol Parameter Conditions Min Typ Max Min Typ Max Min Typ MaxVO Output Voltage Tj = 25C, 5 mA IO 1A 4.8 5 5.2 11.5 12 12.5 14.4 15 15.6 V

    PD 15W, 5 mA IO 1A

    VMIN VIN VMAX

    4.75 5.25

    (7.5 VIN 20)11.4 12.6 1

    (14.5 VIN

    27)

    4.25 15.75

    (17.5 VIN

    30)

    V

    V

    VO Line Regulation IO = 500mA

    Tj = 25C

    VIN

    3 50

    (7 VIN 25)

    4 120

    14.5 VIN 30)

    4 150

    (17.5 VIN

    30)

    mV

    V

    0C Tj +125C

    VIN

    50

    (8 VIN 20)120

    (15 VIN 27)150

    (18.5 VIN

    30)

    mV

    V

    IO 1A Tj = 25CVIN

    50

    (7.5 VIN 20)120

    (14.6 VIN

    27)

    150

    (17.7 VIN

    30)

    mV

    V

    0C Tj +125C

    VIN

    25

    (8 VIN 12)60

    (16 VIN 22)75

    (20 VIN 26)mV

    VVO Load Regulation Tj = 25C 5 mA IO 1.5A

    250 mA IO750 mA

    10 50

    25

    12 120

    60

    12 150

    75

    mV

    mV

    5 mA IO 1A, 0C Tj

    +125C50 120 150 mV

    IQ Quiescent Current IO 1A Tj = 25C0C Tj +125C

    8

    8.58

    8.58

    8.5mA

    mAIQ Quiescent Current

    Change5 mA IO 1A 0.5 0.5 0.5 mATj = 25C, IO 1A

    VMIN VIN VMAX

    1.0

    (7.5 VIN 20)1.0

    (14.8 VIN 27)1.0

    (17.9 VIN

    30)

    mA

    V

    IO 500 mA, 0C Tj +125C

    VMIN VIN VMAX

    1.0

    (7 VIN 25)1.0

    (14.5 VIN 30)1.0

    (17.5 VIN

    30)

    mA

    V

    VN Output Noise

    VoltageTA =25C, 10 Hz f 100 kHz 40 75 90 V

    Ripple Rejection

    f = 120 Hz

    IO 1A, Tj = 25C

    or

    IO 500 mA

    0C Tj +125C

    62 80

    62

    (8 VIN 18)

    55 72

    55

    (15 VIN 25)

    54 70

    54

    (18.5 VIN

    28.5)

    dB

    dB

    VVMIN VIN VMAX

    RO Dropout Voltage

    Output ResistanceTj = 25C, IOUT = 1A

    f = 1 kHz2.0

    82.0

    182.0

    19V

    m

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    103/127

    LM78XX

    Electrical Characteristics LM78XXC (Note 2) (Continued)

    0C TJ 125C unless otherwise noted.

    Output Voltage 5V 12V 15VUnInput Voltage (unless otherwise noted) 10V 19V 23V

    Symbol Parameter Conditions Min Typ Max Min Typ Max Min Typ MaxShort-Circuit

    Current

    Peak OutputCurrent

    Average TC of

    VOUT

    Tj = 25C

    Tj = 25C

    0C Tj +125C, IO = 5 mA

    2.1

    2.4

    0.6

    1.5

    2.4

    1.5

    1.2

    2.4

    1.8

    mV

    VIN Input Voltage

    Required to

    Maintain

    Line Regulation

    Tj = 25C, IO 1A 7.5 14.6 17.7

    Note 1: Thermal resistance of the TO-3 package (K, KC) is typically 4C/Wjunction to case and 35C/Wcase to ambient. Thermal resistance of the TO-220 packa

    (T) is typically 4C/Wjunction to case and 50C/W case to ambient.

    Note 2: All characteristics are measured with capacitor across the input of 0.22 F, and a capacitor across the output of 0.1F. All characteristics except noise volt

    and ripple rejection ratio are measured using pulse techniques (tw 10 ms, duty cycle 5%). Output voltage changes due to changes in internal temperature m

    be taken into account separately.

    Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. For guaranteed specifications and the test conditions, see E

    trical Characteristics.

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    104/127

    LM78XX

    Typical Performance Characteristics

    Maximum Average Power Dissipation

    DS007746-5

    Maximum Average Power Dissipation

    DS007746-6

    Peak Output Current

    DS007746-7

    Output Voltage (Normalized to 1V at TJ

    = 25C)

    DS007746-8

    Ripple Rejection

    DS007746-9

    Ripple Rejection

    DS007746-10

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    105/127

    LM78XX

    Typical Performance Characteristics (Continued)

    Output Impedance

    DS007746-11

    Dropout Voltage

    DS007746-12

    Dropout Characteristics

    DS007746-13

    Quiescent Current

    DS007746-14

    Quiescent Current

    DS007746-15

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    106/127

    LM78XX

    Physical Dimensions inches (millimeters) unless otherwise noted

    Aluminum Metal Can Package (KC)

    Order Number LM7805CK, LM7812CK or LM7815CK

    NS Package Number KC02A

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    107/127

    National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

    LM78XXSeriesVoltageRegulators

    Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

    TO-220 Package (T)

    Order Number LM7805CT, LM7812CT or LM7815CT

    NS Package Number T03B

    LIFE SUPPORT POLICY

    NATIONALS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERALCOUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

    1. Life support devices or systems are devices orsystems which, (a) are intended for surgical implantinto the body, or (b) support or sustain life, andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling, can be reasonably expected to result in asignificant injury to the user.

    2. A critical component is any component of a lifesupport device or system whose failure to performcan be reasonably expected to cause the failure ofthe life support device or system, or to affect itssafety or effectiveness.

    National Semiconductor

    Corporation

    Ameri cas

    Tel: 1-800-272-9959

    Fax: 1-800-737-7018

    Email: [email protected]

    www.national.com

    National Semiconductor

    Europe

    Fax: +49 (0) 180-530 85 86

    Email:[email protected]

    Deutsch Tel: +49 (0) 69 9508 6208

    English Tel: +44 (0) 870 24 0 2171

    Franais Tel: +33 (0) 1 41 91 8790

    National Semiconductor

    Asia Pacific Customer

    Response Group

    Tel: 65-2544466

    Fax: 65-2504466

    Email: [email protected]

    National Semiconductor

    Japan Ltd.

    Tel: 81-3-5639-7560

    Fax: 81-3-5639-7507

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]
  • 8/11/2019 PE Lab Manual 2013 Autonomous

    108/127

    TL494PULSE-WIDTH-

    MODULATIONCONTROLCIRCUITS

    testingof all parameters.

    POST OFFICE BOX 655303 DALLAS, TEXAS 75265 1

    1 16

    2 15

    3 14

    4 13

    5 12

    6 11

    7 10

    8 9

    Complete PWM Power-Control Circuitry

    Uncommitted Outputs for 200-mA Sink or

    D, DB, N, NS, OR PW PACKAGE

    (TOP VIEW)

    Source Current

    Output Control Selects Single-Ended or

    Push-Pull OperationInternal Circuitry Prohibits Double Pulse atEither Output

    Variable Dead Time Provides Control OverTotal Range

    Internal Regulator Provides a Stable 5-VReference Supply With 5% Tolerance

    Circuit Architecture Allows Easy

    Synchronization

    1IN+

    1IN

    FEEDBACKDTC

    CT

    RT

    GND

    C1

    2IN+

    2IN

    REFOUTPUT CTRL

    VCCC2

    E2

    E1

    description

    The TL494 incorporates all the functions required in the construction of a pulse-width-modulation (PWM) controlcircuit on a single chip. Designed primarily for power-supply control, this device offers the flexibility to tailor thepower-supply control circuitry to a specific application.

    The TL494 contains two error amplifiers, an on-chip adjustable oscillator, a dead-time control (DTC)

    comparator, a pulse-steering control flip-flop, a 5-V, 5%-precision regulator, and output-control circuits.

    The error amplifiers exhibit a common-mode voltage range from0.3 V to VCC2 V. The dead-time control

    comparator has a fixed offset that provides approximately 5% dead time. The on-chip oscillator can be bypassed

    by terminating RT to the reference output and providing a sawtooth input to CT, or it can drive the common

    circuits in synchronous multiple-rail power supplies.

    The uncommitted output transistors provide either common-emitter or emitter-follower output capability. TheTL494 provides for push-pull or single-ended output operation, which can be selected through the

    output-control function. The architecture of this device prohibits the possibility of either output being pulsed twice

    during push-pull operation.

    The TL494C is characterized for operation from 0C to 70C. The TL494I is characterized for operation from40C to 85C.

    AVAILABLE OPTIONS

    TA

    PACKAGED DEVICES

    SMALL

    OUTLINE

    (D)

    PLASTIC

    DIP

    (N)

    SMALL

    OUTLINE

    (NS)

    SHRINK

    SMALL

    OUTLINE

    (DB)

    THIN SHRINK

    SMALL

    OUTLINE

    (PW)0C to 70C TL494CD TL494CN TL494CNS TL494CDB TL494CPW

    40C to 85C TL494ID TL494IN

    The D, DB, NS, and PW packages are available taped and reeled. Add the suffix R to device type (e.g.,TL494CDR).

    Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of

    Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

    PRODUCTION DATA information is current as of publication date.Products conformto specifications per the terms of Texas Instrumentsstandard warranty. Production processing does not necessarily include

    Copyright2002, Texas Instruments Incorporated

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    109/127

    TL494PULSE-WIDTH-

    MODULATIONCONTROLCIRCUITS

    testingof all parameters.

    POST OFFICE BOX 655303 DALLAS, TEXAS 75265 2

    FUNCTION TABLE

    INPUT TO

    OUTPUT CTRL OUTPUT FUNCTION

    VI = GND Single-ended or parallel outputVI = Vref Normal push-pull operation

    functional block diagram

    RT 6

    CT 5

    DTC4

    0.1 V

    Oscillator

    Dead-Time Control

    Comparator

    OUTPUT CTRL

    (see Function Table)

    13

    1D

    C1

    Q18

    C1

    9E1

    1IN+ 1

    1IN2

    2IN+16

    2IN 15

    FEEDBACK3

    Error Amplifier 1

    +

    Error Amplifier 2

    +

    PWM

    Comparator

    0.7 mA

    Pulse-Steering

    Flip-Flop

    Reference

    Regulator

    Q2 11

    10

    12

    14

    7

    C2

    E2

    VCC

    REF

    GND

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    110/127

    TL494PULSE-WIDTH-

    MODULATIONCONTROLCIRCUITS

    POST OFFICE BOX 655303 DALLAS, TEXAS 75265 3

    absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

    Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 V

    Amplifier input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC + 0.3 VCollector output voltage, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 V

    Collector output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 mA

    Package thermal impedance, JA (see Note 2 and 3): D packageDB packageN package

    NS package

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    73C/W82C/W67C/W

    64C/W

    PW package . . . . . . . . . . . . . . . . . . . . . . . . . . 108C/W

    Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260C

    Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65C to 150C

    Stresses beyond those listed under absolutemaximum ratingsmay cause permanent damage to the device. These are stress ratings only, and

    functional operation of the device at these or any other conditions beyond those indicated under recommendedoperating conditionsis not

    implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

    NOTES: 1. All voltage values are with respect to the network ground terminal.

    2. Maximum power dissipation is a function of TJ(max), JA, and TA. The maximum allowable power dissipation at any allowable

    ambient temperature is PD = (TJ(max)TA)/JA. Operating at the absolute maximum TJ of 150C can affect reliability.

    3. The package thermal impedance is calculated in accordance with JESD 51-7.

    recommended operating conditions

    MIN MAX UNITVCC Supply voltage 7 40 VVI Amplifier input voltage 0.3 VCC2 VVO Collector output voltage 40 V

    Collector output current (each transistor) 200 mACurrent into feedback terminal 0.3 mA

    fosc Oscillator frequency 1 300 kHzCT Timing capacitor 0.47 10000 nFRT Timing resistor 1.8 500 k

    TA Operating free-air temperatureTL494C 0 70

    CTL494I 40 85

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    111/127

    TL494PULSE-WIDTH-

    MODULATIONCONTROLCIRCUITS

    POST OFFICE BOX 655303 DALLAS, TEXAS 75265 4

    PARAMETER TEST CONDITIONSTL494, TL494I

    UNITMIN TYP MAX

    Frequency 10 kHzStandard deviation of frequency All values of VCC, CT, RT, and TA constant 100 Hz/kHz

    Frequency change with voltage VCC = 7 V to 40 V, TA = 25C 1 Hz/kHzFrequency change with temperature# TA = MIN to MAX 10 Hz/kHz

    electrical characteristics over recommended operating free-air temperature range, VCC = 15 V,f = 10 kHz (unless otherwise noted)

    reference section

    PARAMETER TEST CONDITIONSTL494C, TL494I

    UNITMIN TYP MAX

    Output voltage (REF) IO = 1 mA 4.75 5 5.25 VInput regulation VCC = 7 V to 40 V 2 25 mVOutput regulation IO = 1 mA to 10 mA 1 15 mVOutput voltage change with temperature TA = MIN to MAX 2 10 mV/V

    Short-circuit output current REF = 0 V 25 mAFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.All typical values, except for parameter changes with temperature, are at TA = 25C. Duration of the short circuit should not exceed one second.

    oscillator section, CT = 0.01 F, RT = 12 k(see Figure 1)

    For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.All typical values, except for parameter changes with temperature, are at TA = 25C. Standard deviation is a measure of the statistical distribution about the mean as derived from the formula:

    N

    n 1

    (xn X)2

    N 1

    # Temperature coefficient of timing capacitor and timing resistor are not taken into account.

    error-amplifier section (see Figure 2)

    PARAMETER TEST CONDITIONSTL494, TL494I

    UNITMIN TYP MAX

    Input offset voltage VO (FEEDBACK) = 2.5 V 2 10 mVInput offset current VO (FEEDBACK) = 2.5 V 25 250 nAInput bias current VO (FEEDBACK) = 2.5 V 0.2 1 A

    Common-mode input voltage range VCC = 7 V to 40 V0.3 to

    VCC2V

    Open-loop voltage amplification VO = 3 V, RL = 2 k, VO = 0.5 V to 3.5 V 70 95 dBUnity-gain bandwidth VO = 0.5 V to 3.5 V, RL = 2 k 800 kHzCommon-mode rejection ratio VO = 40 V, TA = 25C 65 80 dBOutput sink current (FEEDBACK) VID =15 mV to5 V, V (FEEDBACK) = 0.7 V 0.3 0.7 mAOutput source current (FEEDBACK) VID = 15 mV to 5 V, V (FEEDBACK) = 3.5 V 2 mA

    All typical values, except for parameter changes with temperature, are at TA = 25C.

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    112/127

    POST OFFICE BOX 655303 DALLAS, TEXAS 75265 5

    TL494PULSE-WIDTH-

    MODULATIONCONTROLCIRCUITS

    electrical characteristics over recommended operating free-air temperature range, VCC = 15 V,f = 10 kHz (unless otherwise noted)

    output section

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    Collector off-state current VCE = 40 V, VCC = 40 V 2 100 AEmitter off-state current VCC = VC = 40 V, VE = 0 100 A

    Collector-emitter saturation voltageCommon emitter VE = 0, IC = 200 mA 1.1 1.3

    VEmitter follower VO(C1 or C2) = 15 V, IE =200 mA 1.5 2.5

    Output control input current VI = Vref 3.5 mAAll typical values except for temperature coefficient are at TA = 25C.

    dead-time control section (see Figure 1)

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    Input bias current (DEAD-TIME CTRL) VI = 0 to 5.25 V 2 10 AMaximum duty cycle, each output VI (DEAD-TIME CTRL) = 0, CT = 0.01 F, RT = 12 k 45%

    Input threshold voltage (DEAD-TIME CTRL)Zero duty cycle 3 3.3

    VMaximum duty cycle 0

    All typical values except for temperature coefficient are at TA = 25C.

    PWM comparator section (see Figure 1)

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    Input threshold voltage (FEEDBACK) Zero duty cycle 4 4.5 VInput sink current (FEEDBACK) V (FEEDBACK) = 0.7 V 0.3 0.7 mA

    All typical values except for temperature coefficient are at TA = 25C.

    total device

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    Standby supply current RT = Vref, All other inputs and outputs openVCC = 15 V 6 10

    mAVCC = 40 V 9 15

    Average supply current VI (DEAD-TIME CTRL) = 2 V, See Figure 1 7.5 mAAll typical values except for temperature coefficient are at TA = 25C.

    switching characteristics, TA = 25C

    PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

    Rise timeCommon-emitter configuration, See Figure 3

    100 200 nsFall time 25 100 nsRise time

    Emitter-follower configuration, See Figure 4100 200 ns

    Fall time 40 100 nsAll typical values except for temperature coefficient are at TA = 25C.

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    113/127

    POST OFFICE BOX 655303 DALLAS, TEXAS 75265 6

    TL494PULSE-WIDTH-

    MODULATIONCONTROLCIRCUITS

    PARAMETER MEASUREMENT INFORMATION

    VCC = 15 V

    12

    V

    CC

    4

    150

    2 W

    8

    150

    2 W

    Test DTC C1 Output 1

    Inputs 3

    12 k6

    5

    FEEDBACK

    RT

    CT

    E19

    11C2

    E210

    Output 2

    0.01 F

    1

    2

    16

    15

    1IN+

    1IN

    2IN+

    2IN

    Error

    Amplifiers

    50 k

    13 OUTPUTCTRL

    GND

    7

    REF 14

    TEST CIRCUIT

    Voltage

    at C1

    Voltage

    at C2

    Voltage

    at CT

    DTC

    Threshold Voltage

    VCC

    0 V

    VCC

    0 V

    0 V

    FEEDBACK

    Threshold Voltage

    0.7 V

    Duty Cycle 0%MAX 0%

    VOLTAGE WAVEFORMS

    Figure 1. Operational Test Circuit and Waveforms

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    114/127

    POST OFFICE BOX 655303 DALLAS, TEXAS 75265 7

    TL494PULSE-WIDTH-

    MODULATIONCONTROLCIRCUITS

    PARAMETER MEASUREMENT INFORMATION

    Amplifier Under Test+

    VI FEEDBACK

    +

    Vref Other Amplifier

    Figure 2. Amplifier Characteristics

    15 V

    Each Output

    Circuit

    68

    2 W

    Output90%

    tf tr

    90%

    CL = 15 pF

    (See Note A)10% 10%

    TEST CIRCUIT OUTPUT VOLTAGE WAVEFORM

    NOTE A: CL includes probe and jig capacitance.

    Figure 3. Common-Emitter Configuration

    15 V

    Each Output

    Circuit

    CL = 15 pF

    (See Note A)

    68

    2 W

    Output

    10%

    90%

    tr

    90%

    10%

    tf

    TEST CIRCUIT OUTPUT VOLTAGE WAVEFORM

    NOTE A: CL includes probe and jig capacitance.

    Figure 4. Emitter-Follower Configuration

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    115/127

    POST OFFICE BOX 655303 DALLAS, TEXAS 75265 8

    TL494PULSE-WIDTH-

    MODULATIONCONTROLCIRCUITS

    f

    OscillatorFrequencyandFrequencyVariation

    Hz

    A

    Am

    plifierVoltageAmplification

    dB

    TYPICAL CHARACTERISTICS

    100 k

    40 k

    OSCILLATOR FREQUENCY AND

    FREQUENCY VARIATION

    vs

    TIMING RESISTANCE

    VCC = 15 V

    TA = 25C

    2%

    10 k

    4 k

    1%

    0%0.01 F

    0.001 F

    1 k 0.1 F

    400

    100

    40

    CT = 1 F

    Df = 1%

    10

    1 k 4 k 10 k 40 k 100 k 400 k 1 M

    RT Timing Resistance

    Frequency variation (f) is the change in oscillator frequency that occurs over the full temperature range.

    Figure 5

    100

    AMPLIFIER VOLTAGE AMPLIFICATION

    vs

    FREQUENCY

    VCC = 15 V90 VO = 3 V

    TA = 25C80

    70

    60

    50

    40

    30

    20

    10

    01 10 100 1 k 10 k 100 k 1 M

    f Frequency Hz

    Figure 6

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    116/127

    POWER ELECTRONICS LAB MANUAL 2011-2012

    GRIET/EEE Pa

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    117/127

    POWER ELECTRONICS LAB MANUAL 2011-2012

    GRIET/EEE Pag

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    118/127

    POWER ELECTRONICS LAB MANUAL 2011-2012

    GRIET/EEE Pag

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    119/127

    POWER ELECTRONICS LAB MANUAL 2011-2012

    GRIET/EEE Pag

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    120/127

    POWER ELECTRONICS LAB MANUAL 2011-2012

    GRIET/EEE Pag

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    121/127

    POWER ELECTRONICS LAB MANUAL 2011-2012

    GRIET/EEE Pag

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    122/127

    POWER ELECTRONICS LAB MANUAL 2011-2012

    GRIET/EEE Pag

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    123/127

    POWER ELECTRONICS LAB MANUAL 2011-2012

    GRIET/EEE Pag

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    124/127

    POWER ELECTRONICS LAB MANUAL 2011-2012

    GRIET/EEE Pag

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    125/127

    POWER ELECTRONICS LAB MANUAL 2011-2012

    GRIET/EEE Pag

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    126/127

    POWER ELECTRONICS LAB MANUAL 2011-2012

    GRIET/EEE Pag

  • 8/11/2019 PE Lab Manual 2013 Autonomous

    127/127

    POWER ELECTRONICS LAB MANUAL 2011-2012