chapter – 5 optical properties of znx...

33
114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION Optical properties of wide band gap II-VI semiconductors are of great importance because of their relevance for short wave length optical devices. Thus study of the optical properties of these compounds gives important understanding of their electronic properties and band structures. The optical band gap is one of the most important optical parameters especially in case of the wide band gap compounds. It can have the remarkable effect at the application point of view in electro-optic instrumentation. Generally, optical characterization may include Microscopy, Ellipsometry, Photo luminescence, Transmission spectroscopy, Absorption spectroscopy, Raman Spectroscopy, Reflectance, Modulation, Cathode luminescence to determine optical properties of any semiconductors crystal or thin films which are of great importance for many applications including interference devices (such as antireflection coatings, laser mirrors, monochromatic filters etc.)as well as optoelectronics, integrated optics, solar engineering, microelectronics and optical sensor technology. Spectrophotomatric methods determine the spectral dependence of reflectance and transmittance or absorption for semiconducting compounds within the spectral range of interest [1-3]. Reflectance and transmittance are measured at near normal incidence and normal incidence respectively using various types of spectrophotometers. Ellipsomatric methods analyze changes in the state of polarized light, that has been transmitted through and reflected from films and their systems [4, 5]. Ellipsometers are oblique incident light within the spectral ranges of interest. Interferometry uses interferometers to characterize films [6-8]. Interferograms which may be resulted from reflected or transmitted lights are analyzed to determine the geometric quantities of thin films including thickness and boundary roughness.

Upload: trinhnhan

Post on 08-Mar-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

114

CHAPTER – 5

OPTICAL PROPERTIES OF ZnX CRYSTALS AND THINFILMS

5.1 INTRODUCTION

Optical properties of wide band gap II-VI semiconductors are of great importance

because of their relevance for short wave length optical devices. Thus study of the optical

properties of these compounds gives important understanding of their electronic properties

and band structures. The optical band gap is one of the most important optical parameters

especially in case of the wide band gap compounds. It can have the remarkable effect at the

application point of view in electro-optic instrumentation.

Generally, optical characterization may include Microscopy, Ellipsometry, Photo

luminescence, Transmission spectroscopy, Absorption spectroscopy, Raman Spectroscopy,

Reflectance, Modulation, Cathode luminescence to determine optical properties of any

semiconductors crystal or thin films which are of great importance for many applications

including interference devices (such as antireflection coatings, laser mirrors, monochromatic

filters etc.)as well as optoelectronics, integrated optics, solar engineering, microelectronics

and optical sensor technology.

Spectrophotomatric methods determine the spectral dependence of reflectance and

transmittance or absorption for semiconducting compounds within the spectral range of

interest [1-3]. Reflectance and transmittance are measured at near normal incidence and

normal incidence respectively using various types of spectrophotometers.

Ellipsomatric methods analyze changes in the state of polarized light, that has been

transmitted through and reflected from films and their systems [4, 5]. Ellipsometers are

oblique incident light within the spectral ranges of interest.

Interferometry uses interferometers to characterize films [6-8]. Interferograms which

may be resulted from reflected or transmitted lights are analyzed to determine the geometric

quantities of thin films including thickness and boundary roughness.

Page 2: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

115

Photo thermal methods determine the absorption of materials that form thin films [9-

13]. Measured changes in temperature, optical or thermo physical properties of thin films,

can be used to calculate the absorbance.

Complete optical characterization of the compound (crystals or thin films) requires

determining all the optical properties of materials and therefore proper selection of the

optical characterization technique is very important.

A survey of literature related to the optical band gap of wide band gap II-VI

compounds clearly indicates that following methods may be adopted for this study.

Analysis of following optical spectra

1. Absorption Spectra

2. Reflectance Spectra

3. Electro reflectance Spectra

4. Thermo reflectance Spectra

Photo electrochemical Methods

1. Quantum yield ( vs h plot) analysis

2. Action Spectra

3. Capacitance measurements

Intrinsic conduction measurements at high temperature

Photoemission studies

Band structure calculations

Out of above listed methods, we have adopted optical absorption technique for the

present study.

5.2 OPTICAL ABSORPTION

Optical absorption spectroscopy is the spectroscopic technique that measures the

absorption of radiation as a function of frequency or wave length due to its interaction with a

sample. The sample absorb the energy i.e. photons from the radiating field. The intensity of

Page 3: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

116

the absorption varies as a function of frequency and this variation is called the absorption

spectrum.

This is the most promising technique to measure the semiconductor band gap. Here in

this technique the photons of particular wave length are directed towards the sample under

test, and the resultant transmission is measured. The photons having higher energy then band

gap will get absorbed while those having lower energy than band gap, will be transmitted.

The fundamental absorption refers to band or to exciton transition i.e. to the exciation

of an electron from the valance band to the conduction band. The fundamental absorption

which manifests itself by rapid rise in absorption can be used to determine the energy gap of

semiconductors.

If a beam of photons with Eg < h falls on a semiconductor sample, there will be

some predictable amount of absorption determined by properties of material. The ratio of

transmitted to incident radiation intensity is expected to depend on photon wavelength and

the thickness of the sample.

When a photon beam of intensity I0 (photons/cm2.sec) transmits through a slab of

medium of thickness x, the beam of photons attenuates in accordance with the exponential

law

I = I0 e-x

where “” is called the absorption coefficient. It can be obtained by measuring I0 / I of

intensities, where I is the intensity of transmitted beam of photons.

5.2.1 DIRECT AND INDIRECT TRANSITIONS

The absorption process in semiconductors can be described as an example of

electronic transition process. These electronic transition processes give rise to inter band

absorption in solids, which are of two types, direct and indirect transitions.

Page 4: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

117

In a direct transition, an electron in a Bloch energy band state below the Fermi level

absorbs a photon and makes a vertical transition to an upper empty state in a conduction

band. The characteristics of such transition are defined by the following conditions:

if KK (5.1)

ivfc KEKE (5.2)

Where,

if KandK are final and initial wave vectors respectively in the valence and

conduction bands respectively and is the photon energy. Equation (5.2) expresses energy

conservation.

Generally at high temperatures phonons are present and can participate in

absorption process. Such phonon assisted transitions can not be vertical because the phonon

momentum ħ must be added to the right hand side of above equation (5.1) and similarly the

condition in the equation (5.2) has to include the energy of the absorbed (or emitted) phonon.

This type of the transitions are said to be non-vertical or “indirect.” A schematic of both the

transitions are shown in figure 5.1.

(a) Direct Transition (b) Indirect Transition

Figure 5.1 Schematic diagram showing (a) Direct transition and (b) Indirect

transition.

Page 5: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

118

5.2.2 ENERGY GAP DETERMINATION

The absorption coefficient “” is directly proportional to

(ħ - Eg)r

hTherefore for direct transition,

h = A(h - Eg)r (5.3)

Where, h = photon energy

Eg = energy for direct transition

A = parameter depending on temperature, photon and phonon energies.

r = dimensionality dependent component (given in table-5.1)

And for indirect transition,

rpjgj

j EEhBh (5.4)

Where, h = photon energy'gE = energy for indirect transition

Epj= energy of phonons assisting at indirect transition

B = parameter depending on temperature, photon and phonon energies.

r = dimensionality dependent component (given in table-5.1)

Type of

Transition

Direct In-direct

2-Dimentional 3-Dimentional 2-Dimentional 3-Dimentional

Allowed 0

(step function)

1/2 1 2

Forbidden 1 3/2 2 3

Table 5.1 Values of “r” for various types of band gap transitions.

Page 6: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

119

However, for the analysis of the experimental results obtained at constant

temperature, relations (5.3) and (5.4) are sufficient and they are most often used while

interpreting results on absorption spectra obtained from semiconducting materials. The

exponent “r” in above equations depends upon whether the transition is symmetry allowed or

not and the constants A and B will assume different values for the allowed and forbidden

transitions. For indirect transitions, the detailed form equation (5.4) is given as Vlachos et al.

[54]; Elkorashy [55, 56] .

2

1

''

1

1

1

1

i

rig

T

eirig

T

aii kEE

eE

BkEE

eE

Bii

(5.5)

Where Bai and Bei are coefficients associated with absorption and emission of the ith phonon,

E the photon energy, E’g the indirect energy gap and i is a phonon equivalent temperature

defined by the equation

ipi kE (5.6)

The use of equations (5.4)-(5.6) for analyzing the absorption spectrum is valid for

semiconductors having a three dimensional (3D) structure, but for anisotropic layered

materials, one has to assume a two dimensional (2D) form of the density of states as

discussed by Fivaz [57] and Brebner [58]. In these cases the density of states is a constant

independent of the energy and the expressions showing the dependence of in terms of

direct and indirect transitions get modified as

rgEhA (5.7)

(Goldberg et al. [42]) for direct transitions and

Page 7: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

120

2

1

''

1

1

1

1

i

rig

T

iei

rig

T

aii kEE

e

BkEE

e

Bi

(5.8)

Elkorashy [59, 60] for indirect transitions.

The symbols in equations (5.7) and (5.8) have the same meaning as explained

earlier in equations [(5.3)-(5.6)]. Again the exponent r depends on the dimensionality of the

bands and whether the transitions are symmetry allowed or forbidden. Once again the

coefficients A’, B’ai and B’ei will be different for symmetry allowed and forbidden transitions.

Possible values of r are given in Table 5.1( Lee et al. [61], Goldberg et al. 63] and Kam et al.

[62]).

By plotting graphs of (h)1/r against h for various values of “r” given in

Table 5.1, it is possible to determine which of the conditions given in this table dominate.

Extrapolations of the straight line portions of these plots to zero absorption will give the

appropriate value of the energy gaps of the layered semiconductors.

5.3 EXPERIMENTAL

5.3.1 OPTICAL ABSORPTION BY CRYSTALS OF ZnX (X = S, Se, Te)

Optical properties of grown crystals of ZnS, ZnSe and ZnTe were studied using UV-

VIS-NIR spectrophotometer (Perkin Elmer, USA, Model : Lambda 19) in the range of 200

to 2000 nm wave length at Sophisticated Instrumentation Centre for Applied Research and

Testing (SICART), at Vallbh Vidyanagar. To collect the absorption spectra of the crystals,

small fine crystals of ZnS, ZnSe and ZnTe were pasted on three different thick black papers

with a very fine opening in the centre of the paper. A finely holed blank black paper was

used as a reference. The absorption spectra obtained at room temperature were used for

further analysis.

Page 8: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

121

5.3.2 OPTICAL ABSORPTION BY THIN FILMS OF ZnX (X = Se, Te)

Optical absorption spectra of thin films of ZnSe of various thicknesses (1000Å,

2000Å, 3000Å, and 5000Å) deposited at various substrate temperatures (303K, 373K and

448K) were collected using UV-VIS spectrophotometer in the visible range (370 to 720 nm)

at Applied Physics Department, M. S. University of Baroda, at Vadodara.

Optical absorption spectra of thin films of ZnTe of various thicknesses

(1000Å, 2000Å, 3000Å, and 5000Å) deposited at various substrate temperatures (303K,

373K and 448K) were collected using UV-VIS-NIR spectrophotometer (Perkin Elmer, USA,

Model : Lambda 19) in the range of 200 to 2000nm, at Sophisticated Instrumentation Centre

for Applied Research and Testing (SICART), at Vallbh Vidyanagar. In case of both ZnSe

and ZnTe thin films coated on glass substrates, uncoated glass slides were used as a reference

and observed data were used for further calculations.

5.4 RESULTS AND DISCUSSION

The typical absorption spectra obtained for the grown crystals of ZnS, ZnSe and ZnTe

are shown in figure-5.2 in the range of 200 to 2000 nm wave length. It is clear from the

spectra that all three crystals show a considerable absorption in the visible region of the

electromagnetic spectrum. A careful study of these spectra revel the presence of absorption

edge in the range between 400 to 600 nm wavelengths which is an indication of their wide

band gap. It is reported widely in literature that, ZnX (X = S, Se, Te) in both bulk crystalline

and thin film form possess direct band gap and therefore, equation 5.3 has been used to

analyze further the obtained spectral response with the value of r = ½. Thus a plot of (h)2

vs h has been used to obtain optical band gap of all three crystals as shown in figure 5.3.

The optical band gap has been calculated for all three crystals using the intercept on the

energy axis by extrapolating the straight line region of these curves as shown in the figure-

5.3. Variations of reflectance (R), transmittance (T) and absorption (A), extinction coefficient

(k) and refractive index ( n) and real and imaginary part of dielectric constant (Ei) and (Er) of

the grown crystals of ZnS, ZnSe and ZnTe, with wavelength are shown in figure 5.4, 5.5 and

Page 9: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

122

00.20.40.60.81

1.21.41.6

200 400 600 800 1000 1200 1400 1600 1800 2000

ZnS Crystal

Wave length (nm)

Absorpt

ion (%)

0

1

2

3

4

5

6

7

200 400 600 800 1000 1200 1400 1600 1800 2000

ZnSe Crystal

Wavelength (nm)

Absorpt

ion (%)

0

1

2

3

4

5

6

7

200 400 600 800 1000 1200 1400 1600 1800 2000

ZnTe Crystal

Wavelength (nm)

Absorpt

ion (%)

00.20.40.60.81

1.21.41.6

200 400 600 800 1000 1200 1400 1600 1800 2000

ZnS Crystal

Wave length (nm)

Absorpt

ion (%)

00.20.40.60.81

1.21.41.6

200 400 600 800 1000 1200 1400 1600 1800 2000

ZnS Crystal

Wave length (nm)

Absorpt

ion (%)

0

1

2

3

4

5

6

7

200 400 600 800 1000 1200 1400 1600 1800 2000

ZnSe Crystal

Wavelength (nm)

Absorpt

ion (%)

0

1

2

3

4

5

6

7

200 400 600 800 1000 1200 1400 1600 1800 2000

ZnSe Crystal

Wavelength (nm)

Absorpt

ion (%)

0

1

2

3

4

5

6

7

200 400 600 800 1000 1200 1400 1600 1800 2000

ZnTe Crystal

Wavelength (nm)

Absorpt

ion (%)

0

1

2

3

4

5

6

7

200 400 600 800 1000 1200 1400 1600 1800 2000

ZnTe Crystal

Wavelength (nm)

Absorpt

ion (%)

0

50100

150

200

250300

350

400

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6

ZnS Crystal

Photon energy (eV)(

h)2

0

20

40

60

80

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

ZnSe crystal

Photon energy (eV)

(h

)2

0

10

20

30

40

0 0.4 0.8 1.2 1.6 2 2.4 2.8

ZnTe crystal

Photon energy (eV)

(h

)2

0

50100

150

200

250300

350

400

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6

ZnS Crystal

Photon energy (eV)(

h)2

0

50100

150

200

250300

350

400

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6

ZnS Crystal

Photon energy (eV)(

h)2

0

20

40

60

80

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

ZnSe crystal

Photon energy (eV)

(h

)2

0

20

40

60

80

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

ZnSe crystal

Photon energy (eV)

(h

)2

0

10

20

30

40

0 0.4 0.8 1.2 1.6 2 2.4 2.8

ZnTe crystal

Photon energy (eV)

(h

)2

0

10

20

30

40

0 0.4 0.8 1.2 1.6 2 2.4 2.8

ZnTe crystal

Photon energy (eV)

(h

)2(c

m-2

mv2

)(c

m-2

mv2

)(c

m-2

mv2

)

0

50100

150

200

250300

350

400

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6

ZnS Crystal

Photon energy (eV)(

h)2

0

20

40

60

80

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

ZnSe crystal

Photon energy (eV)

(h

)2

0

10

20

30

40

0 0.4 0.8 1.2 1.6 2 2.4 2.8

ZnTe crystal

Photon energy (eV)

(h

)2

0

50100

150

200

250300

350

400

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6

ZnS Crystal

Photon energy (eV)(

h)2

0

50100

150

200

250300

350

400

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6

ZnS Crystal

Photon energy (eV)(

h)2

0

20

40

60

80

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

ZnSe crystal

Photon energy (eV)

(h

)2

0

20

40

60

80

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

ZnSe crystal

Photon energy (eV)

(h

)2

0

10

20

30

40

0 0.4 0.8 1.2 1.6 2 2.4 2.8

ZnTe crystal

Photon energy (eV)

(h

)2

0

10

20

30

40

0 0.4 0.8 1.2 1.6 2 2.4 2.8

ZnTe crystal

Photon energy (eV)

(h

)2(c

m-2

mv2

)(c

m-2

mv2

)(c

m-2

mv2

)

5.6 respectively. Optical band gap obtained for crystals has been tabulated in the table.5.2. It

is clear from the table 5.2 that optical band gaps for all three crystals are in good agreement

with their respective reported values of table 5.3.

Figure 5.2 UV-VIS-NIR absorption Figure 5.3 Spectral variation of (h)2vsspectra of ZnX (X = S, Se, Te) photon energy (h) ofcrystals. ZnX (X=S, Se, Te) crystals.

Page 10: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

123

0

1

2

3

4

5

6

7

8

200 400 600 800 1000 1200 1400 1600 1800 2000

w ave len g th (n m )

A(%

)

0.558

0.564

0.57

0.576

0.582

0.588

0.594

0.6

0.606

0.612

R, T

(%)

TAR

ZnTecrystal

0

1

2

3

4

5

6

7

8

9

1 0

2 0 0 5 0 0 8 0 0 1 1 0 0 1 4 0 0 1 7 0 0 2 0 0 0

w a v e le n g th (n m )

A(%

)

0 .5

0 .5 2

0 .5 4

0 .5 6

0 .5 8

0 .6

0 .6 2

R, T

(%)

TARZnSeCrystal

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0w a v e le n g th (n m )

A(%

)

0 .5 9 7

0 .5 9 8

0 .5 9 9

0 .6

0 .6 0 1

0 .6 0 2

0 .6 0 3

0 .6 0 4

0 .6 0 5

0 .6 0 6

0 .6 0 7

0 .6 0 8

R,

T(%

)

TARZnScrystal

0

1

2

3

4

5

6

7

8

200 400 600 800 1000 1200 1400 1600 1800 2000

w ave len g th (n m )

A(%

)

0.558

0.564

0.57

0.576

0.582

0.588

0.594

0.6

0.606

0.612

R, T

(%)

TAR

ZnTecrystal

0

1

2

3

4

5

6

7

8

9

1 0

2 0 0 5 0 0 8 0 0 1 1 0 0 1 4 0 0 1 7 0 0 2 0 0 0

w a v e le n g th (n m )

A(%

)

0 .5

0 .5 2

0 .5 4

0 .5 6

0 .5 8

0 .6

0 .6 2

R, T

(%)

TARZnSeCrystal

0

1

2

3

4

5

6

7

8

200 400 600 800 1000 1200 1400 1600 1800 2000

w ave len g th (n m )

A(%

)

0.558

0.564

0.57

0.576

0.582

0.588

0.594

0.6

0.606

0.612

R, T

(%)

TAR

ZnTecrystal

0

1

2

3

4

5

6

7

8

9

1 0

2 0 0 5 0 0 8 0 0 1 1 0 0 1 4 0 0 1 7 0 0 2 0 0 0

w a v e le n g th (n m )

A(%

)

0 .5

0 .5 2

0 .5 4

0 .5 6

0 .5 8

0 .6

0 .6 2

R, T

(%)

TARZnSeCrystal

0

1

2

3

4

5

6

7

8

9

1 0

2 0 0 5 0 0 8 0 0 1 1 0 0 1 4 0 0 1 7 0 0 2 0 0 0

w a v e le n g th (n m )

A(%

)

0 .5

0 .5 2

0 .5 4

0 .5 6

0 .5 8

0 .6

0 .6 2

R, T

(%)

TARZnSeCrystal

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0w a v e le n g th (n m )

A(%

)

0 .5 9 7

0 .5 9 8

0 .5 9 9

0 .6

0 .6 0 1

0 .6 0 2

0 .6 0 3

0 .6 0 4

0 .6 0 5

0 .6 0 6

0 .6 0 7

0 .6 0 8

R,

T(%

)

TARZnScrystal

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0w a v e le n g th (n m )

A(%

)

0 .5 9 7

0 .5 9 8

0 .5 9 9

0 .6

0 .6 0 1

0 .6 0 2

0 .6 0 3

0 .6 0 4

0 .6 0 5

0 .6 0 6

0 .6 0 7

0 .6 0 8

R,

T(%

)

TAR

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0w a v e le n g th (n m )

A(%

)

0 .5 9 7

0 .5 9 8

0 .5 9 9

0 .6

0 .6 0 1

0 .6 0 2

0 .6 0 3

0 .6 0 4

0 .6 0 5

0 .6 0 6

0 .6 0 7

0 .6 0 8

R,

T(%

)

TARZnScrystal

Figure 5.4 Spectral variation of absorption (A), reflectance (R) and transmittance(T) vs wavelength of ZnX (X = S, Se, Te) crystals.

Page 11: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

124

0 .0 E +0 0

2 .0 E -0 6

4 .0 E -0 6

6 .0 E -0 6

8 .0 E -0 6

1 .0 E -0 5

1 .2 E -0 5

1 .4 E -0 5

1 .6 E -0 5

1 .8 E -0 5

2 .0 E -0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0w a v e le n g th (n m )

k

3 .9 6

3 .9 8

4

4 .0 2

4 .0 4

4 .0 6

4 .0 8

4 .1

n

knZnSCrystal

0 .0 E + 0 0

2 .0 E -0 5

4 .0 E -0 5

6 .0 E -0 5

8 .0 E -0 5

1 .0 E -0 4

1 .2 E -0 4

1 .4 E -0 4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0w a v e le n g th (n m )

k

3 .5

3 .6

3 .7

3 .8

3 .9

4

4 .1

n

kn

ZnSecrystal

0 .0 E +0 0

2 .0 E -0 5

4 .0 E -0 5

6 .0 E -0 5

8 .0 E -0 5

1 .0 E -0 4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0w a v e le n g th (n m )

k

3 .4 5

3 .5 5

3 .6 5

3 .7 5

3 .8 5

3 .9 5

4 .0 5

4 .1 5

n

knZnTecrystal

0 .0 E +0 0

2 .0 E -0 6

4 .0 E -0 6

6 .0 E -0 6

8 .0 E -0 6

1 .0 E -0 5

1 .2 E -0 5

1 .4 E -0 5

1 .6 E -0 5

1 .8 E -0 5

2 .0 E -0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0w a v e le n g th (n m )

k

3 .9 6

3 .9 8

4

4 .0 2

4 .0 4

4 .0 6

4 .0 8

4 .1

n

knZnSCrystal

0 .0 E +0 0

2 .0 E -0 6

4 .0 E -0 6

6 .0 E -0 6

8 .0 E -0 6

1 .0 E -0 5

1 .2 E -0 5

1 .4 E -0 5

1 .6 E -0 5

1 .8 E -0 5

2 .0 E -0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0w a v e le n g th (n m )

k

3 .9 6

3 .9 8

4

4 .0 2

4 .0 4

4 .0 6

4 .0 8

4 .1

n

knZnSCrystal

0 .0 E + 0 0

2 .0 E -0 5

4 .0 E -0 5

6 .0 E -0 5

8 .0 E -0 5

1 .0 E -0 4

1 .2 E -0 4

1 .4 E -0 4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0w a v e le n g th (n m )

k

3 .5

3 .6

3 .7

3 .8

3 .9

4

4 .1

n

kn

ZnSecrystal

0 .0 E + 0 0

2 .0 E -0 5

4 .0 E -0 5

6 .0 E -0 5

8 .0 E -0 5

1 .0 E -0 4

1 .2 E -0 4

1 .4 E -0 4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0w a v e le n g th (n m )

k

3 .5

3 .6

3 .7

3 .8

3 .9

4

4 .1

n

kn

ZnSecrystal

0 .0 E +0 0

2 .0 E -0 5

4 .0 E -0 5

6 .0 E -0 5

8 .0 E -0 5

1 .0 E -0 4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0w a v e le n g th (n m )

k

3 .4 5

3 .5 5

3 .6 5

3 .7 5

3 .8 5

3 .9 5

4 .0 5

4 .1 5

n

knZnTecrystal

0 .0 E +0 0

2 .0 E -0 5

4 .0 E -0 5

6 .0 E -0 5

8 .0 E -0 5

1 .0 E -0 4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0w a v e le n g th (n m )

k

3 .4 5

3 .5 5

3 .6 5

3 .7 5

3 .8 5

3 .9 5

4 .0 5

4 .1 5

n

knZnTecrystal

Figure 5.5 Spectral variation of extinction coefficient (k), and refractive index (n) vswavelength of ZnX (X = S, Se, Te) crystals.

Page 12: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

125

15.4

15.5

15.6

15.7

15.8

15.9

16

16.1

16.2

16.3

16.4

200 400 600 800 1000 1200 1400 1600 1800 2000

wavelength (nm )

Er

4 .75

4.8

4.85

4.9

4.95

5

Ei

ErE iZnS-crystal

10

11

12

13

14

15

16

17

200 400 600 800 1000 1200 1400 1600 1800 2000

w avelength (nm )

Er

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

Ei

ErE iZnSe-crystal

1 3 .7

1 4 .2

1 4 .7

1 5 .2

1 5 .7

1 6 .2

1 6 .7

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

w a v e le n g th (n m )

Er

4

4 .1

4 .2

4 .3

4 .4

4 .5

4 .6

4 .7

4 .8

4 .9

5

Ei

E rE iZnTe-crystal

15.4

15.5

15.6

15.7

15.8

15.9

16

16.1

16.2

16.3

16.4

200 400 600 800 1000 1200 1400 1600 1800 2000

wavelength (nm )

Er

4 .75

4.8

4.85

4.9

4.95

5

Ei

ErE iZnS-crystal

15.4

15.5

15.6

15.7

15.8

15.9

16

16.1

16.2

16.3

16.4

200 400 600 800 1000 1200 1400 1600 1800 2000

wavelength (nm )

Er

4 .75

4.8

4.85

4.9

4.95

5

Ei

ErE iZnS-crystal

10

11

12

13

14

15

16

17

200 400 600 800 1000 1200 1400 1600 1800 2000

w avelength (nm )

Er

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

Ei

ErE iZnSe-crystal

10

11

12

13

14

15

16

17

200 400 600 800 1000 1200 1400 1600 1800 2000

w avelength (nm )

Er

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

Ei

ErE iZnSe-crystal

1 3 .7

1 4 .2

1 4 .7

1 5 .2

1 5 .7

1 6 .2

1 6 .7

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

w a v e le n g th (n m )

Er

4

4 .1

4 .2

4 .3

4 .4

4 .5

4 .6

4 .7

4 .8

4 .9

5

Ei

E rE iZnTe-crystal

1 3 .7

1 4 .2

1 4 .7

1 5 .2

1 5 .7

1 6 .2

1 6 .7

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

w a v e le n g th (n m )

Er

4

4 .1

4 .2

4 .3

4 .4

4 .5

4 .6

4 .7

4 .8

4 .9

5

Ei

E rE iZnTe-crystal

Figure 5.6 Spectral variation of real part (Er) and imaginary part (Ei) of dielectricconstant vs wavelength for ZnX (X = S, Se, Te) crystals.

Page 13: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

126

The typical absorption spectra obtained for the thin films of ZnSe of various

thicknesses (1000Å, 2000Å, 3000Å, and 5000Å,) deposited at various substrate temperatures

(303K, 373K and 448K) are shown in figure 5.7 (a) and figure 5.7 (b), (c), (d). From the

absorption spectra, it is clear that the absorption edge is present in the visible range. It can be

seen that the percentage of absorption is the highest for the thin films deposited at the lowest

(303K) substrate temperature. Optical band gaps again based on equation 5.3 with r = ½,

have been found by extrapolation on the energy axis for (h)1/r against h straight line

region as shown in figure 5.8. From the table 5.4, it is clear, that the maximum value of the

optical band gap is for the thin film of thickness 1000Å, deposited at substrate temperature

303K and the same is minimum for the thin films of thickness 5000Å, deposited at the

substrate temperature of 448 K. In between these two values, the gradual variation in optical

band gap is observed, depending upon their thickness and substrate temperatures. The values

of observed band gaps of ZnSe thin films table 5.4 are in good agreement with the reported

values in table 5.5 and other literatures [37, 41].

Absorption spectra obtained for ZnTe thin films of various thicknesses (1000Å,

2000Å, 3000Å and 5000Å,) deposited at various substrate temperatures (303K, 373K and

448K) are shown in figure 5.9. As mentioned earlier, the (h)1/2 vs h curves (figures 5.10)

have been used to evaluate the optical band gap for all these films of ZnTe. A high

absorption with sharp absorption edges is observed in case of ZnTe thin films in comparison

to ZnSe thin films. This may be because of the different detector systems that have been

employed in two separate spectrophotometers used for optical absorption study of both sets

of thin films. The optical band gap, as determined by the method mentioned above, is

tabulated in table 5.6 for all deposited thin films of ZnTe and they are found to be in good

agreement with the reported values by previous workers as given in table 5.7 and other

literatures [27, 31, 35, 37, 38, 64, 68, 69]. From table 5.6 it is clear that the maximum value

of optical band gap is obtained for the thin film with minimum thickness and minimum

substrate temperature.

It is clear from all observations that optical band gap is inversely proportional to the

thickness of the film as well as the substrate temperature of the deposited films [22-50]. The

Page 14: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

127

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

370 395 420 445 470 495 520 545 570 595 620 645 670 695 720

Ts = 448KTs = 373KTs = 303K

ZnSe-(a)

Wavelength (nm)

Absorpt

ion (%)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

370 395 420 445 470 495 520 545 570 595 620 645 670 695 720

Ts = 448KTs = 373KTs = 303K

ZnSe-(a)

Wavelength (nm)

Absorpt

ion (%)

variations of refractive index (), and extinction coefficient (k) with wavelength for ZnSe

and ZnTe thin films of various thickness, deposited at various substrate temperatures are

shown in figures 5.11 & 5.12 and 5.13 & 5.14 respectively for ZnSe and ZnTe thin films. It

is clear from the figures that both optical constants (k and ) are found to be sensitive to the

film thickness as well as the substrate temperatures. The refractive index decreases

monotonically with an increase in substrate temperatures. This was found to be most

noticeable near the absorption edge. A large decrease in refractive index in the short

wavelength range can also be seen. Similar results are also reported by various investigators

[33, 51-53].

Figure 5.7 (a) UV-VIS Absorption spectra of ZnSe thin films of thickness1000Å deposited at various substrate temperatures.

Page 15: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

128

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

3 7 0 3 9 5 4 2 0 4 4 5 4 7 0 4 9 5 5 2 0 5 4 5 5 7 0 5 9 5 6 2 0 6 4 5 6 7 0 6 9 5 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe-(b)

Wavelength (nm)

Abso

rption

(%)

0

0 .1

0 .20 .3

0 .4

0 .5

0 .60 .7

0 .8

0 .9

3 7 0 3 9 5 4 2 0 4 4 5 4 7 0 4 9 5 5 2 0 5 4 5 5 7 0 5 9 5 6 2 0 6 4 5 6 7 0 6 9 5 7 2 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe-(c)

Wavelength (nm)

Abso

rption

(%)

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

3 7 0 3 9 5 4 2 0 4 4 5 4 7 0 4 9 5 5 2 0 5 4 5 5 7 0 5 9 5 6 2 0 6 4 5 6 7 0 6 9 5 7 2 0

T s = 4 4 8 KT s = 3 0 3 KT s = 3 7 3 K

ZnSe-(d)

Wavelength (nm)

Abso

rption

(%)

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

3 7 0 3 9 5 4 2 0 4 4 5 4 7 0 4 9 5 5 2 0 5 4 5 5 7 0 5 9 5 6 2 0 6 4 5 6 7 0 6 9 5 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe-(b)

Wavelength (nm)

Abso

rption

(%)

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

3 7 0 3 9 5 4 2 0 4 4 5 4 7 0 4 9 5 5 2 0 5 4 5 5 7 0 5 9 5 6 2 0 6 4 5 6 7 0 6 9 5 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe-(b)

Wavelength (nm)

Abso

rption

(%)

0

0 .1

0 .20 .3

0 .4

0 .5

0 .60 .7

0 .8

0 .9

3 7 0 3 9 5 4 2 0 4 4 5 4 7 0 4 9 5 5 2 0 5 4 5 5 7 0 5 9 5 6 2 0 6 4 5 6 7 0 6 9 5 7 2 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe-(c)

Wavelength (nm)

Abso

rption

(%)

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

3 7 0 3 9 5 4 2 0 4 4 5 4 7 0 4 9 5 5 2 0 5 4 5 5 7 0 5 9 5 6 2 0 6 4 5 6 7 0 6 9 5 7 2 0

T s = 4 4 8 KT s = 3 0 3 KT s = 3 7 3 K

ZnSe-(d)

Wavelength (nm)

Abso

rption

(%)

0

0 .1

0 .20 .3

0 .4

0 .5

0 .60 .7

0 .8

0 .9

3 7 0 3 9 5 4 2 0 4 4 5 4 7 0 4 9 5 5 2 0 5 4 5 5 7 0 5 9 5 6 2 0 6 4 5 6 7 0 6 9 5 7 2 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe-(c)

Wavelength (nm)

Abso

rption

(%)

0

0 .1

0 .20 .3

0 .4

0 .5

0 .60 .7

0 .8

0 .9

3 7 0 3 9 5 4 2 0 4 4 5 4 7 0 4 9 5 5 2 0 5 4 5 5 7 0 5 9 5 6 2 0 6 4 5 6 7 0 6 9 5 7 2 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe-(c)

Wavelength (nm)

Abso

rption

(%)

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

3 7 0 3 9 5 4 2 0 4 4 5 4 7 0 4 9 5 5 2 0 5 4 5 5 7 0 5 9 5 6 2 0 6 4 5 6 7 0 6 9 5 7 2 0

T s = 4 4 8 KT s = 3 0 3 KT s = 3 7 3 K

ZnSe-(d)

Wavelength (nm)

Abso

rption

(%)

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

3 7 0 3 9 5 4 2 0 4 4 5 4 7 0 4 9 5 5 2 0 5 4 5 5 7 0 5 9 5 6 2 0 6 4 5 6 7 0 6 9 5 7 2 0

T s = 4 4 8 KT s = 3 0 3 KT s = 3 7 3 K

ZnSe-(d)

Wavelength (nm)

Abso

rption

(%)

Figure 5.7 (b), (c), (d) UV-VIS Absorption spectra of ZnSe thin films of thickness(b) 2000Å, (c) 3000Å and (d) 5000Å deposited at varioussubstrate temperature.

Page 16: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

129

0 . 0 0 E + 0 0

1 . 0 0 E + 1 0

2 . 0 0 E + 1 0

3 . 0 0 E + 1 0

4 . 0 0 E + 1 0

5 . 0 0 E + 1 0

6 . 0 0 E + 1 0

7 . 0 0 E + 1 0

8 . 0 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe – (A)

Photon energy (eV)

(h

)2

(cm

-2ev

2 )

0

5 E + 1 0

1 E + 1 1

1 .5 E + 1 1

2 E + 1 1

2 .5 E + 1 1

1 .5 1 .6 1 .7 1 .8 1 .9 2 2 .1 2 .2 2 .3 2 .4 2 .5 2 .6 2 .7 2 .8 2 .9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe – (B)

Photon energy (eV)

(h

)2

(cm

-2 ev2 )

0 . 0 0 E + 0 0

5 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 5 0 E + 1 0

2 . 0 0 E + 1 0

2 . 5 0 E + 1 0

3 . 0 0 E + 1 0

3 . 5 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe – (C)

Photon energy (eV)

(h

)2

(cm

-2ev

2 )

0 .0 0 E + 0 0

2 .0 0 E + 0 9

4 .0 0 E + 0 9

6 .0 0 E + 0 9

8 .0 0 E + 0 9

1 .0 0 E + 1 0

1 .2 0 E + 1 0

1 .4 0 E + 1 0

1 .6 0 E + 1 0

1 .8 0 E + 1 0

1 .5 1 .6 1 .7 1 .8 1 .9 2 2 .1 2 .2 2 .3 2 .4 2 .5 2 .6 2 .7 2 .8 2 .9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe – (D)

Photon energy (eV)

(h

)2

(cm

-2ev

2 )0 . 0 0 E + 0 0

1 . 0 0 E + 1 0

2 . 0 0 E + 1 0

3 . 0 0 E + 1 0

4 . 0 0 E + 1 0

5 . 0 0 E + 1 0

6 . 0 0 E + 1 0

7 . 0 0 E + 1 0

8 . 0 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe – (A)

Photon energy (eV)

(h

)2

(cm

-2ev

2 )0 . 0 0 E + 0 0

1 . 0 0 E + 1 0

2 . 0 0 E + 1 0

3 . 0 0 E + 1 0

4 . 0 0 E + 1 0

5 . 0 0 E + 1 0

6 . 0 0 E + 1 0

7 . 0 0 E + 1 0

8 . 0 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe – (A)

Photon energy (eV)

(h

)2

(cm

-2ev

2 )

0

5 E + 1 0

1 E + 1 1

1 .5 E + 1 1

2 E + 1 1

2 .5 E + 1 1

1 .5 1 .6 1 .7 1 .8 1 .9 2 2 .1 2 .2 2 .3 2 .4 2 .5 2 .6 2 .7 2 .8 2 .9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe – (B)

Photon energy (eV)

(h

)2

(cm

-2 ev2 )

0

5 E + 1 0

1 E + 1 1

1 .5 E + 1 1

2 E + 1 1

2 .5 E + 1 1

1 .5 1 .6 1 .7 1 .8 1 .9 2 2 .1 2 .2 2 .3 2 .4 2 .5 2 .6 2 .7 2 .8 2 .9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe – (B)

Photon energy (eV)

(h

)2

(cm

-2 ev2 )

0 . 0 0 E + 0 0

5 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 5 0 E + 1 0

2 . 0 0 E + 1 0

2 . 5 0 E + 1 0

3 . 0 0 E + 1 0

3 . 5 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe – (C)

Photon energy (eV)

(h

)2

(cm

-2ev

2 )

0 . 0 0 E + 0 0

5 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 5 0 E + 1 0

2 . 0 0 E + 1 0

2 . 5 0 E + 1 0

3 . 0 0 E + 1 0

3 . 5 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe – (C)

Photon energy (eV)

(h

)2

(cm

-2ev

2 )

0 .0 0 E + 0 0

2 .0 0 E + 0 9

4 .0 0 E + 0 9

6 .0 0 E + 0 9

8 .0 0 E + 0 9

1 .0 0 E + 1 0

1 .2 0 E + 1 0

1 .4 0 E + 1 0

1 .6 0 E + 1 0

1 .8 0 E + 1 0

1 .5 1 .6 1 .7 1 .8 1 .9 2 2 .1 2 .2 2 .3 2 .4 2 .5 2 .6 2 .7 2 .8 2 .9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe – (D)

Photon energy (eV)

(h

)2

(cm

-2ev

2 )

0 .0 0 E + 0 0

2 .0 0 E + 0 9

4 .0 0 E + 0 9

6 .0 0 E + 0 9

8 .0 0 E + 0 9

1 .0 0 E + 1 0

1 .2 0 E + 1 0

1 .4 0 E + 1 0

1 .6 0 E + 1 0

1 .8 0 E + 1 0

1 .5 1 .6 1 .7 1 .8 1 .9 2 2 .1 2 .2 2 .3 2 .4 2 .5 2 .6 2 .7 2 .8 2 .9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe – (D)

Photon energy (eV)

(h

)2

(cm

-2ev

2 )

Figure 5.8 Spectral variation of (h)2 vs Photon energy (h) for thin films of ZnSeof thickness (A) 1000Å , (B) 2000Å, (C) 3000Å and (D) 5000Å deposited atvarious substrate temperatures.

Page 17: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

130

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 3 0 3 K

T s = 3 7 3 K

T s = 4 4 8 K

ZnTe–(A)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe–(B)

Wavelength (nm)

Abso

rptio

n

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe–(C)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T S = 3 7 3 K

T S = 3 0 3 K

ZnTe–(D)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 3 0 3 K

T s = 3 7 3 K

T s = 4 4 8 K

ZnTe–(A)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 3 0 3 K

T s = 3 7 3 K

T s = 4 4 8 K

ZnTe–(A)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe–(B)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe–(B)

Wavelength (nm)

Abso

rptio

n

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe–(C)

Wavelength (nm)

Abso

rptio

n

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe–(C)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T S = 3 7 3 K

T S = 3 0 3 K

ZnTe–(D)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T S = 3 7 3 K

T S = 3 0 3 K

ZnTe–(D)

Wavelength (nm)

Abso

rptio

n(%

)(%

)(%

)(%

)

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 3 0 3 K

T s = 3 7 3 K

T s = 4 4 8 K

ZnTe–(A)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe–(B)

Wavelength (nm)

Abso

rptio

n

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe–(C)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T S = 3 7 3 K

T S = 3 0 3 K

ZnTe–(D)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 3 0 3 K

T s = 3 7 3 K

T s = 4 4 8 K

ZnTe–(A)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 3 0 3 K

T s = 3 7 3 K

T s = 4 4 8 K

ZnTe–(A)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe–(B)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe–(B)

Wavelength (nm)

Abso

rptio

n

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe–(C)

Wavelength (nm)

Abso

rptio

n

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe–(C)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T S = 3 7 3 K

T S = 3 0 3 K

ZnTe–(D)

Wavelength (nm)

Abso

rptio

n

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T S = 3 7 3 K

T S = 3 0 3 K

ZnTe–(D)

Wavelength (nm)

Abso

rptio

n(%

)(%

)(%

)(%

)

Figure 5.9 UV-VIS Absorption spectra of ZnTe Thin Films of thicknesses (A) 1000Å,(B) 2000Å, (C) 3000Å and (D) 5000Å deposited at various substratetemperatures.

Page 18: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

131

0 . 0 0 E + 0 0

1 . 0 0 E + 1 0

2 . 0 0 E + 1 0

3 . 0 0 E + 1 0

4 . 0 0 E + 1 0

5 . 0 0 E + 1 0

6 . 0 0 E + 1 0

7 . 0 0 E + 1 0

8 . 0 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

Z n S e – ( A )

P h o t o n e n e r g y ( e V )

(h

)2

0

5 E + 1 0

1 E + 1 1

1 . 5 E + 1 1

2 E + 1 1

2 . 5 E + 1 1

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( B )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

1 . 0 0 E + 1 0

2 . 0 0 E + 1 0

3 . 0 0 E + 1 0

4 . 0 0 E + 1 0

5 . 0 0 E + 1 0

6 . 0 0 E + 1 0

7 . 0 0 E + 1 0

8 . 0 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

Z n S e – ( A )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

1 . 0 0 E + 1 0

2 . 0 0 E + 1 0

3 . 0 0 E + 1 0

4 . 0 0 E + 1 0

5 . 0 0 E + 1 0

6 . 0 0 E + 1 0

7 . 0 0 E + 1 0

8 . 0 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

Z n S e – ( A )

P h o t o n e n e r g y ( e V )

(h

)2

0

5 E + 1 0

1 E + 1 1

1 . 5 E + 1 1

2 E + 1 1

2 . 5 E + 1 1

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( B )

P h o t o n e n e r g y ( e V )

(h

)2

0

5 E + 1 0

1 E + 1 1

1 . 5 E + 1 1

2 E + 1 1

2 . 5 E + 1 1

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( B )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

5 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 5 0 E + 1 0

2 . 0 0 E + 1 0

2 . 5 0 E + 1 0

3 . 0 0 E + 1 0

3 . 5 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( C )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

2 . 0 0 E + 0 9

4 . 0 0 E + 0 9

6 . 0 0 E + 0 9

8 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 2 0 E + 1 0

1 . 4 0 E + 1 0

1 . 6 0 E + 1 0

1 . 8 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( D )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

5 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 5 0 E + 1 0

2 . 0 0 E + 1 0

2 . 5 0 E + 1 0

3 . 0 0 E + 1 0

3 . 5 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( C )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

5 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 5 0 E + 1 0

2 . 0 0 E + 1 0

2 . 5 0 E + 1 0

3 . 0 0 E + 1 0

3 . 5 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( C )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

2 . 0 0 E + 0 9

4 . 0 0 E + 0 9

6 . 0 0 E + 0 9

8 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 2 0 E + 1 0

1 . 4 0 E + 1 0

1 . 6 0 E + 1 0

1 . 8 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( D )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

2 . 0 0 E + 0 9

4 . 0 0 E + 0 9

6 . 0 0 E + 0 9

8 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 2 0 E + 1 0

1 . 4 0 E + 1 0

1 . 6 0 E + 1 0

1 . 8 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( D )

P h o t o n e n e r g y ( e V )

(h

)2

(cm

-2m

v2)

(cm

-2m

v2)

(cm

-2m

v2)

(cm

-2m

v2)

0 . 0 0 E + 0 0

1 . 0 0 E + 1 0

2 . 0 0 E + 1 0

3 . 0 0 E + 1 0

4 . 0 0 E + 1 0

5 . 0 0 E + 1 0

6 . 0 0 E + 1 0

7 . 0 0 E + 1 0

8 . 0 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

Z n S e – ( A )

P h o t o n e n e r g y ( e V )

(h

)2

0

5 E + 1 0

1 E + 1 1

1 . 5 E + 1 1

2 E + 1 1

2 . 5 E + 1 1

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( B )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

1 . 0 0 E + 1 0

2 . 0 0 E + 1 0

3 . 0 0 E + 1 0

4 . 0 0 E + 1 0

5 . 0 0 E + 1 0

6 . 0 0 E + 1 0

7 . 0 0 E + 1 0

8 . 0 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

Z n S e – ( A )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

1 . 0 0 E + 1 0

2 . 0 0 E + 1 0

3 . 0 0 E + 1 0

4 . 0 0 E + 1 0

5 . 0 0 E + 1 0

6 . 0 0 E + 1 0

7 . 0 0 E + 1 0

8 . 0 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

Z n S e – ( A )

P h o t o n e n e r g y ( e V )

(h

)2

0

5 E + 1 0

1 E + 1 1

1 . 5 E + 1 1

2 E + 1 1

2 . 5 E + 1 1

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( B )

P h o t o n e n e r g y ( e V )

(h

)2

0

5 E + 1 0

1 E + 1 1

1 . 5 E + 1 1

2 E + 1 1

2 . 5 E + 1 1

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( B )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

5 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 5 0 E + 1 0

2 . 0 0 E + 1 0

2 . 5 0 E + 1 0

3 . 0 0 E + 1 0

3 . 5 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( C )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

2 . 0 0 E + 0 9

4 . 0 0 E + 0 9

6 . 0 0 E + 0 9

8 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 2 0 E + 1 0

1 . 4 0 E + 1 0

1 . 6 0 E + 1 0

1 . 8 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( D )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

5 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 5 0 E + 1 0

2 . 0 0 E + 1 0

2 . 5 0 E + 1 0

3 . 0 0 E + 1 0

3 . 5 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( C )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

5 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 5 0 E + 1 0

2 . 0 0 E + 1 0

2 . 5 0 E + 1 0

3 . 0 0 E + 1 0

3 . 5 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( C )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

2 . 0 0 E + 0 9

4 . 0 0 E + 0 9

6 . 0 0 E + 0 9

8 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 2 0 E + 1 0

1 . 4 0 E + 1 0

1 . 6 0 E + 1 0

1 . 8 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( D )

P h o t o n e n e r g y ( e V )

(h

)2

0 . 0 0 E + 0 0

2 . 0 0 E + 0 9

4 . 0 0 E + 0 9

6 . 0 0 E + 0 9

8 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 2 0 E + 1 0

1 . 4 0 E + 1 0

1 . 6 0 E + 1 0

1 . 8 0 E + 1 0

1 . 5 1 . 6 1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2 2 . 3 2 . 4 2 . 5 2 . 6 2 . 7 2 . 8 2 . 9 3

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Z n S e – ( D )

P h o t o n e n e r g y ( e V )

(h

)2

(cm

-2m

v2)

(cm

-2m

v2)

(cm

-2m

v2)

(cm

-2m

v2)

Figure 5.10 Spectral variation of (h)2 vs Photon energy (h) for thin films of ZnTeof thickness (A) 1000Å ,(B) 2000Å, (C) 3000Å and (D) 5000Å deposited atvarious substrate temperatures.

Page 19: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

132

4 . 0 6

4 . 0 6 5

4 . 0 7

4 . 0 7 5

4 . 0 8

4 . 0 8 5

4 . 0 9

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe- 1000Å

Wave length (nm)

Refra

ctive

Inde

x ()

4 . 0 3

4 . 0 4

4 . 0 5

4 . 0 6

4 . 0 7

4 . 0 8

4 . 0 9

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe- 3000Å

Wavelength (nm)

Refra

ctive

inde

x ()

4 .0 4 5

4 .0 5

4 .0 5 5

4 .0 6

4 .0 6 5

4 .0 7

4 .0 7 5

4 .0 8

4 .0 8 5

4 .0 9

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe- 2000Å

Wavelength (nm)

Refra

ctive

inde

x ()

4 . 0 2

4 . 0 3

4 . 0 4

4 . 0 5

4 . 0 6

4 . 0 7

4 . 0 8

4 . 0 9

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe- 5000Å

Wavelength (nm)

Refra

ctive

inde

x ()

4 . 0 6

4 . 0 6 5

4 . 0 7

4 . 0 7 5

4 . 0 8

4 . 0 8 5

4 . 0 9

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe- 1000Å

Wave length (nm)

Refra

ctive

Inde

x ()

4 . 0 6

4 . 0 6 5

4 . 0 7

4 . 0 7 5

4 . 0 8

4 . 0 8 5

4 . 0 9

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe- 1000Å

Wave length (nm)

Refra

ctive

Inde

x ()

4 . 0 3

4 . 0 4

4 . 0 5

4 . 0 6

4 . 0 7

4 . 0 8

4 . 0 9

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe- 3000Å

Wavelength (nm)

Refra

ctive

inde

x ()

4 . 0 3

4 . 0 4

4 . 0 5

4 . 0 6

4 . 0 7

4 . 0 8

4 . 0 9

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe- 3000Å

Wavelength (nm)

Refra

ctive

inde

x ()

4 .0 4 5

4 .0 5

4 .0 5 5

4 .0 6

4 .0 6 5

4 .0 7

4 .0 7 5

4 .0 8

4 .0 8 5

4 .0 9

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe- 2000Å

Wavelength (nm)

Refra

ctive

inde

x ()

4 .0 4 5

4 .0 5

4 .0 5 5

4 .0 6

4 .0 6 5

4 .0 7

4 .0 7 5

4 .0 8

4 .0 8 5

4 .0 9

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe- 2000Å

Wavelength (nm)

Refra

ctive

inde

x ()

4 . 0 2

4 . 0 3

4 . 0 4

4 . 0 5

4 . 0 6

4 . 0 7

4 . 0 8

4 . 0 9

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe- 5000Å

Wavelength (nm)

Refra

ctive

inde

x ()

4 . 0 2

4 . 0 3

4 . 0 4

4 . 0 5

4 . 0 6

4 . 0 7

4 . 0 8

4 . 0 9

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe- 5000Å

Wavelength (nm)

Refra

ctive

inde

x ()

Figure 5.11 Spectral variation of refractive index () vs wavelength for thin films ofZnSe of various thicknesses, deposited at various substrate temperatures.

Page 20: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

133

0 . 0 0 E + 0 0

5 . 0 0 E - 0 7

1 . 0 0 E - 0 6

1 . 5 0 E - 0 6

2 . 0 0 E - 0 6

2 . 5 0 E - 0 6

3 . 0 0 E - 0 6

3 . 5 0 E - 0 6

4 . 0 0 E - 0 6

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe - 1000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient

(k)

0 .0 0 E + 0 0

1 .0 0 E - 0 6

2 .0 0 E - 0 6

3 .0 0 E - 0 6

4 .0 0 E - 0 6

5 .0 0 E - 0 6

6 .0 0 E - 0 6

7 .0 0 E - 0 6

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe - 3000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient

(k)

0 .0 0 E + 0 0

1 .0 0 E - 0 6

2 .0 0 E - 0 6

3 .0 0 E - 0 6

4 .0 0 E - 0 6

5 .0 0 E - 0 6

6 .0 0 E - 0 6

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe - 2000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient

(k)

0 .0 0 E + 0 0

1 .0 0 E - 0 6

2 .0 0 E - 0 6

3 .0 0 E - 0 6

4 .0 0 E - 0 65 .0 0 E - 0 6

6 .0 0 E - 0 6

7 .0 0 E - 0 6

8 .0 0 E - 0 6

9 .0 0 E - 0 6

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe - 5000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient

(k)

0 . 0 0 E + 0 0

5 . 0 0 E - 0 7

1 . 0 0 E - 0 6

1 . 5 0 E - 0 6

2 . 0 0 E - 0 6

2 . 5 0 E - 0 6

3 . 0 0 E - 0 6

3 . 5 0 E - 0 6

4 . 0 0 E - 0 6

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe - 1000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient

(k)

0 . 0 0 E + 0 0

5 . 0 0 E - 0 7

1 . 0 0 E - 0 6

1 . 5 0 E - 0 6

2 . 0 0 E - 0 6

2 . 5 0 E - 0 6

3 . 0 0 E - 0 6

3 . 5 0 E - 0 6

4 . 0 0 E - 0 6

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnSe - 1000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient

(k)

0 .0 0 E + 0 0

1 .0 0 E - 0 6

2 .0 0 E - 0 6

3 .0 0 E - 0 6

4 .0 0 E - 0 6

5 .0 0 E - 0 6

6 .0 0 E - 0 6

7 .0 0 E - 0 6

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe - 3000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient

(k)

0 .0 0 E + 0 0

1 .0 0 E - 0 6

2 .0 0 E - 0 6

3 .0 0 E - 0 6

4 .0 0 E - 0 6

5 .0 0 E - 0 6

6 .0 0 E - 0 6

7 .0 0 E - 0 6

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe - 3000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient

(k)

0 .0 0 E + 0 0

1 .0 0 E - 0 6

2 .0 0 E - 0 6

3 .0 0 E - 0 6

4 .0 0 E - 0 6

5 .0 0 E - 0 6

6 .0 0 E - 0 6

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe - 2000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient

(k)

0 .0 0 E + 0 0

1 .0 0 E - 0 6

2 .0 0 E - 0 6

3 .0 0 E - 0 6

4 .0 0 E - 0 6

5 .0 0 E - 0 6

6 .0 0 E - 0 6

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe - 2000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient

(k)

0 .0 0 E + 0 0

1 .0 0 E - 0 6

2 .0 0 E - 0 6

3 .0 0 E - 0 6

4 .0 0 E - 0 65 .0 0 E - 0 6

6 .0 0 E - 0 6

7 .0 0 E - 0 6

8 .0 0 E - 0 6

9 .0 0 E - 0 6

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe - 5000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient

(k)

0 .0 0 E + 0 0

1 .0 0 E - 0 6

2 .0 0 E - 0 6

3 .0 0 E - 0 6

4 .0 0 E - 0 65 .0 0 E - 0 6

6 .0 0 E - 0 6

7 .0 0 E - 0 6

8 .0 0 E - 0 6

9 .0 0 E - 0 6

3 7 0 4 2 0 4 7 0 5 2 0 5 7 0 6 2 0 6 7 0 7 2 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnSe - 5000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient

(k)

Figure 5.12 Spectral variation of extinction coefficient (k) vs wavelength for thin filmsof ZnSe of various thicknesses, deposited at various substratetemperatures.

Page 21: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

134

3 .8 5

3 .9

3 .9 5

4

4 .0 5

4 .1

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe-1000Å

Wavelength (nm)

Refra

ctive

index

()

3 . 8 5

3 . 9

3 . 9 5

4

4 . 0 5

4 . 1

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe-2000Å

Wavelength (nm)

Refra

ctive

index

()

3 . 8 5

3 . 9

3 . 9 5

4

4 . 0 5

4 . 1

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Znte-3000Å

Wavelength (nm)

Refra

ctive

index

()

3 . 8 5

3 . 9

3 . 9 5

4

4 . 0 5

4 . 1

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe-5000Å

Wavelength (nm)

Refra

ctive

index

()

3 .8 5

3 .9

3 .9 5

4

4 .0 5

4 .1

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe-1000Å

Wavelength (nm)

Refra

ctive

index

()

3 .8 5

3 .9

3 .9 5

4

4 .0 5

4 .1

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe-1000Å

Wavelength (nm)

Refra

ctive

index

()

3 . 8 5

3 . 9

3 . 9 5

4

4 . 0 5

4 . 1

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe-2000Å

Wavelength (nm)

Refra

ctive

index

()

3 . 8 5

3 . 9

3 . 9 5

4

4 . 0 5

4 . 1

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe-2000Å

Wavelength (nm)

Refra

ctive

index

()

3 . 8 5

3 . 9

3 . 9 5

4

4 . 0 5

4 . 1

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Znte-3000Å

Wavelength (nm)

Refra

ctive

index

()

3 . 8 5

3 . 9

3 . 9 5

4

4 . 0 5

4 . 1

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

Znte-3000Å

Wavelength (nm)

Refra

ctive

index

()

3 . 8 5

3 . 9

3 . 9 5

4

4 . 0 5

4 . 1

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe-5000Å

Wavelength (nm)

Refra

ctive

index

()

3 . 8 5

3 . 9

3 . 9 5

4

4 . 0 5

4 . 1

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe-5000Å

Wavelength (nm)

Refra

ctive

index

()

Figure 5.13 Spectral variation of refractive index () vs wavelength for thin films ofZnTe of various thicknesses, deposited at various substrate temperatures.

Page 22: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

135

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe- 1000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe- 2000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe- 3000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe- 5000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe- 1000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe- 1000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe- 2000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe- 3000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe- 5000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe- 2000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe- 2000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe- 3000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 KT s = 3 7 3 KT s = 3 0 3 K

ZnTe- 3000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe- 5000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

0 . 0 E + 0 0

4 . 0 E - 0 6

8 . 0 E - 0 6

1 . 2 E - 0 5

1 . 6 E - 0 5

2 . 0 E - 0 5

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0

T s = 4 4 8 K

T s = 3 7 3 K

T s = 3 0 3 K

ZnTe- 5000Å

Wavelength (nm)

Extin

ctio

nco

effic

ient (

k)

Figure 5.14 Spectral variation of extinction coefficient (k) vs wavelength for thin filmsof ZnTe of various thicknesses, deposited at various substratetemperatures.

Page 23: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

136

2.262.20ZnTe03

2.672.60ZnSe02

3.603.68ZnS01

Reported Values [14-21](eV)

Band Gap(eV)

crystalSr.No.

2.262.20ZnTe03

2.672.60ZnSe02

3.603.68ZnS01

Reported Values [14-21](eV)

Band Gap(eV)

crystalSr.No.

77Chemical Vapor Transport method,(NH4)I carrier gas

2.21ZnTe-Crystals

71

72

73

SPR crystals by annealing at 1000-1100 C.Physical Vapor Transport techniqueon the bases of Schieber’s conditions,PA spectrometerChemical Vapor Transport method,(NH4)3Cl5 transporting agent(0.12mmol)

2.67

2.78

2.69

ZnSe-Crystals

74

75

76

ZnS Nanoparticles using polyvinylAlcohol, Bulk ZnS band gap.ZnS nanocrystals through chemicalprecipitation methodChemical Transport reactions,Bromine as transport agent

3.68

3.92

3.54

ZnS-Crystals

ReferencesGrowth conditionsOptical band gap(eV)

Material

77Chemical Vapor Transport method,(NH4)I carrier gas

2.21ZnTe-Crystals

71

72

73

SPR crystals by annealing at 1000-1100 C.Physical Vapor Transport techniqueon the bases of Schieber’s conditions,PA spectrometerChemical Vapor Transport method,(NH4)3Cl5 transporting agent(0.12mmol)

2.67

2.78

2.69

ZnSe-Crystals

74

75

76

ZnS Nanoparticles using polyvinylAlcohol, Bulk ZnS band gap.ZnS nanocrystals through chemicalprecipitation methodChemical Transport reactions,Bromine as transport agent

3.68

3.92

3.54

ZnS-Crystals

ReferencesGrowth conditionsOptical band gap(eV)

Material

Table – 5.2 Optical band gaps of grown crystals of ZnS, ZnSe and ZnTe.

Table – 5.3 Reported values of Optical band gap of crystals of ZnS, ZnSe and ZnTe.

Page 24: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

137

2 . 5 24 4 8

2 . 5 43 7 3

2 . 5 73 0 35 0 0 0

2 . 5 44 4 8

2 . 5 53 7 3

2 . 5 73 0 33 0 0 0

2 . 5 04 4 8

2 . 5 63 7 3

2 . 6 23 0 32 0 0 0

2 . 5 74 4 8

2 . 6 03 7 3

2 . 6 23 0 31 0 0 0

O p t i c a l B a n d G a p( e V )

S u b s t r a t e T e m p e r a t u r e( K )

T h i c k n e s s( Å )

Z n S e T h i n F i l m s

2 . 5 24 4 8

2 . 5 43 7 3

2 . 5 73 0 35 0 0 0

2 . 5 44 4 8

2 . 5 53 7 3

2 . 5 73 0 33 0 0 0

2 . 5 04 4 8

2 . 5 63 7 3

2 . 6 23 0 32 0 0 0

2 . 5 74 4 8

2 . 6 03 7 3

2 . 6 23 0 31 0 0 0

O p t i c a l B a n d G a p( e V )

S u b s t r a t e T e m p e r a t u r e( K )

T h i c k n e s s( Å )

Z n S e T h i n F i l m s

48

23

78

48

79

44

The scanning e-beam (powerdensity=1.5kW/cm2) evaporated filmson to microscopic glass slide at differentsubstrate temperatures (RT, 100, 200,3000C).Thin films of ZnSe deposited

potentiostatically from an unstirred,deareated aqueous solution ontotitanium and glass coated with fluorinedoped tin oxide) and ITO substrates.Vacuum evaporated films onto Si(111)and glass substrates.Films prepared by spray pyrolysis ontoglass substrates at differenttemperatures(4000C to 4500C)e-beam evaporated films on glasssubstrates at differenttemperatures(RT-2500)Deposition of ZnSe thin films byevaporation at evaporation temperaturebetween850-10800C and substratetemperature between 150 and 2500C

2.95-2.70

2.6

2.72-2.60

2.65-2.70

2.94-2.69

2.48-3.4

ZnSethinfilms

ReferencesGrowth conditionsOptical band gap(eV)

Material

48

23

78

48

79

44

The scanning e-beam (powerdensity=1.5kW/cm2) evaporated filmson to microscopic glass slide at differentsubstrate temperatures (RT, 100, 200,3000C).Thin films of ZnSe deposited

potentiostatically from an unstirred,deareated aqueous solution ontotitanium and glass coated with fluorinedoped tin oxide) and ITO substrates.Vacuum evaporated films onto Si(111)and glass substrates.Films prepared by spray pyrolysis ontoglass substrates at differenttemperatures(4000C to 4500C)e-beam evaporated films on glasssubstrates at differenttemperatures(RT-2500)Deposition of ZnSe thin films byevaporation at evaporation temperaturebetween850-10800C and substratetemperature between 150 and 2500C

2.95-2.70

2.6

2.72-2.60

2.65-2.70

2.94-2.69

2.48-3.4

ZnSethinfilms

ReferencesGrowth conditionsOptical band gap(eV)

Material

Table-5.4 Measured optical band gaps of ZnSe Thin Films .

Table-5.5 Reported optical band gap of ZnSe Thin Films.

Page 25: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

138

1 . 7 44 4 8

1 . 7 83 7 3

1 . 8 23 0 35 0 0 0

1 . 9 44 4 8

2 . 0 83 7 3

2 . 1 03 0 33 0 0 0

1 . 8 04 4 8

1 . 8 43 7 3

1 . 8 63 0 32 0 0 0

1 . 8 64 4 8

2 . 0 93 7 3

2 . 1 33 0 31 0 0 0

O p t i c a l B a n d G a p( e V )

S u b s t r a t e T e m p e r a t u r e( K )

T h i c k n e s s( Å )

Z n T e T h i n F i l m s

1 . 7 44 4 8

1 . 7 83 7 3

1 . 8 23 0 35 0 0 0

1 . 9 44 4 8

2 . 0 83 7 3

2 . 1 03 0 33 0 0 0

1 . 8 04 4 8

1 . 8 43 7 3

1 . 8 63 0 32 0 0 0

1 . 8 64 4 8

2 . 0 93 7 3

2 . 1 33 0 31 0 0 0

O p t i c a l B a n d G a p( e V )

S u b s t r a t e T e m p e r a t u r e( K )

T h i c k n e s s( Å )

Z n T e T h i n F i l m s

66

67

32

33

65

Direct combination of gaseous Zn and Tein H and He atmosphere at 6000CSubstrate: corning7059 glass polishedwith 1 m alumina .Electrodeposition on tin conductive oxidesubstrates in aqueous solution containingTeO2 and ZnCl2Thin films prepared by vacuumevaporation onto glass substrates at 300-450K.Thermal evaporation of ZnTe powderfrom Mo boat at 10-5Torr onto glasssubstrates at different substratetemperatures.Electrodeposited films on F:SnO2 glasssubstrates

2.25

2.25

1.95-2.40

2.00-2.30

2.15

ZnTeThinFilms

ReferencesGrowth conditionsOptical band gap(eV)

Material

66

67

32

33

65

Direct combination of gaseous Zn and Tein H and He atmosphere at 6000CSubstrate: corning7059 glass polishedwith 1 m alumina .Electrodeposition on tin conductive oxidesubstrates in aqueous solution containingTeO2 and ZnCl2Thin films prepared by vacuumevaporation onto glass substrates at 300-450K.Thermal evaporation of ZnTe powderfrom Mo boat at 10-5Torr onto glasssubstrates at different substratetemperatures.Electrodeposited films on F:SnO2 glasssubstrates

2.25

2.25

1.95-2.40

2.00-2.30

2.15

ZnTeThinFilms

ReferencesGrowth conditionsOptical band gap(eV)

Material

Table-5.6 Measured optical band gap of ZnTe Thin Films.

Table-5.7 Reported optical band gap of ZnTe thin films.

Page 26: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

139

5.5 CONCLUSIONS

Following conclusions are drawn from the careful study of optical absorption spectra

obtained for ZnX (X= S, Se and Te) crystals grown by DVT technique and thin films

deposited by thermal evaporation method.

(i) All spectra show a considerable absorption of incident photon energy in the

visible range of EM spectrum.

(ii) Thus, a well defined fundamental absorption edge as observed in the range 400-

500 nm for all spectra has been used for the determination of optical band gap of

materials under study both in bulk crystalline as well as thin film form.

(iii) In case of pure DVT grown ZnX (x=S, Se and Te) crystals, ZnS crystals possess

maximum band gap of 3.68 eV and ZnTe crystals possess minimum band gap of -

2.20 eV. ZnSe crystals show intermediate band gap of 2.6 eV. These values are

determined using equation 5.2 with r=1/2 and they are in good agreement with the

reported values as shown in table 5.3.

(iv) In case of thermally evaporated thin films of ZnSe, the absolute value of %

absorption is found to be low and remains below 1% all throughout the range of

incident photon energy. This may be due to the poor detector response and the

low intensity of incident photons in a given optical geometry of optical

components used in the spectrophotometer. However as these factors do not affect

the position of fundamental absorption edge; these types of spectra are normally

used to evaluate the optical band gap using equation 5.2.

(v) It is observed that for all the deposited films the increase in the substrate

temperature has similar effect of decreasing optical band gap in the range 2.62-

2.52 eV as shown in the figure 5.15.

(vi) Thickness dependence of optical band gap is not so significant but there is a

general trend of decreasing band gap with increasing thickness as shown in the

figure 5.15.

Page 27: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

140

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

2 . 5 2 . 5 2 2 . 5 4 2 . 5 6 2 . 5 8 2 . 6 2 . 6 2 2 . 6 4

3 0 3 K

3 7 3 K

4 4 8 K

Z n S e

O p tica l B an d G ap (eV )

Film

Th

ickn

ess

(Å)

3 0 0

3 2 0

3 4 0

3 6 0

3 8 0

4 0 0

4 2 0

4 4 0

4 6 0

2 . 5 2 . 5 5 2 . 6

1 0 0 0 Å

2 0 0 0 Å

3 0 0 0 Å

5 0 0 0 Å

O p tica l B an d G ap (eV )

Su

bst

rate

Tem

per

atu

re (

K) Z n S e

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

2 . 5 2 . 5 2 2 . 5 4 2 . 5 6 2 . 5 8 2 . 6 2 . 6 2 2 . 6 4

3 0 3 K

3 7 3 K

4 4 8 K

Z n S e

O p tica l B an d G ap (eV )

Film

Th

ickn

ess

(Å)

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

2 . 5 2 . 5 2 2 . 5 4 2 . 5 6 2 . 5 8 2 . 6 2 . 6 2 2 . 6 4

3 0 3 K

3 7 3 K

4 4 8 K

Z n S e

O p tica l B an d G ap (eV )

Film

Th

ickn

ess

(Å)

3 0 0

3 2 0

3 4 0

3 6 0

3 8 0

4 0 0

4 2 0

4 4 0

4 6 0

2 . 5 2 . 5 5 2 . 6

1 0 0 0 Å

2 0 0 0 Å

3 0 0 0 Å

5 0 0 0 Å

O p tica l B an d G ap (eV )

Su

bst

rate

Tem

per

atu

re (

K) Z n S e

3 0 0

3 2 0

3 4 0

3 6 0

3 8 0

4 0 0

4 2 0

4 4 0

4 6 0

2 . 5 2 . 5 5 2 . 6

1 0 0 0 Å

2 0 0 0 Å

3 0 0 0 Å

5 0 0 0 Å

O p tica l B an d G ap (eV )

Su

bst

rate

Tem

per

atu

re (

K) Z n S e

3 0 0

3 2 0

3 4 0

3 6 0

3 8 0

4 0 0

4 2 0

4 4 0

4 6 0

1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2

1 0 0 0 Å2 0 0 0 Å3 0 0 0 Å5 0 0 0 Å

Z n T e T h in F ilm s

O p t ic a l B a n d G a p (e V )

Su

bs

tra

teT

em

pe

ratu

re (

K)

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2

3 0 3 K

3 7 3 K

4 4 8 K

Z n T e T h in F ilm s

O p t ic a l B a n d G a p (e V )Fil

m T

hic

kn

es

s (

Å)

3 0 0

3 2 0

3 4 0

3 6 0

3 8 0

4 0 0

4 2 0

4 4 0

4 6 0

1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2

1 0 0 0 Å2 0 0 0 Å3 0 0 0 Å5 0 0 0 Å

Z n T e T h in F ilm s

O p t ic a l B a n d G a p (e V )

Su

bs

tra

teT

em

pe

ratu

re (

K)

3 0 0

3 2 0

3 4 0

3 6 0

3 8 0

4 0 0

4 2 0

4 4 0

4 6 0

1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2

1 0 0 0 Å2 0 0 0 Å3 0 0 0 Å5 0 0 0 Å

Z n T e T h in F ilm s

O p t ic a l B a n d G a p (e V )

Su

bs

tra

teT

em

pe

ratu

re (

K)

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2

3 0 3 K

3 7 3 K

4 4 8 K

Z n T e T h in F ilm s

O p t ic a l B a n d G a p (e V )Fil

m T

hic

kn

es

s (

Å)

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

1 . 7 1 . 8 1 . 9 2 2 . 1 2 . 2

3 0 3 K

3 7 3 K

4 4 8 K

Z n T e T h in F ilm s

O p t ic a l B a n d G a p (e V )Fil

m T

hic

kn

es

s (

Å)

Figure 5.15 Variation of Optical band gap of ZnSe thin films with their thicknessand substrate temperature.

Figure 5.16 Variation of optical band gap of ZnTe thin films with substratetemperature and films thickness.

Page 28: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

141

(vii) In case of thermally evaporated thin films of ZnTe, the absolute value of %

absorption is found to be good and remains below 4% all throughout the range of

incident photon energy.

(viii) It is observed that for all the deposited films of ZnTe, the increase in the substrate

temperature has similar effect of decreasing optical band gap in the range 2.13-

1.74 eV as shown in the figure 5.16.

(ix) Thickness dependence of optical band gap is not so significant but there is a

general trend of decreasing band gap with increasing thickness as shown in

the figure 5.16 .

Page 29: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

142

REFERENCES

1. Ivan Ohlidal and Denial Frante, The international society for optical engineering,

10.1117/2.1200608.0341

2. H.E.Bennett, J.M.Bennett, Physics of thin films, 4 (1967) 1-96, Acadamic Press, New

York.

3. L ward, The optical constants of bulk materials and thin films. Taylor and Fransis, 2nd

edition, January-1994.

4. R.M.A. Azzam and N.M. Bashara, Ellipsometry snf Polorized light, North Holland,

1977.

5. I.Ohlidal and D.Franda, Ellipsometry of thin film systems, E.Wolf ed., Progress in

Optics, 41 (2000) 181-282

6. J.M.Bennett, Applied Optics, 15 (1976) 2705-2721

7. I.Ohlidal and K.Navratil, Applied Optics, 24 (1985) 2690-2695

8. S.Mallick, Optiics Communications, 2 (1971) 396-398

9. A.C.Tam, Overview of Photo thermal Spectroscopy, Photo Thermal investigations of

solid fluids, 1989

10. N. K. Sahoo, K. V. S. R. Apparao, Laser calorimeter for UV absorption measurement

of dielectric thin films, Appl. Opt., Vol: 31, 1992.

11. B. K. Bein, J. Pelzl, Theory of Signal Generation in a Photoacoustic Cell, J. Phys.

(Paris), 44 (1983) 27-34

12. M. Lax, Temperature rise induced by a laser beam, J. Appl. Phys., 48 (1977) 3919-

3924.

13. M. Reichling, E. Welsch, A. Duparre, E. Matthias, Photothermal Absorption

Microscopy of Defects in ZrO2 and MgF2 single layer films, Opt. Eng., 33 ( 1994)

2.

14. L.Zang, R. Szargam, T.Chasse, Applied Surface Science, 227 (2004) 261-267

15. M. Yoneta, K.Ichino, K. Yashino, H. Ssaito, M.Ohishi, H. Kobayashi, Journal of

Crystal Growth, 237-239 (2002) 1731-1735

Page 30: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

143

16. M.Bouroshin, T. Kosanovic, N. Spyrellis, Journal of Crystal Growth, 227 (2005)335-

344

17. H. Venisch, K. Schull, D. Nommel, G. Landwehr, D. Sichu, Semiconductor Science

and Technology, 11 (1996) 107-115

18. J.H.Hays, W. Shan, X.H.Yang, J.J.Song and E. Cantwell, Semiconductor Science and

Technology, 7 (`1992) 1407-1415

19. D.N.Bose and S. Bhunia, Material Science, 7 (2005) 647-650

20. S.Sehi, K.Sato, O.Oda, Journal of Crystal Growth, 171 (1997) 32-38

21. Mitsuhino Nishio and Hiroshi Ogawa, Journal of Crystal Growth, 78 (1986) 218-226

22. A.B.Kashyout, A.S.Arico, P.L.Antonucci, F.A.Mohhammad, V.Antonucci, Materials

Chemistry and Physics, 51 (1999) 130-134

23. G.Riveras, H. Gomcz, R. Henriquez, Schrebler, R.E.Marothi, E.A.Dalehiele, Solar

Energy Materials and Solar Cells, 70 (2001) 255-268

24. M.Singh, J.S.Arora, Kamlendra Awasthi, R. Nathawat and Y.K.Vijay, Trans Tech

Publications (2008)

25. S.Venkatchalam et.al. , Journal of Physics D: Applied Physics, 39 (2006) 4777-4782

26. M.S.Hossain, R. Islam and K.A.Khan, Renewable Energy, 33 (2008) 643-647

27. Jaydev Pattar, Shilpa N.Sawant, K.M.Balkrishna, M. Nagaraja, N.Shashank. Ganesh

Sanjeev and H.M.Mahesh, Int. Journal of Electrochem. Soc., 4 (2009) 369-376

28. C.Natarajan, M.Sharon, C.Levi Clement and M.Neumann-SSpauart, Thin Solid

Films, 237 (1994) 118-123

29. R. Chandramohan, T. Mahalingum, J.P.Chu and P.J.Sebastain, Solar Energy

Materials and Solar Cells, 81 (2004) 371-378

30. R.Amutha, A. Subbarayan, R. Sathyamurthy, K,Natarajan and S. Velumani, Journal

of New Materials for Electrochemical Systems, 10 (2007) 27-31

31. M.M.Kolesnyk, D.I.Kurbatov, A.S.Opanasyuk and V.B.Laboda, Semiconductor

Physics, Quantum Electronics and Optoelectronics, 1 (2009) 35-41

Page 31: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

144

32. G.I.Rusu, P.Prepelita, R.S.Rusu, N.Apeteroaie, G.Oniciue and A. Amariei, Journal of

Optoelectronic Devices and Advanced Materials, 3 (2006) 922-926

33. R.Amutha, A. Subbaranyan and R. Sathyamurthy, Crystal Research Technology, 12

(2006) 1174-1179

34. R.Sarma, N.Mazumdar and H.L.Das, Bulletin of Material Science, 29 (2006) 15-16

35. Khalid Z.Yahua, Even T. Salim and Muhammad S. Muhammad, Engineering and

Technology, 26 (2008) 519-527

36. A. Piston, A.S.Arico, P.L.Antonucci, D. Silvestro and V. Antonucci, Solar Energy

.Materials and Solar Cels, 53 (1998) 255-267

37. G.Rivros, H.Gomez, R. Henriquer, R. Sshrebler and R. Cardova, Bol. Soc. Chil,

Quim, 47 (2002) 1-19

38. V.S.Jhon, T. Mahalingum and Jinn P. Chu, Solid State Electronics, 49 (2005) 3-7

39. K.R.Murli, A.Cleria, Dhamemoz and Rita Jhon, Chalcogenide Letters, 5 (2008) 277-

280

40. M.G. M. Chaudhary, M.R.Islam, M.M.Rahman, M.O.Hakin, M.K.R.Khan, K.J.Kao

and G.R.Lali, Acta Physica Slovaca, 54 (2004) 417-425

41. G.I.Rusu, V.Ciupina, M.E.Popa, G. Prodan, G.G.Rusu and C. Baben, Journal of non-

crystalline solids, 352 (2006) 1525-1528

42. Submit Chaliha, M.N.Borah, P.C.Sarmah and A.Rahaman, Journal of Optoelectronics

and Advanced Materials, 10 (2008) 427-433

43. Feifei Waang, Zihua Zhang, Ruibin Liu, Xiao Wang, Xing Zhu, Anlin Pan and

Bingsou Zou, Nanotechnology, 18 (2007) 305705

44. L.M.Caicedo, G.Cedial, A.Dussan, J.W.SandinoC.Calderon and G.Gordillo, Physicca

Status Solidi(b), 220 (2000) 249

45. S.Venlkatchanlam, Mangalraja D, and Narayandas Sa. K, Physica B, Physics of

Condensed Matters, 397 (2006) 45-47

46. K.R.Murli, A. Austine, and D.C.Trivedi, Materials Letters, 59 (2005) 2621-2624

Page 32: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

145

47. G.Perna, V.Capozzi, M.C.Plantamutra, A. Minafra, S. Orlando and V. Marotta,

European Physics Journal B, 29 (2002) 541-545

48. N.J.Suthan Kissinger, Natrajan Velmurugan and K. Perumal, Journal of Korean

Physical Society, 55 (2009) 1577-1581

49. Tooru Tanaka, Kastuhiko Saito, Mitshuhiro Nishio, Qixin Gus and Hiroshi Ogawa,

Journal of Material Science: Materials in Electronics, 10.1007/S10854-008-9691-4

50. E.Guziewiez, M.Godlewshki, K.Kppalko, E.Busakowska, E. Dynowska, M.

Guziewicz, M.M.Godlewski and M. Phillips, Thin Solid Films, 446 (2007) 172-177

51. U.Pal, S.Saha, A.K.Chaudhry, V.V.Rao and H.D.Banerji, J.Phys D: Applied Physics,

22 (1989) 965

52. S.Saha, U.Pal, A.K.Chaudhry, V.V.Rao and H.D.Banerji, J.Appl. Phys. 22 (1989)

721

53. K.K.Chatopadhyay, A. Sarkar, S.Chaudhary and A.K.Pal, Vacuum, 42 (1991) 1113

54. S V Vlachos, A P Lambros, A Thanailakis and N A Economou,

Phys. Stat. Solidi (b), 76 (1976) 727

55. A. M Elkorashy,

Phys. Stat. Solidi (b), 135 (1986) 707

56. A. M Elkorashy,

Journal of Phys. Chem. Solids, 47 (1986) 497

57. R Fivaz,

Journal of Phys. Chem. Solids, 28 (1967) 839

58. J C Brebner,

Journal of Phys. Chem. Solids, 25 (1964) 1427

59. A.M Elkorashy,

Phys. Stat. Solidi (b), 146 (1988) 279

60. A.M Elkorashy,

Journal of. Phys. C : Solid State Physics, 21 (1988) 2595

61. P A Lee, G Said, R Davis and T H Lim,

Journal of Phys. Chem. Solids, 30 (1969) 2719

62. K K Kam, C L Chang and D W Lynch,

Page 33: CHAPTER – 5 OPTICAL PROPERTIES OF ZnX …shodhganga.inflibnet.ac.in/bitstream/10603/7348/10/10...114 CHAPTER – 5 OPTICAL PROPERTIES OF ZnX CRYSTALS AND THIN FILMS 5.1 INTRODUCTION

146

Journal of Phys. C : Solid State Physics, 17 (1984) 4031

63. A M Goldberg, A R Beal, F A Levy and E A Davis,

Phiolos. Mag., 32 (1975) 367

64. L.Feng, D. Mao, J. Tang, R. T. Collins and J. U. Thefny, J. Electr. Mater. 25(9)

(1996) 1422-1427

65. Michale Neumann-Spallart and Christian Konigstein, Thin Solid Fimls, 265 (1995)

33-39

66. T. L. Chu, Shirly S. Chu, F. Firszi and Chuk Herrington, Journal of Applied Physics,

59 (1986) 1259-1263

67. A. S. Arico, D. Silvestro, P.L. Antonucci, N. Giordano and V. Antonucci, Advanced

Performance Materials, 4 (1997) 115-125

68. M. Jain (Ed), II-VI Semiconductor Compounds, World Scientific, Singapore (1993)

69. R. Bhargava (Ed), Properties of wide band gap II-VI semiconductors, Inspec. London

(1997)

70. M. Nishiq, K. Hayashida, Q. Guo, H. Ogawa, Appl. Surf. Sci. 223 (2001) 169-170

71. Kenji Yoshino, Hidenori Mikami, Kenji Imai, Minoru Yoneta and Tetsuo Ikari,

Physica B, 302-303 (2001) 299-306

72. N.Sarkar and K. Ramchandran, Journal of Crystal Growth, 247 (2003) 157-165

73. Huanyong Li, Wanqi Jie, Kewei Xu, Journal of Crystal Growth, 279 (2005) 5-12

74. Jyoti P Borah, J. Barman and K.C. Sarma, Chalcogenide letters, V. 5, 9 (2008) 201-

208

75. Arfat Firdous, Eur. J. Appl.Phys, 52 2 (2010) 20602

76. S. Locmelis, C. Brunig, M. Binnewies, A. Borger, K.D.Becker, T. Homann and T.

Bredow, Journal of Material Science, 42 (2007) 1965-1971

77. G.A.Il’Chuk, V.I.Ivanov-Omskii, V.Yu.Rus, Yu.V.Rud, R.N.Bekimbetov and

N.A.Ukrainets, Semiconductors, V.34 11 (2000) 1275-1280

78. Narayandass, Sa K, Vankatchalam, S. Mangalaraja D, Journal of Physics D: Applied

Physics, V. 39 22 (2006) 4777-4782

79. M.G.Syed Basheer Ahmed, V.S.Nagarethinam, A.R.Balu, A. Thayumanavan,

K.R.Murali, C.Sanjeevraja and M.Jayachandra, Crystal Research Technology, 45 4

(2010) 421-426