patterns of space, time and trophic resource use by

13
27 Paerns of space, me and trophic resource use by Tropidurus hispidus and T. semitaeniatus in an area of Caanga, northeastern Brazil Fabíola Fonseca Almeida Gomes 1 , Francis Luiz Santos Caldas 2 , Rafael Alves dos Santos 1 , Bruno Duarte da Silva 1 , Daniel Oliveira Santana 2 , Stéphanie Menezes Rocha 2 , Anthony Santana Ferreira 1 & Renato Gomes Faria 1 1 Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Sergipe, Cidade Universitária Prof. José Aloísio de Campos Av. Marechal Rondon, s/n Jardim Rosa Elze - CEP 49100-000 - São Cristóvão/SE, Brazil 2 Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal da Paraíba, Cidade Universitária - CEP: 58051-900 - João Pessoa - PB - Brazil Herpetological Journal FULL PAPER Correspondence: Fabíola Fonseca Almeida Gomes ([email protected]) Volume 25 (January 2015), 27–39 Published by the Brish Herpetological Society This study examines how two species of diurnal lizards (Tropidurus semitaeniatus and T. hispidus, Tropiduridae) use spaal, trophic and temporal resources in the Conservaon Unit of Monumento Natural Grota do Angico, Poço Redondo, Sergipe (Brazil). Both species were mostly acve during sunny days, with a reducon in acvity during the hoest hours, and showed a preference for rocks, using rock crevices as main shelter. Tropidurus hispidus is the larger species as measured with SVL, and the species did not markedly differ in overall body shape. Both species mostly predated ants, insect larvae and termites. The head morphologies of T. semitaeniatus and T. hispidus are beer adapted for the ingeson of larger and longer prey, respecvely. Tropidurus semitaeniatus individuals modified their food intake during periods of higher rainfall, possibly to avoid compeon with T. hispidus. Despite the high overlap in the use of space, me and diet, the coexistence of the two species is facilitated through resources strategies that minimise the negave effects of compeon. Key words: dry forest, ecology, lizards, resource paroning, sympatry INTRODUCTION O rganisms coexist by sharing available resources (Toſt, 1985), and interspecific compeon is one of the main factors responsible for community structure (Milstead, 1965; Janzen & Schoener, 1968; Schoener, 1975; Huey & Pianka, 1977; Ribeiro & Freire, 2009, 2011). Competition can result in competitive exclusion and habitat shiſts (Hutchinson, 1957; Schoener, 1975), or may enable co-occurrence through character displacement (Pianka, 1973). Lizards are considered to be excellent models for ecological studies about coexistence (Araújo, 1987; Rodrigues, 1987; Colli et al., 1992; Vi & Pianka, 1994; Carvalho et al., 2005). The presence of lizards in given environments is strongly connected with the availability of resources such as food, shelter and sites for thermoregulaon (Vi, 1991, 1993; Bergallo & Rocha, 1993). The degree of resource sharing can be quanfied using differences in morphology, spaal resources and foraging modes (M’Closkey & Hecnar, 1994; Vi & Zani, 1998; Faria & Araujo, 2004). Morphology may be linked to structural characteriscs of habitats (Ricklefs et al., 1981; Losos, 1990; Colli et al., 1992), and head as well as jaw size are associated to diet preferences (Vi, 1995; Silva & Araújo, 2008). Tropidurus hispidus (Spix, 1825) and T. semitaenitus (Spix, 1825) are members of the torquatus and semitaeniatus groups within the family Tropiduridae, respecvely (Frost et al., 2001; Bérnils & Costa, 2012). Tropidurus hispidus is considered the largest species of the genus, and occupies a wide distribution that extends into the Caatinga area (Rodrigues, 1987); it is a habitat generalist which can oſten be observed on rocky substrates (Vi et al., 1996; 1997; VanSluys et al., 2004). Tropidurus semitaeniatus is exclusively saxicolous, with a flattened head and body to allow the use of rocky crevices as shelters, and is found throughout the Caanga of northeastern Brazil (Rodrigues, 2005; Freitas & Silva, 2007; Carvalho et al., 2013). Species of the genus Tropidurus are characterised by phylogenetic inertia associated with foraging modes (VanSluys, 1993; Faria & Araújo, 2004; Cooper, 1994; Pianka & Vi, 2003), which should lead to intense compeve interacons (Webb et al., 2002; Losos, 2008). In this study, we invesgated how T. hispidus and T. semitaeniatus use and share spaal, trophic and temporal resources.

Upload: others

Post on 27-Nov-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

27

Patterns of space time and trophic resource use by Tropidurus hispidus and T semitaeniatus in an area of Caatinga northeastern BrazilFabiacuteola Fonseca Almeida Gomes1 Francis Luiz Santos Caldas2 Rafael Alves dos Santos1 Bruno Duarte da Silva1 Daniel Oliveira Santana2 Steacutephanie Menezes Rocha2 Anthony Santana Ferreira1 amp Renato Gomes Faria1

1Programa de Poacutes-Graduaccedilatildeo em Ecologia e Conservaccedilatildeo Universidade Federal de Sergipe Cidade Universitaacuteria Prof Joseacute Aloiacutesio de Campos Av Marechal Rondon sn Jardim Rosa Elze

- CEP 49100-000 - Satildeo CristoacutevatildeoSE Brazil

2Programa de Poacutes-Graduaccedilatildeo em Ciecircncias Bioloacutegicas Universidade Federal da Paraiacuteba Cidade Universitaacuteria - CEP 58051-900 - Joatildeo Pessoa - PB - Brazil

Herpetological Journal FULL PAPER

Correspondence Fabiacuteola Fonseca Almeida Gomes (biola_gomeshotmailcom)

Volume 25 (January 2015) 27ndash39

Published by the British Herpetological Society

This study examines how two species of diurnal lizards (Tropidurus semitaeniatus and T hispidus Tropiduridae) use spatial trophic and temporal resources in the Conservation Unit of Monumento Natural Grota do Angico Poccedilo Redondo Sergipe (Brazil) Both species were mostly active during sunny days with a reduction in activity during the hottest hours and showed a preference for rocks using rock crevices as main shelter Tropidurus hispidus is the larger species as measured with SVL and the species did not markedly differ in overall body shape Both species mostly predated ants insect larvae and termites The head morphologies of T semitaeniatus and T hispidus are better adapted for the ingestion of larger and longer prey respectively Tropidurus semitaeniatus individuals modified their food intake during periods of higher rainfall possibly to avoid competition with T hispidus Despite the high overlap in the use of space time and diet the coexistence of the two species is facilitated through resources strategies that minimise the negative effects of competition

Key words dry forest ecology lizards resource partitioning sympatry

INTRODUCTION

Organisms coexist by sharing available resources (Toft 1985) and interspecific competition is one of

the main factors responsible for community structure (Milstead 1965 Janzen amp Schoener 1968 Schoener 1975 Huey amp Pianka 1977 Ribeiro amp Freire 2009 2011) Competition can result in competitive exclusion and habitat shifts (Hutchinson 1957 Schoener 1975) or may enable co-occurrence through character displacement (Pianka 1973) Lizards are considered to be excellent models for ecological studies about coexistence (Arauacutejo 1987 Rodrigues 1987 Colli et al 1992 Vitt amp Pianka 1994 Carvalho et al 2005) The presence of lizards in given environments is strongly connected with the availability of resources such as food shelter and sites for thermoregulation (Vitt 1991 1993 Bergallo amp Rocha 1993) The degree of resource sharing can be quantified using differences in morphology spatial resources and foraging modes (MrsquoCloskey amp Hecnar 1994 Vitt amp Zani 1998 Faria amp Araujo 2004) Morphology may be linked to structural characteristics of habitats (Ricklefs et al 1981 Losos 1990 Colli et al 1992) and head as well

as jaw size are associated to diet preferences (Vitt 1995 Silva amp Arauacutejo 2008)

Tropidurus hispidus (Spix 1825) and T semitaenitus (Spix 1825) are members of the torquatus and semitaeniatus groups within the family Tropiduridae respectively (Frost et al 2001 Beacuternils amp Costa 2012) Tropidurus hispidus is considered the largest species of the genus and occupies a wide distribution that extends into the Caatinga area (Rodrigues 1987) it is a habitat generalist which can often be observed on rocky substrates (Vitt et al 1996 1997 VanSluys et al 2004) Tropidurus semitaeniatus is exclusively saxicolous with a flattened head and body to allow the use of rocky crevices as shelters and is found throughout the Caatinga of northeastern Brazil (Rodrigues 2005 Freitas amp Silva 2007 Carvalho et al 2013) Species of the genus Tropidurus are characterised by phylogenetic inertia associated with foraging modes (VanSluys 1993 Faria amp Arauacutejo 2004 Cooper 1994 Pianka amp Vitt 2003) which should lead to intense competitive interactions (Webb et al 2002 Losos 2008) In this study we investigated how T hispidus and T semitaeniatus use and share spatial trophic and temporal resources

28

FFA Gomes et a l

MATERIALS AND METHODS

The Caatinga has an estimated area of 800000 km2 in northeastern Brazil extending from 2deg54rsquo to 17deg21rsquoS (Prado 2005) Shallow flagstones crystalline soils and irregular rainfall contribute to xeromorphic vegetation (Chiang amp Koutavas 2004 Krol et al 2001 Prado 2005) Annual precipitation ranges from 240ndash1500 mm (Sampaio 1995 Prado 2005) Despite high annual variation long periods of drought are common (Nimer 1972 Reis et al 2006) Populations of T hispidus and T semitaeniatus were studied in the State Conservation Unit of Monumento Natural Grota do Angico located in the semi-arid region of Sergipe state (Brazil 9deg41rsquoS and 38deg31rsquoW) between the municipalities of Poccedilo Redondo and Canindeacute de Satildeo Francisco (Fig 1) The Conservation Unit has an area of 2183 ha and its vegetation is typical of the Caatinga biome The average annual precipitation is 500 mm and the altitude ranges from 10 to 200 m (Ruiz-Esparza et al 2011)

Fig 1 Location of the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo - SE (Image Sidney Feitosa Gouveia)

The study was undertaken between December 2008 and November 2009 Data collections were made on three consecutive days in each month between 0600 and 1730 hours each day Three flat areas measuring 450times20 m (27 ha) were demarcated with a 50-m tape measure in the bedrocks of dry streams Active searches were employed to achieve systematic surveys Lizards were captured with nylon ties attached to fishing rods (25 m) Observations were undertaken over one day in each area For each captured lizard we recorded time of capture substrate when located (1) and after (2) the approach of the observer (rock tree rock crevice litter bromeliad lair excreta and cactus) activity when located (1) and after (2) the approach of the observer (motionless walking running agonism foraging interacted with lace) sun exposure (sun shadow or mosaic) perch height and weather conditions (sunny cloudy drizzle or rainy) We measured snoutndashvent length (SVL) tail length body length and width head length width and height and length of both limbs (right side of the body) using a digital caliper with an accuracy of

001 mm (Faria amp Arauacutejo 2004) Mass was also recorded using a Pesolareg balance (accuracy 05 g) Captured lizards were marked with Corrector water-based white colour to prevent recapture After measurements animals were released at the site of capture

Five specimens of each species per month were sacrificed using a lidocaine solution for diet analysis Specimens were fixed in 10 formalin and preserved in 70 ethanol and deposited in the Coleccedilatildeo Herpetoloacutegica da Universidade Federal de Sergipe (CHUFS) Ingested items were identified to the lowest possible taxonomic level Whole specimens were counted and their length and width was measured with a digital caliper (accuracy 001 mm) Prey volume was estimated using the formula for an ellipsoid (volume=(πlengthwidthsup2)6 Magnusson et al 2003) or through measurement in a water column using a graduated cylinder (plant material) Prey availability was estimated using monthly collections Fifteen pitfall traps (250 ml plastic pots) were placed in each area at a minimum distance of 5 m from each other for three consecutive days Each trap contained a solution of water salt and detergent for conserving invertebrates until they were transferred to 70 ethanol

The data were analysed using Systat v120 and BioEstat v50 for Windows A 5 significance level was applied Normality of the samples was tested using a ShapirondashWilkrsquos test in order to determine whether parametric or nonparametric analysis should be used Before analysis all morphometric variables were log10-transformed in order to convert the sample to a normal distribution and reduce scale effects For animals with broken or regenerated tails the original length was estimated using a regression model (SVLxtail length Faria amp Arauacutejo 2004) Body size was defined as an isometric variable following the protocol of Somers (1986) by which the scores of an isometric vector initially set at plt05 were obtained by multiplication of the matrix n x p of the log10-transformed data where n is the number of observations and p the isometric eigenvector (Jolicoeur 1963 Somers 1986) The residuals of the regressions of each log10-transformed variable with body size was used A principal component analysis (PCA) of size-adjusted morphological variables served to examine possible differences in morphology between species To test if the differences in form between the species were significant we undertook a multivariate analysis of variance (MANOVA) on the first five factors of the PCA The body size and mass of the two species were also compared by variance analysis (ANOVA)

The numerical and volumetric compositions of the prey categories consumed by the two species were compared using a KolmogorovndashSmirnov test on a monthly basis The widths of food niches (number and volume of prey) spatial niches (substrates and perch height) and temporal niches (time of activity period in which the animal remains exposed) were calculated using the inverse of Simpsonrsquos (1949) diversity index

B= 1

sumi = 1

n

p i2

29

Interact ion of sympatr ic Tropidur idae

where p is the proportion of resource category (trophic spatial or temporal) used and n is the number of resource categories adopted B ranges between 1 (exclusive use of a resource type) and 0 (homogeneous use of all types of resources) The estimated availability (total and monthly) of food resources was also measured using this method

The overlap between the food spatial and temporal niches were calculated using the formula for symmetrical overlap (Pianka 1973)

sum sum

sum

= =

==n

i

n

iikij

nikij

jk

pp

pp

1 1

22

where j and k represent different species Values close to zero indicate no similarity in resource use and values close to one indicate the similar use of such resources This index was also adopted to compare prey categories ingested with those available in the environments A canonical correlation between two set of variables (maximum length and maximum width of prey versus length width and height of the head) was used to investigate the relationship between the prey dimensions and head measurements

RESULTSIn total 1760 observations were made (422 for T hispidus and 1338 for T semitaeniatus) Morphometric and diet analyses were performed using a total of 102 specimens comprising 51 T hispidus (9 males 9 females and 33 young) and 51 T semitaeniatus (12 males 9 females and 30 young)

No significant differences were observed between both species with respect to substrate use (G=93421 gl=7 p=0229 nT hispidus=421 nT semitaeniatus=1333) In total 8313 and 9317 of T hispidus and T semitaeniatus were found on rocks (Fig 2A) and niche space width (B) was 142 and 115 respectively Overlap in use of microhabitats was high ( φjk=099) The average perch height was 6322plusmn6607 cm (n=300) for T hispidus and 5636plusmn5130 cm (n=912) for T semitaeniatus (including animals found on the ground Fig 2B) without significant differences (MannndashWhitney U=4250 p=05708 n=1212) Niche widths (B) of perch height were 289 for T hispidus and 273 for T semitaeniatus with a high overlap between species ( φjk=099)

Both T hispidus (7867) and T semitaeniatus (8303) preferred sunny days (Fig 2C) without differences between them (G=14534 gl=3 p=06931

Fig 2 Relative frequencies of (A) substrate use when located (B) perch height use (C) weather condition (D) sun exposure (E) activity levels across the day (F) behaviour when sighted (G) behaviour when escaping from the observer (H) substrate use after the approach of the observer of T hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo ndash SE

30

FFA Gomes et a l

Tabl

e 1

Des

crip

tive

data

for

mor

phol

ogic

al c

hara

cter

istics

of r

epro

ducti

ve in

divi

dual

s of

T h

ispi

dus

and

T s

emita

enia

tus

in t

he C

onse

rvati

on U

nit

of t

he S

tate

M

onum

ento

Nat

ural

Gro

ta d

o An

gico

Poccedil

o Re

dond

o - S

E L

inea

r mea

sure

men

ts a

re in

mill

imet

res

the

wei

ght i

s in

gra

ms

and

valu

es in

par

enth

eses

refe

r to

size-

adju

sted

var

iabl

es

Trop

idur

us se

mita

enia

tus

Trop

idur

us h

ispid

us

Varia

bles

Fem

ales

(n=9

)M

ales

(n=1

2)Fe

mal

es (n

=9)

Mal

es (n

=9)

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Body

size

352

plusmn05

32

68ndash4

25

648

plusmn13

43

48ndash8

33

105

0plusmn2

197

81ndash1

358

155

5plusmn6

342

09ndash2

399

Mas

s6

99plusmn1

00

585

ndash90

014

69plusmn

391

800

ndash20

2523

48plusmn

553

165

0ndash31

00

312

2plusmn14

17

142

5ndash52

00

(00

52plusmn0

110

)(-0

068

ndash02

42)

(-00

94plusmn0

268

)(-0

846

ndash01

60)

(00

75plusmn0

127

)(-0

085

ndash03

27)

(00

04plusmn0

061

)(-0

100

ndash00

81)

SVL

651

6plusmn3

6759

69-

719

979

68plusmn

456

731

7ndash87

32

840

5plusmn7

9074

16-

961

195

54plusmn

136

471

19ndash

114

08(0

047

plusmn00

20)

(00

17ndash0

073

)(0

073

plusmn00

14)

(00

49ndash0

095

)(0

017

plusmn00

15)

(-00

10ndash0

043

)(-0

028

plusmn00

65)

(-01

25ndash0

110

)Bo

dy w

idth

202

5plusmn1

5417

61ndash

223

723

08plusmn

414

152

3ndash29

83

250

0plusmn2

0619

74-

282

124

82plusmn

404

164

2ndash31

06

(00

97plusmn0

030

)(0

043

ndash01

33)

(00

86plusmn0

061

)(-0

062

ndash01

76)

(00

46plusmn0

039

)(-0

015

ndash01

01)

(-00

62plusmn0

056

)(-0

148

ndash00

32)

Body

hei

ght

745

plusmn11

15

36ndash9

10

848

plusmn10

96

64ndash9

93

140

7plusmn1

4611

22ndash

163

915

64plusmn

439

439

ndash22

09(0

015

plusmn00

60)

(-01

00ndash0

097

)(-0

021

plusmn00

54)

(-01

67ndash0

048

)(0

077

plusmn00

55)

(-00

07ndash0

162

)(-0

055

plusmn01

01)

(-02

26ndash0

073

)He

ad w

idth

120

3plusmn0

7311

04ndash

135

015

61plusmn

172

112

5ndash18

00

171

9plusmn1

7115

21ndash

197

419

93plusmn

395

116

2ndash23

99

(00

11plusmn0

020

)(-0

017

ndash00

49)

(00

57plusmn0

037

)(-0

020

ndash01

02)

(00

16plusmn0

020

)(-0

018

ndash00

49)

(-00

32plusmn0

047

)(-0

109

ndash00

45)

Head

leng

th17

16plusmn

164

125

7ndash18

84

214

4plusmn1

8117

24ndash

248

023

64plusmn

239

208

5ndash26

86

326

1plusmn18

45

168

1ndash91

82

(00

08plusmn0

044

)(-0

112

ndash00

43)

(00

44plusmn0

019

)(0

014

ndash00

79)

(00

02plusmn0

013

)(-0

017

ndash00

33)

(-00

01plusmn0

177

)(-0

153

ndash05

62)

Head

hei

ght

580

plusmn03

74

97ndash6

37

717

plusmn07

65

44ndash8

40

103

1plusmn1

009

23ndash1

240

120

2plusmn3

304

18ndash1

777

(-00

26plusmn0

022

)(-0

067

ndash00

02)

(-00

10plusmn0

029

)(-0

069

ndash00

30)

(00

42plusmn0

025

)(0

002

ndash00

76)

(-00

42plusmn0

061

)(-0

127

ndash00

84)

Tail

leng

th98

60

plusmn67

589

72ndash

116

8713

155

plusmn12

5110

487

ndash149

18

122

44plusmn1

716

887

2ndash14

131

144

13plusmn1

902

111

62ndash1

713

6(-0

004

plusmn00

28)

(-00

36ndash0

070

)(0

078

plusmn00

42)

(-00

10ndash0

148

)(-0

111

plusmn00

56)

(-01

11ndash0

056

)(-0

014

plusmn00

55)

(-00

82ndash0

080

)Fo

rele

g le

ngth

326

6plusmn1

6429

99ndash

350

039

83plusmn

303

932

55ndash

444

340

41plusmn

256

361

3ndash43

83

460

5plusmn7

6233

27ndash

564

0(0

044

plusmn00

18)

(00

06ndash0

063

)(0

073

plusmn00

19)

(00

40ndash0

106

)(0

009

plusmn00

23)

(-00

42ndash0

042

)(-0

029

plusmn00

53)

(-01

14ndash0

074

)Hi

nd li

mb

leng

th45

25plusmn

262

402

1ndash48

89

570

5plusmn3

8249

61ndash

629

457

64plusmn

365

505

0ndash62

82

681

5plusmn9

7950

56ndash

807

2(0

022

plusmn00

20)

(-00

12ndash0

043

)(0

066

plusmn00

11)

(00

50ndash0

085

)(0

001

plusmn00

23)

(-00

42ndash0

034

)(-0

018

plusmn00

51)

(-00

97ndash0

090

)

31

Interact ion of sympatr ic Tropidur idae

nT hispidus=422 and nT semitaeniatus=1338) Tropidurus hispidus was most often observed in shaded (3871) and mosaic sites (3776) whereas T semitaeniatus was most often found at sites exposed to the sun (3638) followed by mosaic sites (3443) (Fig 2D) The difference between species was significant (T=8597 df=364 plt0001 nT

hispidus=421 and nT semitaeniatus =1333)Tropidurus hispidus and T semitaeniatus showed the same temporal activity patterns (G=82992 gl=11 p=06863 nT hispidus=422 and nT semitaeniatus=1356) Both species were bi-modally active Tropidurus hispidus activity was highest between 0800 and 1100 hours declining at midday and rising again between 1400 and 1600 (Fig 2E) For T semitaeniatus the highest peaks occurred between 0700 and 1000 and between 1400 and 1700 (Fig 2E) The niche widths for activity times were 1078 and 1041 for T hispidus and T semitaeniatus respectively with a high overlap of these schedules ( φ

jk=092) The two species were indiscernible with regard to activity when sighted (G=04808 gl=4 p=09753 nT hispidus=461 and nT semitaeniatus=1338) A standing position dominated for both T hispidus (8178) and T semitaeniatus (8079) (Fig 2F) Running for shelter was the main activity after having been encountered for both species (Tropidurus hispidus 6580 T semitaeniatus 7427) (Fig 2G) without statistical differences (G=72499 gl=6 p=02984 nT hispidus=421 and nT semitaeniatus=1337) Similar shelters were chosen by the two species (G=133158 gl=7 p=00648 nT hispidus=421 and nT semitaeniatus=1331) Rocks were used most frequently (T hispidus 6674 and T semitaeniatus 8136) followed by crevices (T hispidus 1069 and T semitaeniatus 1254) (Fig 2H) Niche width for shelters use was 211 and 147 for T hispidus and T semitaeniatus respectively with a high overlap ( φ jk = 099) Adult T hispidus were larger than T semitaeniatus (ANOVA F136=42119 plt0001 n=382 Table 1) Average SVL of T hispidus was 9268plusmn1358 mm for adults and 6391plusmn1413 mm for juveniles average SVL of T semitaeniatus adults and young was 7366plusmn904 mm and 5555plusmn1303 mm respectively The size-adjusted masses (adults) were similar between the species (ANOVA F128=1283 p=0267 n=30 Table 1) Adults and young of T hispidus had masses of 3208plusmn1151 g and 1095plusmn646 g T semitaeniatus weighed 1219plusmn506 g and 507plusmn381 g respectively (Tables 1 and 2)

Trop

idur

us se

mita

enia

tus

Trop

idur

us h

ispid

us

Varia

bles

Fem

ales

(n=1

3)M

ales

(n=1

7)Fe

mal

es (n

=15)

Mal

es (n

=18)

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Body

size

100

plusmn04

90

25ndash2

01

295

plusmn16

00

75ndash6

17

388

plusmn17

81

37ndash6

84

395

plusmn17

11

15ndash6

44

Mas

s1

96plusmn0

88

075

ndash35

05

62plusmn3

84

110

ndash13

007

77plusmn3

78

200

ndash15

258

07plusmn3

38

250

ndash12

50(-0

009

plusmn00

63)

(-01

40ndash0

072

)(-0

015

plusmn00

74)

(-01

59ndash0

112

)(-0

029

plusmn01

11)

(-02

64ndash0

068

)(0

035

plusmn00

40)

(-00

24ndash0

104

)SV

L44

22plusmn

782

269

6ndash56

84

596

5plusmn10

67

416

7ndash72

76

574

2plusmn10

99

399

1ndash72

71

579

1plusmn8

7238

82ndash

693

6(-0

094

plusmn00

72)

(-02

76ndash-

000

8)(0

010

plusmn00

54)

(-00

98ndash0

075

)(-0

025

plusmn00

61)

(-01

67ndash0

031

)(-0

020

plusmn00

40)

(-01

35ndash0

022

)Bo

dy w

idth

117

2plusmn2

216

93ndash1

468

164

5plusmn3

7610

87ndash

226

615

38plusmn

330

112

6ndash21

02

154

4plusmn3

044

105

0ndash19

44

(-01

05plusmn0

086

)(-0

306

ndash-0

006)

(00

05plusmn0

073

)(-0

122

ndash00

92)

(-00

41plusmn0

060

)(-0

120

ndash00

45)

(-00

40plusmn0

058

)(-0

143

ndash00

35)

Body

hei

ght

465

plusmn11

53

37ndash7

69

626

plusmn14

803

51ndash8

73

889

plusmn21

65

38ndash1

230

897

plusmn23

25

57ndash1

219

(-01

13plusmn0

089

)(-0

256

ndash00

78)

(-00

53plusmn0

079

)(-0

224

ndash00

46)

(00

71plusmn0

068

)(-0

058

ndash01

43)

(00

72plusmn0

074

)(-0

036

ndash01

73)

Head

wid

th9

07plusmn1

80

606

ndash11

9411

91plusmn

243

762

ndash15

7212

05plusmn

171

933

ndash14

5012

28plusmn

180

920

ndash15

14(-0

082

plusmn00

74)

(-02

21ndash0

019

)(0

007

plusmn00

62)

(-01

34ndash0

075

)(-0

002

plusmn00

31)

(-00

57ndash0

053

)(0

004

plusmn00

34)

(-00

59ndash0

070

)He

ad le

ngth

129

6plusmn1

899

33ndash1

555

159

4plusmn3

129

45ndash2

022

175

7plusmn2

6013

14ndash

222

317

63plusmn

246

125

5ndash21

52

(-00

70plusmn0

057

)(-0

185

ndash00

10)

(-00

18plusmn0

075

)(-0

248

ndash00

47)

(00

10plusmn0

031

)(-0

062

ndash00

58)

(00

10plusmn0

033

)(-0

075

ndash00

53)

Head

hei

ght

402

plusmn05

52

99ndash4

97

562

plusmn09

83

99ndash7

20

744

plusmn10

95

71ndash8

73

773

plusmn12

25

69ndash9

55

(-01

20plusmn0

054

)(-0

224

ndash-0

049)

(-00

27plusmn0

044

)(-0

112

ndash00

30)

(00

72plusmn0

030

)(0

028

ndash01

32)

(00

86plusmn0

035

)(0

027

ndash01

61)

Tail

leng

th81

15plusmn

163

853

34ndash

102

4510

703

plusmn20

9876

87ndash

150

9097

02plusmn

118

475

06ndash

112

8797

32plusmn

119

269

96ndash

119

44(-0

072

plusmn00

89)

(-02

31ndash0

046

)(0

033

plusmn00

65)

(-00

73ndash0

144

)(-0

019

plusmn00

43)

(-00

91ndash0

056

)(-0

018

plusmn00

46)

(-01

18ndash0

058

)Fo

rele

g le

ngth

232

4plusmn4

2413

97ndash

293

730

57plusmn

572

194

6ndash37

79

294

0plusmn4

7721

03ndash

358

728

47plusmn

414

197

2ndash35

55

(-00

81plusmn0

077

)(-0

270

ndash00

13)

(00

15plusmn0

063

)(-0

135

ndash01

02)

(-00

17plusmn0

047

)(-0

112

ndash00

41)

(-00

31plusmn0

040

)(-0

136

ndash00

26)

Hind

lim

b le

ngth

343

7plusmn5

5522

80ndash

434

444

36plusmn

755

311

5ndash53

59

434

5plusmn5

9532

67ndash

503

843

08plusmn

635

310

8ndash52

01

(-00

75plusmn0

064

)(-0

224

ndash-0

008)

(00

12plusmn0

055

)(-0

097

ndash00

77)

(-00

11plusmn0

039

)(-0

087

ndash00

24)

(-00

16plusmn0

043

)(-0

105

ndash00

40)

Tabl

e 2

Des

crip

tive

data

for m

orph

olog

ical

cha

ract

eristi

cs o

f non

-rep

rodu

ctive

indi

vidu

als

of T

hisp

idus

and

T s

emita

enia

tus

in th

e Co

nser

vatio

n U

nit o

f the

Sta

te

Mon

umen

to N

atur

al G

rota

do

Angi

co P

occedilo

Redo

ndo

- SE

Lin

ear m

easu

rem

ents

are

in m

illim

etre

s th

e w

eigh

t is

in g

ram

s an

d va

lues

in p

aren

thes

es re

fer

to s

ize-

adju

sted

var

iabl

es

32

FFA Gomes et a l

Both T hispidus (7867) and T semitaeniatus (8303) preferred sunny days (Fig 2C) without differences between them (G=14534 gl=3 p=06931 nT hispidus=422 and nT semitaeniatus=1338) Tropidurus hispidus was most often observed in shaded (3871) and mosaic sites (3776) whereas T semitaeniatus was most often found at sites exposed to the sun (3638) followed by mosaic sites (3443) (Fig 2D) The difference between species was significant (T=8597 df=364 plt0001 nT

hispidus=421 and nT semitaeniatus =1333)

Tropidurus hispidus and T semitaeniatus showed the same temporal activity patterns (G=82992 gl=11 p=06863 nT hispidus=422 and nT semitaeniatus=1356) Both species were bi-modally active Tropidurus hispidus activity was highest between 0800 and 1100 hours declining at midday and rising again between 1400 and 1600 (Fig 2E) For T semitaeniatus the highest peaks occurred between 0700 and 1000 and between 1400 and 1700 (Fig 2E) The niche widths for activity times were 1078 and 1041 for T hispidus and T semitaeniatus

Taxon Availability Tropidurus semitaeniatus (n=60) Tropidurus hispidus (n=60)

n n F F n n V (mm3) V F F n n V (mm3) V

Acarina 268 074 2 333 2 014 039 000 4 667 14 049 71176 231

Araneae 523 145 20 3333 35 236 27219 227 16 2667 26 090 69893 226

Blattaria 272 076 1 007 5 833 5 017 9811 032

Chilopoda 8 002 1 167 1 007 122 010 1 167 1 003 57009 185

Coleoptera 3497 971 19 3167 32 216 13121 109 36 6000 98 341 148896 482

Dermaptera 3 001

Diplopoda 92 026 1 167 1 003 2925 009

Diplura 1 000

Diptera 5386 1495 15 2500 33 223 24458 204 10 1667 12 042 10033 033

Embioptera 1 000

Ephemeoptera 6 002

Gastropoda 24 007 2 333 4 027 3754 031 1 167 1 003 347 001

Hemiptera 20 006 2 333 2 007 30919 100

Homoptera 56 016 2 333 5 034 1739 014 3 500 10 035 2731 009

Hymenoptera 24908 6916 54 9000 989 6682 277634 2313 56 9333 2088 7265 867513 2811

Isopoda 9 002 1 167 1 003 2028 007

Isoptera 72 020 7 1167 39 264 4505 038 8 1333 412 1434 114157 370

Insect larvae 118 033 30 5000 309 2088 767065 6390 30 5000 175 609 1342030 4348

Lepidoptera 693 192 15 2500 21 142 32576 271 15 2500 22 077 39560 128

Mantodea 1 lt001

Organic material 5 833 055 00046 17 2833 1730 560

Mecoptera 1 lt001

Neuroptera 6 002

Odonata 3 001

Opilionidae 13 004

Orthoptera 4 667 4 027 45371 378 4 667 4 014 144351 468

Protura 2 001 000

Pseudoscorpionida 14 004 2 333 4 027 461 004 1 167 2 007 187 001

Pscoptera 1 lt001 000

Scorpionida 12 003 1 167 1 007 1299 011

Siphonoptera 1 lt001

Strepsitera 1 lt001

Thrichoptera 1 lt001

Thysanura 2 001

TOTAL 36015 100 1480 100 1200516 100 2874 100 3086566 100

B 202 296 206 226

Table 3 Summary of prey availability and diets of Tropidurus hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo - SE n ndash number of prey n ndash percentage of prey F ndash frequency of prey V ndash volume V ndash percentage of volume

33

Interact ion of sympatr ic Tropidur idae

respectively with a high overlap of these schedules ( φ

jk=092) The two species were indiscernible with regard to

activity when sighted (G=04808 gl=4 p=09753 nT

hispidus=461 and nT semitaeniatus=1338) A standing position dominated for both T hispidus (8178) and T semitaeniatus (8079) (Fig 2F) Running for shelter was the main activity after having been encountered for both species (Tropidurus hispidus 6580 T semitaeniatus 7427) (Fig 2G) without statistical differences (G=72499 gl=6 p=02984 nT hispidus=421 and nT

semitaeniatus=1337) Similar shelters were chosen by the two species (G=133158 gl=7 p=00648 nT hispidus=421 and nT semitaeniatus=1331) Rocks were used most frequently (T hispidus 6674 and T semitaeniatus 8136) followed by crevices (T hispidus 1069 and T semitaeniatus 1254) (Fig 2H) Niche width for shelters use was 211 and 147 for T hispidus and T semitaeniatus respectively with a high overlap ( φjk = 099)

Adult T hispidus were larger than T semitaeniatus (ANOVA F136=42119 plt0001 n=382 Table 1) Average SVL of T hispidus was 9268plusmn1358 mm for adults and 6391plusmn1413 mm for juveniles average SVL of T semitaeniatus adults and young was 7366plusmn904 mm and 5555plusmn1303 mm respectively The size-adjusted masses (adults) were similar between the species (ANOVA F128=1283 p=0267 n=30 Table 1) Adults and young of T hispidus had masses of 3208plusmn1151 g and 1095plusmn646 g T semitaeniatus weighed 1219plusmn506 g and 507plusmn381 g respectively (Tables 1 and 2)

The first and second principal components of a PCA together explained 70 of the variation in morphology of the two species The first principal component was related to SVL anterior and posterior limb length and head width The two species did not significantly differ in shape (MANOVA Wilkrsquos Lambda=0893 p=0566) although T hispidus is slightly larger than T semitaeniatus with a larger and higher head longer limbs and a higher body

A total of 60 stomachs were analysed for T semitaeniatus and T hispidus each Eighteen prey categories were used by T hispidus and 15 were used by T semitaeniatus The most frequent prey categories for T hispidus were Hymenoptera Coleoptera insect larvae Araneae and Lepidoptera The corresponding groups for T semitaeniatus were Hymenoptera insect larvae Araneae Coleoptera Diptera and Lepidoptera The most abundant prey types were Hymenoptera and Isoptera for T hispidus and Hymenoptera and insect larvae for T semitaeniatus Highest prey volumes were represented by insect larvae and Hymenoptera for T hispidus and insect larvae and Hymenoptera for T semitaeniatus (Table 3) Formicidae represented 9995 of the Hymenoptera ingested by the two species (Table 3) Both species also consumed plant material (28 of T hispidus individuals representing 60 of the volume of food consumed and 833 of T semitaeniatus representing 00046 of food volume

The trophic niche widths estimated for T hispidus and T semitaeniatus were 206 and 202 for prey number and 226 and 296 for prey volume respectively Overlap

was higher with regards to prey number ( φjk=096 prey volume φ jk=097) but prey number and prey volume were significantly different from each other (prey number KolmogorovndashSmirnov Dmax=01584 plt001 prey volume KolmogorovndashSmirnov Dmax=01816 plt001 Table 3) A total of 36015 invertebrates distributed into 33 categories were used to estimate prey availability in the environment The distribution of available prey differed from the consumed prey for both species (T hispidus Dmax=02267 plt001 T semitaeniatus Dmax=02294 plt001)

The mean number of prey categories consumed for each species was seven (T semitaeniatus 5ndash11 T hispidus 4ndash11) Five categories comprised more than 10 in at least one monthly sample for T hispidus (Hymenoptera insect larvae Isoptera Coleoptera and Lepidoptera) and four of these also comprised more than 10 in at least one monthly sample for T semitaeniatus (all except Lepidoptera) The largest niche widths (B) were observed in February (254) June (248) April (245) and May (204) for T hispidus and in July (310) February (289) June (284) and May (221) for T semitaeniatus Diet overlap was high (Oslashgt050) in all months except April (011) and December (020) However significant differences between the diets were found in December February April May and August (Table 4)

The proportion of items most used in the diets was similar to available prey in January April September and October for T hispidus and in December January September and October for T semitaeniatus (Table 4) The prey availability occurred between December 2008 and March 2009 and between October and November 2009 (Table 4) The numbers of available prey categories ranged from eight (August) to 19 (February) The highest diversity of available prey was observed in May (378) (Table 4)

Focusing on the two most common food items Hymenoptera were most abundantly available in December 2008 and January 2009 and between September and November 2009 (Table 4) Tropidurus semitaeniatus largely consumed Hymenoptera (over 50 of diet) in the months of December 2008 January March and July to November 2009 whereas insect larvae were more consumed in February April May and June For T hispidus Hymenoptera comprised gt50 of the diet in all month except December and February (Table 4) Insect larvae never exceeded 50 of the number of prey consumed

A strong relationship was seen when comparing the morphology of the head of each species Tropidurus with the dimensions of prey actually consumed by them (Table 5) The first canonical variable for T semitaeniatus showed an inverse relationship in which animals with narrower heads were related to larger prey (Table 5) Already T hispidus for the first canonical variable was significantly positive for the relation between animals with large heads and longer prey (Table 5)

34

FFA Gomes et a l

Dece

mbe

rJa

nuar

yFe

brua

ryM

arch

April

May

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

(126

)(4

51)

(407

2)(9

0)(5

05)

(141

85)

(73)

(83)

(430

8)(1

07)

(151

)(3

895)

(178

)(4

5)(7

99)

(108

)(2

67)

(826

)Ac

arin

a1

650

590

570

070

030

750

36Ar

anea

e1

590

440

612

250

200

731

371

201

183

740

631

826

133

700

75Bl

attar

ia0

440

101

120

200

480

260

100

380

370

12Ch

ilopo

da0

220

010

030

48Co

leop

tera

317

044

447

562

079

851

274

361

474

093

125

137

62

2524

44

160

20

934

8718

52

Derm

apte

ra0

08Di

plop

oda

009

138

037

763

Dipl

ura

002

Dipt

era

142

91

922

250

592

874

8247

47

187

188

447

215

77

377

7Em

biop

tera

013

Ephe

meo

pter

a0

75Ga

stro

poda

100

109

Hem

ipte

ra0

010

020

030

371

21Ho

mop

tera

007

001

063

093

037

073

Hym

enop

tera

793

716

41

908

480

90

906

986

75

397

346

99

389

784

11

800

028

11

337

577

852

44

314

865

17

284

5Is

opod

a0

22Is

opte

ra0

7981

82

002

112

634

424

70

911

870

562

220

631

120

61In

sect

larv

a0

790

223

370

016

8540

96

042

093

938

036

932

64

443

7559

26

250

91

94Le

pido

pter

a2

250

592

742

415

646

546

2510

94

056

111

10

501

851

120

85M

anto

dea

002

Mec

opte

ra0

02N

euro

pter

aO

dona

ta0

05O

pilio

nida

e0

03O

rtho

pter

a1

121

850

37Pr

otur

a0

010

02Ps

eudo

scor

pion

ida

002

411

025

024

Pscoacute

pter

a0

02Sc

orpi

onid

a0

050

020

050

13Si

phon

opte

ra0

02St

reps

itera

002

Thric

hopt

era

002

Thys

anur

a0

01 B

153

143

121

151

121

131

289

254

261

140

153

322

115

245

302

221

204

378

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

099

010

gt00

51

000

08gt0

05

044

050

lt00

10

540

54lt0

01

010

089

lt00

10

300

63lt0

01

Th x

Disp

020

082

lt00

10

990

11gt0

05

054

044

lt00

10

540

57lt0

01

094

018

gt00

50

550

61lt0

01

Ts x

Th

020

080

lt00

10

990

09gt0

05

059

030

lt00

10

990

08gt0

05

011

078

lt00

10

750

36lt0

01

Tabl

e 4

Mon

thly

dist

ributi

on o

f foo

d av

aila

bilty

(D) a

nd o

f the

sto

mac

h co

nten

ts o

f T h

ispi

dus

(Th)

and

T s

emita

enia

tus

(Ts)

in t

he C

onse

rvati

on U

nit

of t

he S

tate

M

onum

ento

Nat

ural

Gro

ta d

o An

gico

Poccedil

o Re

dond

o - S

E (B

razil

) Th

e va

lues

in p

aren

thes

es re

fer t

o th

e nu

mbe

r of i

nver

tebr

ates

per

sam

ple

35

Interact ion of sympatr ic Tropidur idae

Tabl

e 4

(Con

tinue

d)

June

July

Augu

stSe

ptem

ber

Oct

ober

Nov

embe

rTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

D

(95)

(120

)(9

33)

(59)

(156

)(8

99)

(46)

(63)

(219

)(1

50)

(170

)(1

023)

(240

)(5

64)

(242

4)(2

09)

(294

)(2

432)

Acar

ina

169

011

317

042

160

223

214

Aran

eae

421

244

493

678

445

100

52

671

762

251

251

241

533

350

342

26Bl

attar

ia0

430

640

220

490

176

83Ch

ilopo

da0

111

690

11Co

leop

tera

421

732

202

63

396

4126

59

476

168

93

3312

35

181

80

421

425

901

444

0812

05

Derm

apte

raDi

plop

oda

150

Dipl

ura

Dipt

era

316

081

390

13

3913

90

435

913

067

059

225

042

239

096

354

Embi

opte

raEp

hem

eopt

era

Gast

ropo

da5

081

370

590

200

040

480

04He

mip

tera

081

032

011

046

008

Hom

opte

ra0

810

963

390

641

454

353

171

832

350

290

620

08Hy

men

opte

ra42

11

561

029

26

525

485

26

525

065

22

746

058

45

906

779

41

742

996

67

937

986

10

904

394

90

722

0Is

opod

a1

59Is

opte

ra1

6911

11

133

059

058

008

Inse

ct la

rva

410

528

46

236

186

47

050

2223

91

159

067

176

039

071

017

335

068

029

Lepi

dopt

era

316

244

021

169

033

217

183

059

039

083

071

Man

tode

aM

ecop

tera

Neu

ropt

era

064

Odo

nata

004

Opi

lioni

dae

039

012

021

Ort

hopt

era

105

081

059

018

Prot

ura

Pseu

dosc

orpi

onid

a1

050

350

080

21Ps

coacutept

era

Scor

pion

ida

067

029

004

Siph

onop

tera

Stre

psite

raTh

richo

pter

aTh

ysan

ura

B2

842

483

543

101

362

722

051

742

571

211

541

711

071

131

341

221

111

84

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

049

056

lt00

10

850

28lt0

01

089

001

lt00

10

980

17gt0

05

100

010

gt00

50

980

21lt0

05

Th x

Disp

056

056

lt00

10

560

39lt0

01

094

030

lt00

11

000

08gt0

05

100

009

gt00

50

990

23lt0

05

Ts x

Th

095

015

gt00

50

950

18gt0

05

093

025

lt00

10

990

11gt0

05

100

002

gt00

51

000

03gt0

05

36

DIsCUssION The presence of a species in an environment may be related to specific physiological needs improved access to food availability of resources presence of refuges morphological adaptations inter and intraspecific interactions as well as historical factors (Pianka 1973 Herfindal et al 2005 Borger et al 2006 Silva amp Arauacutejo 2008) The habitat and microhabitat chosen by a species should meet their essential needs to allow viable populations (Silva amp Arauacutejo 2008) In the study area T hispidus and T semitaeniatus largely were active on rocky substrates Such sites are able to maximise the uptake of heat necessary for thermoregulation both through direct exposure and contact with heated surfaces (Rocha amp Bergallo 1990 VanSluys 1992 Meira et al 2007)

Tropidurus semitaeniatus is considered to be a saxicolous species endemic of Caatinga environments whereas T hispidus occupies a generalist habitat in open formations of various biomes (Rodrigues 1987) Despite this variation in the use of microhabitats T hispidus tends towards a saxicolous habit in places where rocks are abundant Vitt et al (1997) found that where T hispidus use rocks individuals displayed greater dorso-ventral flattening than when in habitat areas without rocks This suggests that the flattening in these individuals could be adaptive to the use of cracks in rock outcrops In the present study no differences were established in body shape between the species

The preference of these species for rocks has been recorded in other localities and environments Tropidurus hispidus uses rocks in Caatinga environments (Vitt 1981 Dias amp Lira-da-Silva 1998 Kolodiuk et al 2009) in the Amazonian rainforest (Vitt amp Carvalho 1995 Vitt et al 1996 Vitt amp Zani 1998) Amazonian savannahs (Mesquita et al 2006) and fields in Minas Gerais (VanSluys et al 2004) T semitaeniatus uses rocky substrates in the Caatinga biome (Vitt 1981 Kolodiuk et al 2009 Ribeiro amp Freire 2010) and in Agreste Sergipe (Fernandes amp Oliveira 1997 Ramos amp Denisson 1997) The use of rocks is common to others species of the semitaeniatus group (T helenae and T pinima Rodrigues 1984 Manzani amp Abe 1990 Rodrigues 2005) as well as for several

Table 5 Canonical correlation between the measurements of the head and the size of prey of T hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo ndash SE (Brazil)

species of the torquatus group (T montanus T itambere and T oreadicus Rodrigues 1987 Faria amp Araujo 2004 VanSluys et al 2004 Meira et al 2007) Both species adopted vertical positions which were in most cases lt40 cm above ground (5064 and 5178 of observations for T hispidus and T semitaeniatus respectively) Teixeira-Filho et al (1996) suggest that layers close to the ground are heated up more quickly with advantages for thermoregulation and a consequently lower risk of predation and more time for other activities such as foraging

Tropidurus individuals were active throughout the data collection period Both species are sit-and-wait predators implying a shorter time searching for prey and more energy invested in prey capture than is the case for more active foragers (Dias amp Lira-da-Silva 1998 Pianka amp Vitt 2003) Similar findings were already obtained for T hispidus (Vitt 1995 Vitt amp Zani 1998 VanSluys et al 2004) T semitaeniatus (Vitt 1995) T torquatus (Bergallo amp Rocha 1993 Teixeira-Filho et al 1996 Hatano et al 2001) T itambere (VanSluys 1992 Faria amp Araujo 2004) T montanus (VanSluys et al 2004) and T oreadicus (Faria amp Araujo 2004 Meira et al 2007) The observed bimodal patterns of activity have previously been found by VanSluys (1992) for T itambere and by Vrcibradic amp Rocha (1998) for Mabuya frenata during the wet season at high temperatures The Caatinga biome is characterised by particularly hot temperatures (Prado 2005) explaining the observed bimodal pattern for the present study species

According to Huey amp Slatkin (1976) thermoregulation in diurnal lizards involves a set of behavioural activities and options for microhabitat use Displacement between environments with a differential exposure to sun will help to achieve the optimum temperature sought (Rocha amp Bergallo 1990 Vitt amp Carvalho 1995 Hatano et al 2001) We observed a preference for sunny days and exposure to sun was distributed between categories (sun mosaic shadow) for both species with T semitaeniatus having a preference for sun and T hispidus having a preference for shadow The difference in exposure adopted by each species may reflect their physiological needs Vitt (1995) and Ribeiro amp Freire (2010) verified that T semitaeniatus

FFA Gomes et a l

Tropidurus semitaeniatus Tropidurus hispidus

Canonical coefficients Canonical coefficients

Head 1st Canonical Variable 2nd Canonical Variable 1st Canonical Variable 2nd Canonical Variable

Length 165 645 025 123

Height -217 -686 136 028

Width 151 032 -064 -160

Prey

Greater Length 038 139 129 -164

Greater Width 068 -127 -035 206

Canonical Correlation c2 p Canonical Correlation c2 p

I 095 13634 lt00001 053 14437 00251

II 055 1883 lt00001 014 0865 06488

37

presents a mean body temperature that is higher than T hispidus In the study area of the present work T hispidus may prefer shady places to avoid negative effects of high temperatures (Teixeira-Filho et al 1996)

Ecological historical and behavioural factors must be considered when evaluating the reasons why certain species consume particular types of prey (Vitt amp Zani 1998 Pianka amp Vitt 2003) and morphological limitations may further interfere with the type of food consumed (Toft 1985 Magnusson amp Silva 1993) An opportunistic pattern in food use was observed for both species in this study given the strong correlation between use and availability The use of ants is widely observed in the diet of the genus Tropidurus and has been reported for several species (T hispidus Dias amp Lira-da-Silva 1998 T torquatus group Arauacutejo 1987 T itambere VanSluys 1995 T oreadicus and T spinulosos Colli et al 1992 T torquatus Bergallo amp Rocha 1994 T hispidus T oreadicus T semitaeniatus Vitt 1993 T semitaeniatus and T hispidus Ribeiro amp Freire 2011) Ants are abundant in the Caatinga (Santos et al 1999) Insect larvae were mainly used in the rainy season probably due to their higher availability during this period

For lizards prey composition is largely related to the type of foraging used and the habitat they occupy (Vitt 1991 Toft 1985) Diet overlap is common among sympatric species that hunt by stalking since they have a preference for active prey (Zug et al 2001 Silva amp Arauacutejo 2008) In periods of higher rainfall both species became more selective since the number of invertebrates in the environment was larger Tropidurus semitaeniatus changed their diet towards insect larvae which were not the most abundant prey category T hispidus continued to consume Hymenoptera as the main item in their diet Considering the reduction in availability of Hymenoptera during the rainy season it is likely that individuals of Tropidurus species broaden the diversity of food items to meet their daily nutritional needs The seasonal change in food habits of T semitaeniatus during the rainy season might be due to avoidance of competition during this period Head morphology is reflected in the consumption of prey of different dimensions it is expected that animals with larger heads consume larger prey (Pianka 1969) However this pattern was not observed for the target species of this study Since T semitaeniatus that has a smaller width head was observed consuming relatively larger prey whereas T hispidus with larger heads prefers more elongated prey Food availability in the environment probably best explains the observed pattern Besides invertebrates large quantities of plant material (flowers leaves and seeds) were found in stomachs and T hispidus consumed more plants than T semitaeniatus Ingestion of plant material in Tropidurus and other lizards is relatively common to provide energy as well as possibly water (Rocha amp Bergallo 1992 VanSluys 1993 Dias amp Lira-da-Silva 1998) In our study area the coexistence of T hispidus and T semitaeniatus on rocky outcrops is probably facilitated by small variations in spatial arrangement the morphology of the trophic apparatus and temporary niche shifts in their diets depending on rather unpredictable rainfall patterns

ACKNOWLEDGEMENTs

We thank Mr Manuel Messias and his entire family for their support in the collection area We are grateful to CAPES for providing the research grant and SISBIO for licensing the collection the Secretaria do Meio-Ambiente e Recursos Hiacutedricos de Sergipe (SEMARH SE) for support with transport to the area and other aid at UC and the Nuacutecleo de Pesquisa em Ecologia e Conservaccedilatildeo (NPEC) and the Universidade Federal de Sergipe (UFS) for logistical support The data collection was authorised by license number 19237-1 issued by SISBIO (System of Authorization and Information on Biodiversity)

REFERENCEs

Arauacutejo AFB (1987) Comportamento alimentar dos lagartos o caso dos Tropidurus da Serra dos Carajaacutes Paraacute (Sauria Iguanidae) In Anais de Etologia 203ndash234 Encontro Anual de Etologia (1987) Ribeiratildeo Preto Jaboticabal FUNEP 5

Bergallo HG amp Rocha D (1993) Activity patterns and body temperatures of two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics in southeastern Brazil Amphibia-Reptilia 14 312ndash315

Bergallo HG amp Rocha D (1994) Spatial and trophic niche differentiation in two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics Australian Journal of Ecology 19 72ndash75

Beacuternils RS amp Costa HC (2012) Reacutepteis brasileiros lista de espeacutecies Versatildeo 20122 Available from lthttpwwwsbherpetologiaorgbrgt Sociedade Brasileira de Herpetologia Accessed 2 October 2013

Borger L Franconi N De Michele G Gantz A et al (2006) Effects of sampling regime on the mean and variance of home range size estimates Journal of Animal Ecology 75 1393ndash1405

Carvalho ALG Brito MR amp Fernandes DS (2013) Biogeography of the lizard genus Tropidurus Wied-Neuwied 1825 (Squamata Tropiduridae) distribution endemism and area relationships in South America Public Library of Science 8 1ndash14

Carvalho CM Vilar JC amp Oliveira FF (2005) Reacutepteis e anfiacutebios In Parque Nacional Serra de Itabaiana - Levantamento da Biota 39ndash61 Carvalho CM and Vilar JC (eds) Aracaju Ibama Biologia Geral e Experimental ndash UFS

Chiang JCH amp Koutavas A (2004) Tropical Flip-flop connections Nature 432 684ndash685

Colli GR Arauacutejo AFB Silveira R amp Roma F (1992) Niche partitioning and morphology of two syntopic Tropidurus (Sauria Tropiduridae) in Mato Grasso Brazil Journal of Herpetology 26 66ndash69

Cooper Jr WE (1994) Prey chemical discrimination foraging mode and phylogeny In Lizard ecology historical and experimental perspectives 95ndash116 Vitt LJ amp Pianka ER (eds) New Jersey Princeton University Press

Dias EJR amp Lira-da-Silva RM (1998) Utilizaccedilatildeo dos recursos alimentares por quatro espeacutecies de lagartos (Phyllopezus pollicaris Tropidurus hispidus Mabuya macrorhyncha e Vanzossaura rubricauda) da caatinga (Usina Hidroeleacutetrica de Xingoacute) Brazilian Journal of Ecology 2 97ndash101

Faria RG amp Arauacutejo AFB (2004) Sintopy of two Tropidurus

Interact ion of sympatr ic Tropidur idae

38

lizard species (Squamata Tropiduridae) on a rocky cerrado habitat in Central Brazil Brazilian Journal of Biology 64 775ndash786

Fernandes ACM amp Oliveira EF (1997) Diversidade na dieta e aspectos reprodutivos de duas espeacutecies simpaacutetricas e sintoacutepicas de Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 35ndash40

Freitas MA amp Silva TFS (2007) Guia ilustrado A herpetofauna das caatingas e aacutereas de altitudes do Nordeste Brasileiro Pelotas USEB (Coleccedilatildeo Manuais de Campo USEB 6) 384 pp

Frost DR Rodrigues MT Grant T amp Titus TA (2001) Phylogenetics of the lizard genus Tropidurus (Squamata Tropiduridae Tropidurinae) Direct optimization descriptive efficiency and analysis of congruence between molecular data and morphology Molecular Plylogenetics and Evolution 21 352ndash371

Hatano FH Vrcibradic D Galdino CAB Cunha-Barros M et al (2001) Thermal ecology and activity patterns of the lizard community of the restinga of Jurubatiba Macaeacute RJ Revista Brasileira de Biologia 61 287ndash294

Herfindal I Linnell JDC Odden J Birkeland Nilsen E amp Andersen R (2005) Prey density environmental productivity and home-range size in the Eurasian lynx (Lynx lynx) Journal of Zoology 265 63ndash71

Huey RB amp Pianka ER (1977) Patterns of niche overlap among broadly sympatric versus narrowly sympatric Kalahari lizards (Scincidae Mabuya) Ecology 58 119ndash128

Huey RB amp Slatkin M (1976) Cost and benefits of lizard thermoregulation The Quarterly Review of Biology 51 363ndash384

Hutchinson GE (1957) Concluding remarks Cold Spring Harbour Symposium on Quantitative Biology 22 415ndash427

Janzen DH amp Schoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season Ecology 49 96ndash110

Jolicoeur P (1963) The multivariate generalization of the allometry equation Biometrics 19 497ndash499

Kolodiuk MF Ribeiro LB amp Freire EMX (2009) The effects of seasonality on the foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) living in sympatry in the caatinga of northeastern Brazil Revista Brasileira de Zoologia 26 581ndash585

Krol MS Jaegar A Bronstert A amp Krywkow J (2001) The semiarid integrated model (SDIM) a regional integrated model assessing water availability vulnerability of ecosystems and society in NE-Brazil Physics and Chemistry of the Earth 26 529ndash533

Losos JB (1990) Ecomorphology performance capability and scaling of west Indian Anolis lizards an evolutionary analysis Ecological Monographs 60 369ndash388

Losos JB (2008) Phylogenetic niche conservatism phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species Ecology Letters 11 995ndash1007

Magnusson WE amp Silva EV (1993) Relative effects of size season and species on the diets of some Amazonian Savanna lizards Journal of Herpetology 27 380ndash385

Magnusson WE Lima PA Silva WA amp Arauacutejo MC (2003) Use of geometric forms to estimate volume of invertebrates

in ecological studies of dietary overlap Copeia 2003 13ndash19Manzani PR amp Abe AS (1990) A new species of Tapinurus

from the Caatinga of Piauiacute Northeastern Brazil (Squamata Tropiduridae) Herpetologica 46 462ndash467

MrsquoCloskey RT amp Hecnar ESJ (1994) Interspecific spatial overlap Oikos 71 65ndash74

Meira KT Faria RG Silva MDM Miranda VT amp Zahn-Silva W (2007) Histoacuteria natural de Tropidurus oreadicus em uma aacuterea de cerrado rupestre do Brasil Central Biota Neotropica 7 155ndash163

Mesquita DO Costa GC amp Colli GR (2006) Ecology of an Amazonian savanna lizard assemblage in Monte Alegre Paraacute state Brazil South American Journal of Herpetology 1 61ndash71

Milstead WW (1965) Changes in competing populations of whiptail lizards (Cnemidophorus) in southwestern Texas The American Midland Naturalist 7375ndash80

Nimer E (1972) Climatologia da Regiatildeo Nordeste do Brasil In Introduccedilatildeo agrave Climatologia Dinacircmica Revista Brasileira de Geografia 34 3ndash51

Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia Ecology 50 1012ndash 1030

Pianka ER (1973) The structure of lizard communities Annual Review of Ecology and Systematics 4 53ndash74

Pianka ER amp Vitt LJ (2003) Lizards Windows to The Evolution of Diversity Berkeley University of California Press 333 pp

Prado D (2005) As Caatingas da Ameacuterica do Sul In Ecologia e Conservaccedilatildeo da Caatinga 3ndash73 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ramos L amp Denisson S (1997) Notas sobre os habitats e microhabitats de duas espeacutecies simpaacutetricas de lagartos do gecircnero Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 29ndash34

Reis AMS Arauacutejo EL Ferraz EMN amp Moura AN (2006) Inter-annual variations in the floristic and population structure of an herbaceous community of ldquocaatingardquo vegetation in Pernambuco Brazil Revista Brasileira de Botacircnica 29 497ndash508

Ribeiro LB amp Freire EMX (2009) Tropidurus semitaeniatus (NCN) Drinking behavior Herpetological Review 40 228ndash229

Ribeiro LB amp Freire EMX (2010) Thermal ecology and thermoregulatory behaviour of Tropidurus hispidus and T semitaeniatus in a caatinga area of northeastern Brazil Herpetological Journal 20 201ndash208

Ribeiro LB amp Freire EMX (2011) Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) in a caatinga area of northeastern Brazil Iheringia Seacuterie Zoologia 101 225ndash232

Ricklefs RE Cochran D amp Pianka ER (1981) A morphological analysis of the structure of communities of lizards in desert habitats Ecology 62 1474ndash1478

Rocha CFD amp Bergallo HG (1990) Thermal biology and flight distance of Tropidurus oreadicus (Sauria Iguanidae) in an area of Amazonian Brazil Ethology Ecology amp Evolution 2 263ndash268

Rocha CFD amp Bergallo HG (1992) Tropidurus torquatus (collared lizard) diet Herpetological Review 25 69

Rodrigues MT (1984) Uma nova espeacutecie brasileira de

FFA Gomes et a l

39

Tropidurus com crista dorsal (Sauria Iguanidae) Papeacuteis Avulsos de Zoologia 35 169ndash175

Rodrigues MT (1987) Sistemaacutetica ecologia e zoogeografia dos Tropidurus do grupo torquatus ao sul do Rio Amazonas (Sauridae Iguanidae) Arquivos de Zoologia 31 105ndash230

Rodrigues MT (2005) Herpetofauna da Caatinga In Ecologia e Conservaccedilatildeo da Caatinga 181ndash236 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ruiz-Esparza J Gouveia SF Rocha PA Ribeiro AS amp Ferrari SF (2011) Birds of the Grota do Angico Natural Monument in the semi-arid caatinga scrublands of northeastern Brazil Biota Neotropica 11 1ndash8

Santos GMM Delabie JHC amp Resende JJ (1999) Caracterizaccedilatildeo da mirmecofauna (Hymenoptera-Formicidae) associada agrave vegetaccedilatildeo perifeacuterica de inselbergs (caatinga-arboacuterea-estacional-semi-deciacutedua) em Itatim ndash Bahia ndash Brasil Sitientibus 20 33ndash43

Sampaio EVSB (1995) Overview of the Brazilian Caatinga In Seasonally Dry Forests 35ndash58 Bullock HA Mooney HA amp Medina E (eds) Reino Unido Cambridge University Press

Schoener TW (1975) Presence and absence of habitat shift in some widespread lizards species Ecological Monographs 45 233ndash258

Silva VN amp Arauacutejo AFB (2008) Ecologia dos Lagartos Brasileiros 1st ed Rio de Janeiro Technical Books 271p

Simpson EH (1949) Measurement of diversity Nature 163 688

Somers KM (1986) Multivariate allometry and removal of size with principal components analysis Systematic Zoology 35 359ndash368

Teixeira-Filho P Rocha CFD amp Ribas S (1996) Ecologia termal e uso do habitat por Tropidurus torquatus (Sauria Tropiduridae) em uma aacuterea de restinga do sudeste do Brasil In Herpetologia Neotropical 255ndash267 Peacutefaur JE (ed) Actas del II Congreso Latinoamericano de Herpetologia II Volumen Universidad de Los Andes Merida Venezuela Consejo de Publicaciones

Toft CA (1985) Resource partitioning in amphibians and reptilies Copeia 1 1ndash21

VanSluys M (1992) Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae) em uma aacuterea do sudeste do Brasil Revista Brasileira de Biologia 52 181ndash185

VanSluys M (1993) Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Journal of Herpetology 27 347ndash351

VanSluys M (1995) Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Ciecircncia e Cultura 47 61ndash65

VanSluys M Rocha CFD Vrcibradic D Galdino CAB amp Fontes AF (2004) Diet activity and microhabitat use of two syntopic Tropidurus species (Lacertilia Tropiduridae) in Minas Gerais Brazil Journal of Herpetology 38 606ndash611

Vitt LJ (1981) Lizard reproduction habitat specificity and constraints on relative clutch mass The American Naturalist 117 506ndash514

Vitt LJ (1991) An introduction to the ecology of cerrado lizards Journal of Herpetology 25 79ndash90

Vitt LJ (1993) Ecology of isolated open-formation Tropidurus (Reptilia Tropiduridae) in Amazonian lowland rain forest Canadian Journal of Zoology 71 2370ndash2390

Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil Occasional Papers of the Oklahoma Museum of Natural History 1 29ndash34

Vitt LJ Zani PA amp Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia Journal of Tropical Ecology 12 81ndash101

Vitt LJ Caldwell JP Zani PA amp Titus TA (1997) The role of habitat shift in the evolution of lizard morphology evidence from tropical Tropidurus Proceedings of the National Academy of Sciences 94 3828ndash3832

Vitt LJ amp Carvalho CM (1995) Niche partitioning in a tropical wet season lizards in the Lavrado area of Northern Brazil Copeia 2 305ndash329

Vitt LJ amp Pianka ER (1994) Introduction and Acknowledgments In Lizard Ecology Historical and Experimental Perspectives 9ndash12 Vitt LJ amp Pianka ER (eds) Princeton University Press 403 pp

Vitt LJ amp Zani PA (1998) Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14 63ndash86

Vrcibradic D amp Rocha CFD (1998) Ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil Journal of Herpetology 32 229ndash237

Webb CO Ackerly DD McPeek MA amp Donoghue MJ (2002) Phylogenies and community ecology Annual Review of Ecology and Systematics 33 475ndash505

Zug GR Vitt LJ amp Caldwell JP (2001) Herpetology An Introductory Biology of Amphibians and Reptiles 2nd ed San Diego Academic Press 630 pp

Accepted 8 July 2014

Interact ion of sympatr ic Tropidur idae

28

FFA Gomes et a l

MATERIALS AND METHODS

The Caatinga has an estimated area of 800000 km2 in northeastern Brazil extending from 2deg54rsquo to 17deg21rsquoS (Prado 2005) Shallow flagstones crystalline soils and irregular rainfall contribute to xeromorphic vegetation (Chiang amp Koutavas 2004 Krol et al 2001 Prado 2005) Annual precipitation ranges from 240ndash1500 mm (Sampaio 1995 Prado 2005) Despite high annual variation long periods of drought are common (Nimer 1972 Reis et al 2006) Populations of T hispidus and T semitaeniatus were studied in the State Conservation Unit of Monumento Natural Grota do Angico located in the semi-arid region of Sergipe state (Brazil 9deg41rsquoS and 38deg31rsquoW) between the municipalities of Poccedilo Redondo and Canindeacute de Satildeo Francisco (Fig 1) The Conservation Unit has an area of 2183 ha and its vegetation is typical of the Caatinga biome The average annual precipitation is 500 mm and the altitude ranges from 10 to 200 m (Ruiz-Esparza et al 2011)

Fig 1 Location of the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo - SE (Image Sidney Feitosa Gouveia)

The study was undertaken between December 2008 and November 2009 Data collections were made on three consecutive days in each month between 0600 and 1730 hours each day Three flat areas measuring 450times20 m (27 ha) were demarcated with a 50-m tape measure in the bedrocks of dry streams Active searches were employed to achieve systematic surveys Lizards were captured with nylon ties attached to fishing rods (25 m) Observations were undertaken over one day in each area For each captured lizard we recorded time of capture substrate when located (1) and after (2) the approach of the observer (rock tree rock crevice litter bromeliad lair excreta and cactus) activity when located (1) and after (2) the approach of the observer (motionless walking running agonism foraging interacted with lace) sun exposure (sun shadow or mosaic) perch height and weather conditions (sunny cloudy drizzle or rainy) We measured snoutndashvent length (SVL) tail length body length and width head length width and height and length of both limbs (right side of the body) using a digital caliper with an accuracy of

001 mm (Faria amp Arauacutejo 2004) Mass was also recorded using a Pesolareg balance (accuracy 05 g) Captured lizards were marked with Corrector water-based white colour to prevent recapture After measurements animals were released at the site of capture

Five specimens of each species per month were sacrificed using a lidocaine solution for diet analysis Specimens were fixed in 10 formalin and preserved in 70 ethanol and deposited in the Coleccedilatildeo Herpetoloacutegica da Universidade Federal de Sergipe (CHUFS) Ingested items were identified to the lowest possible taxonomic level Whole specimens were counted and their length and width was measured with a digital caliper (accuracy 001 mm) Prey volume was estimated using the formula for an ellipsoid (volume=(πlengthwidthsup2)6 Magnusson et al 2003) or through measurement in a water column using a graduated cylinder (plant material) Prey availability was estimated using monthly collections Fifteen pitfall traps (250 ml plastic pots) were placed in each area at a minimum distance of 5 m from each other for three consecutive days Each trap contained a solution of water salt and detergent for conserving invertebrates until they were transferred to 70 ethanol

The data were analysed using Systat v120 and BioEstat v50 for Windows A 5 significance level was applied Normality of the samples was tested using a ShapirondashWilkrsquos test in order to determine whether parametric or nonparametric analysis should be used Before analysis all morphometric variables were log10-transformed in order to convert the sample to a normal distribution and reduce scale effects For animals with broken or regenerated tails the original length was estimated using a regression model (SVLxtail length Faria amp Arauacutejo 2004) Body size was defined as an isometric variable following the protocol of Somers (1986) by which the scores of an isometric vector initially set at plt05 were obtained by multiplication of the matrix n x p of the log10-transformed data where n is the number of observations and p the isometric eigenvector (Jolicoeur 1963 Somers 1986) The residuals of the regressions of each log10-transformed variable with body size was used A principal component analysis (PCA) of size-adjusted morphological variables served to examine possible differences in morphology between species To test if the differences in form between the species were significant we undertook a multivariate analysis of variance (MANOVA) on the first five factors of the PCA The body size and mass of the two species were also compared by variance analysis (ANOVA)

The numerical and volumetric compositions of the prey categories consumed by the two species were compared using a KolmogorovndashSmirnov test on a monthly basis The widths of food niches (number and volume of prey) spatial niches (substrates and perch height) and temporal niches (time of activity period in which the animal remains exposed) were calculated using the inverse of Simpsonrsquos (1949) diversity index

B= 1

sumi = 1

n

p i2

29

Interact ion of sympatr ic Tropidur idae

where p is the proportion of resource category (trophic spatial or temporal) used and n is the number of resource categories adopted B ranges between 1 (exclusive use of a resource type) and 0 (homogeneous use of all types of resources) The estimated availability (total and monthly) of food resources was also measured using this method

The overlap between the food spatial and temporal niches were calculated using the formula for symmetrical overlap (Pianka 1973)

sum sum

sum

= =

==n

i

n

iikij

nikij

jk

pp

pp

1 1

22

where j and k represent different species Values close to zero indicate no similarity in resource use and values close to one indicate the similar use of such resources This index was also adopted to compare prey categories ingested with those available in the environments A canonical correlation between two set of variables (maximum length and maximum width of prey versus length width and height of the head) was used to investigate the relationship between the prey dimensions and head measurements

RESULTSIn total 1760 observations were made (422 for T hispidus and 1338 for T semitaeniatus) Morphometric and diet analyses were performed using a total of 102 specimens comprising 51 T hispidus (9 males 9 females and 33 young) and 51 T semitaeniatus (12 males 9 females and 30 young)

No significant differences were observed between both species with respect to substrate use (G=93421 gl=7 p=0229 nT hispidus=421 nT semitaeniatus=1333) In total 8313 and 9317 of T hispidus and T semitaeniatus were found on rocks (Fig 2A) and niche space width (B) was 142 and 115 respectively Overlap in use of microhabitats was high ( φjk=099) The average perch height was 6322plusmn6607 cm (n=300) for T hispidus and 5636plusmn5130 cm (n=912) for T semitaeniatus (including animals found on the ground Fig 2B) without significant differences (MannndashWhitney U=4250 p=05708 n=1212) Niche widths (B) of perch height were 289 for T hispidus and 273 for T semitaeniatus with a high overlap between species ( φjk=099)

Both T hispidus (7867) and T semitaeniatus (8303) preferred sunny days (Fig 2C) without differences between them (G=14534 gl=3 p=06931

Fig 2 Relative frequencies of (A) substrate use when located (B) perch height use (C) weather condition (D) sun exposure (E) activity levels across the day (F) behaviour when sighted (G) behaviour when escaping from the observer (H) substrate use after the approach of the observer of T hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo ndash SE

30

FFA Gomes et a l

Tabl

e 1

Des

crip

tive

data

for

mor

phol

ogic

al c

hara

cter

istics

of r

epro

ducti

ve in

divi

dual

s of

T h

ispi

dus

and

T s

emita

enia

tus

in t

he C

onse

rvati

on U

nit

of t

he S

tate

M

onum

ento

Nat

ural

Gro

ta d

o An

gico

Poccedil

o Re

dond

o - S

E L

inea

r mea

sure

men

ts a

re in

mill

imet

res

the

wei

ght i

s in

gra

ms

and

valu

es in

par

enth

eses

refe

r to

size-

adju

sted

var

iabl

es

Trop

idur

us se

mita

enia

tus

Trop

idur

us h

ispid

us

Varia

bles

Fem

ales

(n=9

)M

ales

(n=1

2)Fe

mal

es (n

=9)

Mal

es (n

=9)

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Body

size

352

plusmn05

32

68ndash4

25

648

plusmn13

43

48ndash8

33

105

0plusmn2

197

81ndash1

358

155

5plusmn6

342

09ndash2

399

Mas

s6

99plusmn1

00

585

ndash90

014

69plusmn

391

800

ndash20

2523

48plusmn

553

165

0ndash31

00

312

2plusmn14

17

142

5ndash52

00

(00

52plusmn0

110

)(-0

068

ndash02

42)

(-00

94plusmn0

268

)(-0

846

ndash01

60)

(00

75plusmn0

127

)(-0

085

ndash03

27)

(00

04plusmn0

061

)(-0

100

ndash00

81)

SVL

651

6plusmn3

6759

69-

719

979

68plusmn

456

731

7ndash87

32

840

5plusmn7

9074

16-

961

195

54plusmn

136

471

19ndash

114

08(0

047

plusmn00

20)

(00

17ndash0

073

)(0

073

plusmn00

14)

(00

49ndash0

095

)(0

017

plusmn00

15)

(-00

10ndash0

043

)(-0

028

plusmn00

65)

(-01

25ndash0

110

)Bo

dy w

idth

202

5plusmn1

5417

61ndash

223

723

08plusmn

414

152

3ndash29

83

250

0plusmn2

0619

74-

282

124

82plusmn

404

164

2ndash31

06

(00

97plusmn0

030

)(0

043

ndash01

33)

(00

86plusmn0

061

)(-0

062

ndash01

76)

(00

46plusmn0

039

)(-0

015

ndash01

01)

(-00

62plusmn0

056

)(-0

148

ndash00

32)

Body

hei

ght

745

plusmn11

15

36ndash9

10

848

plusmn10

96

64ndash9

93

140

7plusmn1

4611

22ndash

163

915

64plusmn

439

439

ndash22

09(0

015

plusmn00

60)

(-01

00ndash0

097

)(-0

021

plusmn00

54)

(-01

67ndash0

048

)(0

077

plusmn00

55)

(-00

07ndash0

162

)(-0

055

plusmn01

01)

(-02

26ndash0

073

)He

ad w

idth

120

3plusmn0

7311

04ndash

135

015

61plusmn

172

112

5ndash18

00

171

9plusmn1

7115

21ndash

197

419

93plusmn

395

116

2ndash23

99

(00

11plusmn0

020

)(-0

017

ndash00

49)

(00

57plusmn0

037

)(-0

020

ndash01

02)

(00

16plusmn0

020

)(-0

018

ndash00

49)

(-00

32plusmn0

047

)(-0

109

ndash00

45)

Head

leng

th17

16plusmn

164

125

7ndash18

84

214

4plusmn1

8117

24ndash

248

023

64plusmn

239

208

5ndash26

86

326

1plusmn18

45

168

1ndash91

82

(00

08plusmn0

044

)(-0

112

ndash00

43)

(00

44plusmn0

019

)(0

014

ndash00

79)

(00

02plusmn0

013

)(-0

017

ndash00

33)

(-00

01plusmn0

177

)(-0

153

ndash05

62)

Head

hei

ght

580

plusmn03

74

97ndash6

37

717

plusmn07

65

44ndash8

40

103

1plusmn1

009

23ndash1

240

120

2plusmn3

304

18ndash1

777

(-00

26plusmn0

022

)(-0

067

ndash00

02)

(-00

10plusmn0

029

)(-0

069

ndash00

30)

(00

42plusmn0

025

)(0

002

ndash00

76)

(-00

42plusmn0

061

)(-0

127

ndash00

84)

Tail

leng

th98

60

plusmn67

589

72ndash

116

8713

155

plusmn12

5110

487

ndash149

18

122

44plusmn1

716

887

2ndash14

131

144

13plusmn1

902

111

62ndash1

713

6(-0

004

plusmn00

28)

(-00

36ndash0

070

)(0

078

plusmn00

42)

(-00

10ndash0

148

)(-0

111

plusmn00

56)

(-01

11ndash0

056

)(-0

014

plusmn00

55)

(-00

82ndash0

080

)Fo

rele

g le

ngth

326

6plusmn1

6429

99ndash

350

039

83plusmn

303

932

55ndash

444

340

41plusmn

256

361

3ndash43

83

460

5plusmn7

6233

27ndash

564

0(0

044

plusmn00

18)

(00

06ndash0

063

)(0

073

plusmn00

19)

(00

40ndash0

106

)(0

009

plusmn00

23)

(-00

42ndash0

042

)(-0

029

plusmn00

53)

(-01

14ndash0

074

)Hi

nd li

mb

leng

th45

25plusmn

262

402

1ndash48

89

570

5plusmn3

8249

61ndash

629

457

64plusmn

365

505

0ndash62

82

681

5plusmn9

7950

56ndash

807

2(0

022

plusmn00

20)

(-00

12ndash0

043

)(0

066

plusmn00

11)

(00

50ndash0

085

)(0

001

plusmn00

23)

(-00

42ndash0

034

)(-0

018

plusmn00

51)

(-00

97ndash0

090

)

31

Interact ion of sympatr ic Tropidur idae

nT hispidus=422 and nT semitaeniatus=1338) Tropidurus hispidus was most often observed in shaded (3871) and mosaic sites (3776) whereas T semitaeniatus was most often found at sites exposed to the sun (3638) followed by mosaic sites (3443) (Fig 2D) The difference between species was significant (T=8597 df=364 plt0001 nT

hispidus=421 and nT semitaeniatus =1333)Tropidurus hispidus and T semitaeniatus showed the same temporal activity patterns (G=82992 gl=11 p=06863 nT hispidus=422 and nT semitaeniatus=1356) Both species were bi-modally active Tropidurus hispidus activity was highest between 0800 and 1100 hours declining at midday and rising again between 1400 and 1600 (Fig 2E) For T semitaeniatus the highest peaks occurred between 0700 and 1000 and between 1400 and 1700 (Fig 2E) The niche widths for activity times were 1078 and 1041 for T hispidus and T semitaeniatus respectively with a high overlap of these schedules ( φ

jk=092) The two species were indiscernible with regard to activity when sighted (G=04808 gl=4 p=09753 nT hispidus=461 and nT semitaeniatus=1338) A standing position dominated for both T hispidus (8178) and T semitaeniatus (8079) (Fig 2F) Running for shelter was the main activity after having been encountered for both species (Tropidurus hispidus 6580 T semitaeniatus 7427) (Fig 2G) without statistical differences (G=72499 gl=6 p=02984 nT hispidus=421 and nT semitaeniatus=1337) Similar shelters were chosen by the two species (G=133158 gl=7 p=00648 nT hispidus=421 and nT semitaeniatus=1331) Rocks were used most frequently (T hispidus 6674 and T semitaeniatus 8136) followed by crevices (T hispidus 1069 and T semitaeniatus 1254) (Fig 2H) Niche width for shelters use was 211 and 147 for T hispidus and T semitaeniatus respectively with a high overlap ( φ jk = 099) Adult T hispidus were larger than T semitaeniatus (ANOVA F136=42119 plt0001 n=382 Table 1) Average SVL of T hispidus was 9268plusmn1358 mm for adults and 6391plusmn1413 mm for juveniles average SVL of T semitaeniatus adults and young was 7366plusmn904 mm and 5555plusmn1303 mm respectively The size-adjusted masses (adults) were similar between the species (ANOVA F128=1283 p=0267 n=30 Table 1) Adults and young of T hispidus had masses of 3208plusmn1151 g and 1095plusmn646 g T semitaeniatus weighed 1219plusmn506 g and 507plusmn381 g respectively (Tables 1 and 2)

Trop

idur

us se

mita

enia

tus

Trop

idur

us h

ispid

us

Varia

bles

Fem

ales

(n=1

3)M

ales

(n=1

7)Fe

mal

es (n

=15)

Mal

es (n

=18)

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Body

size

100

plusmn04

90

25ndash2

01

295

plusmn16

00

75ndash6

17

388

plusmn17

81

37ndash6

84

395

plusmn17

11

15ndash6

44

Mas

s1

96plusmn0

88

075

ndash35

05

62plusmn3

84

110

ndash13

007

77plusmn3

78

200

ndash15

258

07plusmn3

38

250

ndash12

50(-0

009

plusmn00

63)

(-01

40ndash0

072

)(-0

015

plusmn00

74)

(-01

59ndash0

112

)(-0

029

plusmn01

11)

(-02

64ndash0

068

)(0

035

plusmn00

40)

(-00

24ndash0

104

)SV

L44

22plusmn

782

269

6ndash56

84

596

5plusmn10

67

416

7ndash72

76

574

2plusmn10

99

399

1ndash72

71

579

1plusmn8

7238

82ndash

693

6(-0

094

plusmn00

72)

(-02

76ndash-

000

8)(0

010

plusmn00

54)

(-00

98ndash0

075

)(-0

025

plusmn00

61)

(-01

67ndash0

031

)(-0

020

plusmn00

40)

(-01

35ndash0

022

)Bo

dy w

idth

117

2plusmn2

216

93ndash1

468

164

5plusmn3

7610

87ndash

226

615

38plusmn

330

112

6ndash21

02

154

4plusmn3

044

105

0ndash19

44

(-01

05plusmn0

086

)(-0

306

ndash-0

006)

(00

05plusmn0

073

)(-0

122

ndash00

92)

(-00

41plusmn0

060

)(-0

120

ndash00

45)

(-00

40plusmn0

058

)(-0

143

ndash00

35)

Body

hei

ght

465

plusmn11

53

37ndash7

69

626

plusmn14

803

51ndash8

73

889

plusmn21

65

38ndash1

230

897

plusmn23

25

57ndash1

219

(-01

13plusmn0

089

)(-0

256

ndash00

78)

(-00

53plusmn0

079

)(-0

224

ndash00

46)

(00

71plusmn0

068

)(-0

058

ndash01

43)

(00

72plusmn0

074

)(-0

036

ndash01

73)

Head

wid

th9

07plusmn1

80

606

ndash11

9411

91plusmn

243

762

ndash15

7212

05plusmn

171

933

ndash14

5012

28plusmn

180

920

ndash15

14(-0

082

plusmn00

74)

(-02

21ndash0

019

)(0

007

plusmn00

62)

(-01

34ndash0

075

)(-0

002

plusmn00

31)

(-00

57ndash0

053

)(0

004

plusmn00

34)

(-00

59ndash0

070

)He

ad le

ngth

129

6plusmn1

899

33ndash1

555

159

4plusmn3

129

45ndash2

022

175

7plusmn2

6013

14ndash

222

317

63plusmn

246

125

5ndash21

52

(-00

70plusmn0

057

)(-0

185

ndash00

10)

(-00

18plusmn0

075

)(-0

248

ndash00

47)

(00

10plusmn0

031

)(-0

062

ndash00

58)

(00

10plusmn0

033

)(-0

075

ndash00

53)

Head

hei

ght

402

plusmn05

52

99ndash4

97

562

plusmn09

83

99ndash7

20

744

plusmn10

95

71ndash8

73

773

plusmn12

25

69ndash9

55

(-01

20plusmn0

054

)(-0

224

ndash-0

049)

(-00

27plusmn0

044

)(-0

112

ndash00

30)

(00

72plusmn0

030

)(0

028

ndash01

32)

(00

86plusmn0

035

)(0

027

ndash01

61)

Tail

leng

th81

15plusmn

163

853

34ndash

102

4510

703

plusmn20

9876

87ndash

150

9097

02plusmn

118

475

06ndash

112

8797

32plusmn

119

269

96ndash

119

44(-0

072

plusmn00

89)

(-02

31ndash0

046

)(0

033

plusmn00

65)

(-00

73ndash0

144

)(-0

019

plusmn00

43)

(-00

91ndash0

056

)(-0

018

plusmn00

46)

(-01

18ndash0

058

)Fo

rele

g le

ngth

232

4plusmn4

2413

97ndash

293

730

57plusmn

572

194

6ndash37

79

294

0plusmn4

7721

03ndash

358

728

47plusmn

414

197

2ndash35

55

(-00

81plusmn0

077

)(-0

270

ndash00

13)

(00

15plusmn0

063

)(-0

135

ndash01

02)

(-00

17plusmn0

047

)(-0

112

ndash00

41)

(-00

31plusmn0

040

)(-0

136

ndash00

26)

Hind

lim

b le

ngth

343

7plusmn5

5522

80ndash

434

444

36plusmn

755

311

5ndash53

59

434

5plusmn5

9532

67ndash

503

843

08plusmn

635

310

8ndash52

01

(-00

75plusmn0

064

)(-0

224

ndash-0

008)

(00

12plusmn0

055

)(-0

097

ndash00

77)

(-00

11plusmn0

039

)(-0

087

ndash00

24)

(-00

16plusmn0

043

)(-0

105

ndash00

40)

Tabl

e 2

Des

crip

tive

data

for m

orph

olog

ical

cha

ract

eristi

cs o

f non

-rep

rodu

ctive

indi

vidu

als

of T

hisp

idus

and

T s

emita

enia

tus

in th

e Co

nser

vatio

n U

nit o

f the

Sta

te

Mon

umen

to N

atur

al G

rota

do

Angi

co P

occedilo

Redo

ndo

- SE

Lin

ear m

easu

rem

ents

are

in m

illim

etre

s th

e w

eigh

t is

in g

ram

s an

d va

lues

in p

aren

thes

es re

fer

to s

ize-

adju

sted

var

iabl

es

32

FFA Gomes et a l

Both T hispidus (7867) and T semitaeniatus (8303) preferred sunny days (Fig 2C) without differences between them (G=14534 gl=3 p=06931 nT hispidus=422 and nT semitaeniatus=1338) Tropidurus hispidus was most often observed in shaded (3871) and mosaic sites (3776) whereas T semitaeniatus was most often found at sites exposed to the sun (3638) followed by mosaic sites (3443) (Fig 2D) The difference between species was significant (T=8597 df=364 plt0001 nT

hispidus=421 and nT semitaeniatus =1333)

Tropidurus hispidus and T semitaeniatus showed the same temporal activity patterns (G=82992 gl=11 p=06863 nT hispidus=422 and nT semitaeniatus=1356) Both species were bi-modally active Tropidurus hispidus activity was highest between 0800 and 1100 hours declining at midday and rising again between 1400 and 1600 (Fig 2E) For T semitaeniatus the highest peaks occurred between 0700 and 1000 and between 1400 and 1700 (Fig 2E) The niche widths for activity times were 1078 and 1041 for T hispidus and T semitaeniatus

Taxon Availability Tropidurus semitaeniatus (n=60) Tropidurus hispidus (n=60)

n n F F n n V (mm3) V F F n n V (mm3) V

Acarina 268 074 2 333 2 014 039 000 4 667 14 049 71176 231

Araneae 523 145 20 3333 35 236 27219 227 16 2667 26 090 69893 226

Blattaria 272 076 1 007 5 833 5 017 9811 032

Chilopoda 8 002 1 167 1 007 122 010 1 167 1 003 57009 185

Coleoptera 3497 971 19 3167 32 216 13121 109 36 6000 98 341 148896 482

Dermaptera 3 001

Diplopoda 92 026 1 167 1 003 2925 009

Diplura 1 000

Diptera 5386 1495 15 2500 33 223 24458 204 10 1667 12 042 10033 033

Embioptera 1 000

Ephemeoptera 6 002

Gastropoda 24 007 2 333 4 027 3754 031 1 167 1 003 347 001

Hemiptera 20 006 2 333 2 007 30919 100

Homoptera 56 016 2 333 5 034 1739 014 3 500 10 035 2731 009

Hymenoptera 24908 6916 54 9000 989 6682 277634 2313 56 9333 2088 7265 867513 2811

Isopoda 9 002 1 167 1 003 2028 007

Isoptera 72 020 7 1167 39 264 4505 038 8 1333 412 1434 114157 370

Insect larvae 118 033 30 5000 309 2088 767065 6390 30 5000 175 609 1342030 4348

Lepidoptera 693 192 15 2500 21 142 32576 271 15 2500 22 077 39560 128

Mantodea 1 lt001

Organic material 5 833 055 00046 17 2833 1730 560

Mecoptera 1 lt001

Neuroptera 6 002

Odonata 3 001

Opilionidae 13 004

Orthoptera 4 667 4 027 45371 378 4 667 4 014 144351 468

Protura 2 001 000

Pseudoscorpionida 14 004 2 333 4 027 461 004 1 167 2 007 187 001

Pscoptera 1 lt001 000

Scorpionida 12 003 1 167 1 007 1299 011

Siphonoptera 1 lt001

Strepsitera 1 lt001

Thrichoptera 1 lt001

Thysanura 2 001

TOTAL 36015 100 1480 100 1200516 100 2874 100 3086566 100

B 202 296 206 226

Table 3 Summary of prey availability and diets of Tropidurus hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo - SE n ndash number of prey n ndash percentage of prey F ndash frequency of prey V ndash volume V ndash percentage of volume

33

Interact ion of sympatr ic Tropidur idae

respectively with a high overlap of these schedules ( φ

jk=092) The two species were indiscernible with regard to

activity when sighted (G=04808 gl=4 p=09753 nT

hispidus=461 and nT semitaeniatus=1338) A standing position dominated for both T hispidus (8178) and T semitaeniatus (8079) (Fig 2F) Running for shelter was the main activity after having been encountered for both species (Tropidurus hispidus 6580 T semitaeniatus 7427) (Fig 2G) without statistical differences (G=72499 gl=6 p=02984 nT hispidus=421 and nT

semitaeniatus=1337) Similar shelters were chosen by the two species (G=133158 gl=7 p=00648 nT hispidus=421 and nT semitaeniatus=1331) Rocks were used most frequently (T hispidus 6674 and T semitaeniatus 8136) followed by crevices (T hispidus 1069 and T semitaeniatus 1254) (Fig 2H) Niche width for shelters use was 211 and 147 for T hispidus and T semitaeniatus respectively with a high overlap ( φjk = 099)

Adult T hispidus were larger than T semitaeniatus (ANOVA F136=42119 plt0001 n=382 Table 1) Average SVL of T hispidus was 9268plusmn1358 mm for adults and 6391plusmn1413 mm for juveniles average SVL of T semitaeniatus adults and young was 7366plusmn904 mm and 5555plusmn1303 mm respectively The size-adjusted masses (adults) were similar between the species (ANOVA F128=1283 p=0267 n=30 Table 1) Adults and young of T hispidus had masses of 3208plusmn1151 g and 1095plusmn646 g T semitaeniatus weighed 1219plusmn506 g and 507plusmn381 g respectively (Tables 1 and 2)

The first and second principal components of a PCA together explained 70 of the variation in morphology of the two species The first principal component was related to SVL anterior and posterior limb length and head width The two species did not significantly differ in shape (MANOVA Wilkrsquos Lambda=0893 p=0566) although T hispidus is slightly larger than T semitaeniatus with a larger and higher head longer limbs and a higher body

A total of 60 stomachs were analysed for T semitaeniatus and T hispidus each Eighteen prey categories were used by T hispidus and 15 were used by T semitaeniatus The most frequent prey categories for T hispidus were Hymenoptera Coleoptera insect larvae Araneae and Lepidoptera The corresponding groups for T semitaeniatus were Hymenoptera insect larvae Araneae Coleoptera Diptera and Lepidoptera The most abundant prey types were Hymenoptera and Isoptera for T hispidus and Hymenoptera and insect larvae for T semitaeniatus Highest prey volumes were represented by insect larvae and Hymenoptera for T hispidus and insect larvae and Hymenoptera for T semitaeniatus (Table 3) Formicidae represented 9995 of the Hymenoptera ingested by the two species (Table 3) Both species also consumed plant material (28 of T hispidus individuals representing 60 of the volume of food consumed and 833 of T semitaeniatus representing 00046 of food volume

The trophic niche widths estimated for T hispidus and T semitaeniatus were 206 and 202 for prey number and 226 and 296 for prey volume respectively Overlap

was higher with regards to prey number ( φjk=096 prey volume φ jk=097) but prey number and prey volume were significantly different from each other (prey number KolmogorovndashSmirnov Dmax=01584 plt001 prey volume KolmogorovndashSmirnov Dmax=01816 plt001 Table 3) A total of 36015 invertebrates distributed into 33 categories were used to estimate prey availability in the environment The distribution of available prey differed from the consumed prey for both species (T hispidus Dmax=02267 plt001 T semitaeniatus Dmax=02294 plt001)

The mean number of prey categories consumed for each species was seven (T semitaeniatus 5ndash11 T hispidus 4ndash11) Five categories comprised more than 10 in at least one monthly sample for T hispidus (Hymenoptera insect larvae Isoptera Coleoptera and Lepidoptera) and four of these also comprised more than 10 in at least one monthly sample for T semitaeniatus (all except Lepidoptera) The largest niche widths (B) were observed in February (254) June (248) April (245) and May (204) for T hispidus and in July (310) February (289) June (284) and May (221) for T semitaeniatus Diet overlap was high (Oslashgt050) in all months except April (011) and December (020) However significant differences between the diets were found in December February April May and August (Table 4)

The proportion of items most used in the diets was similar to available prey in January April September and October for T hispidus and in December January September and October for T semitaeniatus (Table 4) The prey availability occurred between December 2008 and March 2009 and between October and November 2009 (Table 4) The numbers of available prey categories ranged from eight (August) to 19 (February) The highest diversity of available prey was observed in May (378) (Table 4)

Focusing on the two most common food items Hymenoptera were most abundantly available in December 2008 and January 2009 and between September and November 2009 (Table 4) Tropidurus semitaeniatus largely consumed Hymenoptera (over 50 of diet) in the months of December 2008 January March and July to November 2009 whereas insect larvae were more consumed in February April May and June For T hispidus Hymenoptera comprised gt50 of the diet in all month except December and February (Table 4) Insect larvae never exceeded 50 of the number of prey consumed

A strong relationship was seen when comparing the morphology of the head of each species Tropidurus with the dimensions of prey actually consumed by them (Table 5) The first canonical variable for T semitaeniatus showed an inverse relationship in which animals with narrower heads were related to larger prey (Table 5) Already T hispidus for the first canonical variable was significantly positive for the relation between animals with large heads and longer prey (Table 5)

34

FFA Gomes et a l

Dece

mbe

rJa

nuar

yFe

brua

ryM

arch

April

May

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

(126

)(4

51)

(407

2)(9

0)(5

05)

(141

85)

(73)

(83)

(430

8)(1

07)

(151

)(3

895)

(178

)(4

5)(7

99)

(108

)(2

67)

(826

)Ac

arin

a1

650

590

570

070

030

750

36Ar

anea

e1

590

440

612

250

200

731

371

201

183

740

631

826

133

700

75Bl

attar

ia0

440

101

120

200

480

260

100

380

370

12Ch

ilopo

da0

220

010

030

48Co

leop

tera

317

044

447

562

079

851

274

361

474

093

125

137

62

2524

44

160

20

934

8718

52

Derm

apte

ra0

08Di

plop

oda

009

138

037

763

Dipl

ura

002

Dipt

era

142

91

922

250

592

874

8247

47

187

188

447

215

77

377

7Em

biop

tera

013

Ephe

meo

pter

a0

75Ga

stro

poda

100

109

Hem

ipte

ra0

010

020

030

371

21Ho

mop

tera

007

001

063

093

037

073

Hym

enop

tera

793

716

41

908

480

90

906

986

75

397

346

99

389

784

11

800

028

11

337

577

852

44

314

865

17

284

5Is

opod

a0

22Is

opte

ra0

7981

82

002

112

634

424

70

911

870

562

220

631

120

61In

sect

larv

a0

790

223

370

016

8540

96

042

093

938

036

932

64

443

7559

26

250

91

94Le

pido

pter

a2

250

592

742

415

646

546

2510

94

056

111

10

501

851

120

85M

anto

dea

002

Mec

opte

ra0

02N

euro

pter

aO

dona

ta0

05O

pilio

nida

e0

03O

rtho

pter

a1

121

850

37Pr

otur

a0

010

02Ps

eudo

scor

pion

ida

002

411

025

024

Pscoacute

pter

a0

02Sc

orpi

onid

a0

050

020

050

13Si

phon

opte

ra0

02St

reps

itera

002

Thric

hopt

era

002

Thys

anur

a0

01 B

153

143

121

151

121

131

289

254

261

140

153

322

115

245

302

221

204

378

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

099

010

gt00

51

000

08gt0

05

044

050

lt00

10

540

54lt0

01

010

089

lt00

10

300

63lt0

01

Th x

Disp

020

082

lt00

10

990

11gt0

05

054

044

lt00

10

540

57lt0

01

094

018

gt00

50

550

61lt0

01

Ts x

Th

020

080

lt00

10

990

09gt0

05

059

030

lt00

10

990

08gt0

05

011

078

lt00

10

750

36lt0

01

Tabl

e 4

Mon

thly

dist

ributi

on o

f foo

d av

aila

bilty

(D) a

nd o

f the

sto

mac

h co

nten

ts o

f T h

ispi

dus

(Th)

and

T s

emita

enia

tus

(Ts)

in t

he C

onse

rvati

on U

nit

of t

he S

tate

M

onum

ento

Nat

ural

Gro

ta d

o An

gico

Poccedil

o Re

dond

o - S

E (B

razil

) Th

e va

lues

in p

aren

thes

es re

fer t

o th

e nu

mbe

r of i

nver

tebr

ates

per

sam

ple

35

Interact ion of sympatr ic Tropidur idae

Tabl

e 4

(Con

tinue

d)

June

July

Augu

stSe

ptem

ber

Oct

ober

Nov

embe

rTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

D

(95)

(120

)(9

33)

(59)

(156

)(8

99)

(46)

(63)

(219

)(1

50)

(170

)(1

023)

(240

)(5

64)

(242

4)(2

09)

(294

)(2

432)

Acar

ina

169

011

317

042

160

223

214

Aran

eae

421

244

493

678

445

100

52

671

762

251

251

241

533

350

342

26Bl

attar

ia0

430

640

220

490

176

83Ch

ilopo

da0

111

690

11Co

leop

tera

421

732

202

63

396

4126

59

476

168

93

3312

35

181

80

421

425

901

444

0812

05

Derm

apte

raDi

plop

oda

150

Dipl

ura

Dipt

era

316

081

390

13

3913

90

435

913

067

059

225

042

239

096

354

Embi

opte

raEp

hem

eopt

era

Gast

ropo

da5

081

370

590

200

040

480

04He

mip

tera

081

032

011

046

008

Hom

opte

ra0

810

963

390

641

454

353

171

832

350

290

620

08Hy

men

opte

ra42

11

561

029

26

525

485

26

525

065

22

746

058

45

906

779

41

742

996

67

937

986

10

904

394

90

722

0Is

opod

a1

59Is

opte

ra1

6911

11

133

059

058

008

Inse

ct la

rva

410

528

46

236

186

47

050

2223

91

159

067

176

039

071

017

335

068

029

Lepi

dopt

era

316

244

021

169

033

217

183

059

039

083

071

Man

tode

aM

ecop

tera

Neu

ropt

era

064

Odo

nata

004

Opi

lioni

dae

039

012

021

Ort

hopt

era

105

081

059

018

Prot

ura

Pseu

dosc

orpi

onid

a1

050

350

080

21Ps

coacutept

era

Scor

pion

ida

067

029

004

Siph

onop

tera

Stre

psite

raTh

richo

pter

aTh

ysan

ura

B2

842

483

543

101

362

722

051

742

571

211

541

711

071

131

341

221

111

84

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

049

056

lt00

10

850

28lt0

01

089

001

lt00

10

980

17gt0

05

100

010

gt00

50

980

21lt0

05

Th x

Disp

056

056

lt00

10

560

39lt0

01

094

030

lt00

11

000

08gt0

05

100

009

gt00

50

990

23lt0

05

Ts x

Th

095

015

gt00

50

950

18gt0

05

093

025

lt00

10

990

11gt0

05

100

002

gt00

51

000

03gt0

05

36

DIsCUssION The presence of a species in an environment may be related to specific physiological needs improved access to food availability of resources presence of refuges morphological adaptations inter and intraspecific interactions as well as historical factors (Pianka 1973 Herfindal et al 2005 Borger et al 2006 Silva amp Arauacutejo 2008) The habitat and microhabitat chosen by a species should meet their essential needs to allow viable populations (Silva amp Arauacutejo 2008) In the study area T hispidus and T semitaeniatus largely were active on rocky substrates Such sites are able to maximise the uptake of heat necessary for thermoregulation both through direct exposure and contact with heated surfaces (Rocha amp Bergallo 1990 VanSluys 1992 Meira et al 2007)

Tropidurus semitaeniatus is considered to be a saxicolous species endemic of Caatinga environments whereas T hispidus occupies a generalist habitat in open formations of various biomes (Rodrigues 1987) Despite this variation in the use of microhabitats T hispidus tends towards a saxicolous habit in places where rocks are abundant Vitt et al (1997) found that where T hispidus use rocks individuals displayed greater dorso-ventral flattening than when in habitat areas without rocks This suggests that the flattening in these individuals could be adaptive to the use of cracks in rock outcrops In the present study no differences were established in body shape between the species

The preference of these species for rocks has been recorded in other localities and environments Tropidurus hispidus uses rocks in Caatinga environments (Vitt 1981 Dias amp Lira-da-Silva 1998 Kolodiuk et al 2009) in the Amazonian rainforest (Vitt amp Carvalho 1995 Vitt et al 1996 Vitt amp Zani 1998) Amazonian savannahs (Mesquita et al 2006) and fields in Minas Gerais (VanSluys et al 2004) T semitaeniatus uses rocky substrates in the Caatinga biome (Vitt 1981 Kolodiuk et al 2009 Ribeiro amp Freire 2010) and in Agreste Sergipe (Fernandes amp Oliveira 1997 Ramos amp Denisson 1997) The use of rocks is common to others species of the semitaeniatus group (T helenae and T pinima Rodrigues 1984 Manzani amp Abe 1990 Rodrigues 2005) as well as for several

Table 5 Canonical correlation between the measurements of the head and the size of prey of T hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo ndash SE (Brazil)

species of the torquatus group (T montanus T itambere and T oreadicus Rodrigues 1987 Faria amp Araujo 2004 VanSluys et al 2004 Meira et al 2007) Both species adopted vertical positions which were in most cases lt40 cm above ground (5064 and 5178 of observations for T hispidus and T semitaeniatus respectively) Teixeira-Filho et al (1996) suggest that layers close to the ground are heated up more quickly with advantages for thermoregulation and a consequently lower risk of predation and more time for other activities such as foraging

Tropidurus individuals were active throughout the data collection period Both species are sit-and-wait predators implying a shorter time searching for prey and more energy invested in prey capture than is the case for more active foragers (Dias amp Lira-da-Silva 1998 Pianka amp Vitt 2003) Similar findings were already obtained for T hispidus (Vitt 1995 Vitt amp Zani 1998 VanSluys et al 2004) T semitaeniatus (Vitt 1995) T torquatus (Bergallo amp Rocha 1993 Teixeira-Filho et al 1996 Hatano et al 2001) T itambere (VanSluys 1992 Faria amp Araujo 2004) T montanus (VanSluys et al 2004) and T oreadicus (Faria amp Araujo 2004 Meira et al 2007) The observed bimodal patterns of activity have previously been found by VanSluys (1992) for T itambere and by Vrcibradic amp Rocha (1998) for Mabuya frenata during the wet season at high temperatures The Caatinga biome is characterised by particularly hot temperatures (Prado 2005) explaining the observed bimodal pattern for the present study species

According to Huey amp Slatkin (1976) thermoregulation in diurnal lizards involves a set of behavioural activities and options for microhabitat use Displacement between environments with a differential exposure to sun will help to achieve the optimum temperature sought (Rocha amp Bergallo 1990 Vitt amp Carvalho 1995 Hatano et al 2001) We observed a preference for sunny days and exposure to sun was distributed between categories (sun mosaic shadow) for both species with T semitaeniatus having a preference for sun and T hispidus having a preference for shadow The difference in exposure adopted by each species may reflect their physiological needs Vitt (1995) and Ribeiro amp Freire (2010) verified that T semitaeniatus

FFA Gomes et a l

Tropidurus semitaeniatus Tropidurus hispidus

Canonical coefficients Canonical coefficients

Head 1st Canonical Variable 2nd Canonical Variable 1st Canonical Variable 2nd Canonical Variable

Length 165 645 025 123

Height -217 -686 136 028

Width 151 032 -064 -160

Prey

Greater Length 038 139 129 -164

Greater Width 068 -127 -035 206

Canonical Correlation c2 p Canonical Correlation c2 p

I 095 13634 lt00001 053 14437 00251

II 055 1883 lt00001 014 0865 06488

37

presents a mean body temperature that is higher than T hispidus In the study area of the present work T hispidus may prefer shady places to avoid negative effects of high temperatures (Teixeira-Filho et al 1996)

Ecological historical and behavioural factors must be considered when evaluating the reasons why certain species consume particular types of prey (Vitt amp Zani 1998 Pianka amp Vitt 2003) and morphological limitations may further interfere with the type of food consumed (Toft 1985 Magnusson amp Silva 1993) An opportunistic pattern in food use was observed for both species in this study given the strong correlation between use and availability The use of ants is widely observed in the diet of the genus Tropidurus and has been reported for several species (T hispidus Dias amp Lira-da-Silva 1998 T torquatus group Arauacutejo 1987 T itambere VanSluys 1995 T oreadicus and T spinulosos Colli et al 1992 T torquatus Bergallo amp Rocha 1994 T hispidus T oreadicus T semitaeniatus Vitt 1993 T semitaeniatus and T hispidus Ribeiro amp Freire 2011) Ants are abundant in the Caatinga (Santos et al 1999) Insect larvae were mainly used in the rainy season probably due to their higher availability during this period

For lizards prey composition is largely related to the type of foraging used and the habitat they occupy (Vitt 1991 Toft 1985) Diet overlap is common among sympatric species that hunt by stalking since they have a preference for active prey (Zug et al 2001 Silva amp Arauacutejo 2008) In periods of higher rainfall both species became more selective since the number of invertebrates in the environment was larger Tropidurus semitaeniatus changed their diet towards insect larvae which were not the most abundant prey category T hispidus continued to consume Hymenoptera as the main item in their diet Considering the reduction in availability of Hymenoptera during the rainy season it is likely that individuals of Tropidurus species broaden the diversity of food items to meet their daily nutritional needs The seasonal change in food habits of T semitaeniatus during the rainy season might be due to avoidance of competition during this period Head morphology is reflected in the consumption of prey of different dimensions it is expected that animals with larger heads consume larger prey (Pianka 1969) However this pattern was not observed for the target species of this study Since T semitaeniatus that has a smaller width head was observed consuming relatively larger prey whereas T hispidus with larger heads prefers more elongated prey Food availability in the environment probably best explains the observed pattern Besides invertebrates large quantities of plant material (flowers leaves and seeds) were found in stomachs and T hispidus consumed more plants than T semitaeniatus Ingestion of plant material in Tropidurus and other lizards is relatively common to provide energy as well as possibly water (Rocha amp Bergallo 1992 VanSluys 1993 Dias amp Lira-da-Silva 1998) In our study area the coexistence of T hispidus and T semitaeniatus on rocky outcrops is probably facilitated by small variations in spatial arrangement the morphology of the trophic apparatus and temporary niche shifts in their diets depending on rather unpredictable rainfall patterns

ACKNOWLEDGEMENTs

We thank Mr Manuel Messias and his entire family for their support in the collection area We are grateful to CAPES for providing the research grant and SISBIO for licensing the collection the Secretaria do Meio-Ambiente e Recursos Hiacutedricos de Sergipe (SEMARH SE) for support with transport to the area and other aid at UC and the Nuacutecleo de Pesquisa em Ecologia e Conservaccedilatildeo (NPEC) and the Universidade Federal de Sergipe (UFS) for logistical support The data collection was authorised by license number 19237-1 issued by SISBIO (System of Authorization and Information on Biodiversity)

REFERENCEs

Arauacutejo AFB (1987) Comportamento alimentar dos lagartos o caso dos Tropidurus da Serra dos Carajaacutes Paraacute (Sauria Iguanidae) In Anais de Etologia 203ndash234 Encontro Anual de Etologia (1987) Ribeiratildeo Preto Jaboticabal FUNEP 5

Bergallo HG amp Rocha D (1993) Activity patterns and body temperatures of two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics in southeastern Brazil Amphibia-Reptilia 14 312ndash315

Bergallo HG amp Rocha D (1994) Spatial and trophic niche differentiation in two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics Australian Journal of Ecology 19 72ndash75

Beacuternils RS amp Costa HC (2012) Reacutepteis brasileiros lista de espeacutecies Versatildeo 20122 Available from lthttpwwwsbherpetologiaorgbrgt Sociedade Brasileira de Herpetologia Accessed 2 October 2013

Borger L Franconi N De Michele G Gantz A et al (2006) Effects of sampling regime on the mean and variance of home range size estimates Journal of Animal Ecology 75 1393ndash1405

Carvalho ALG Brito MR amp Fernandes DS (2013) Biogeography of the lizard genus Tropidurus Wied-Neuwied 1825 (Squamata Tropiduridae) distribution endemism and area relationships in South America Public Library of Science 8 1ndash14

Carvalho CM Vilar JC amp Oliveira FF (2005) Reacutepteis e anfiacutebios In Parque Nacional Serra de Itabaiana - Levantamento da Biota 39ndash61 Carvalho CM and Vilar JC (eds) Aracaju Ibama Biologia Geral e Experimental ndash UFS

Chiang JCH amp Koutavas A (2004) Tropical Flip-flop connections Nature 432 684ndash685

Colli GR Arauacutejo AFB Silveira R amp Roma F (1992) Niche partitioning and morphology of two syntopic Tropidurus (Sauria Tropiduridae) in Mato Grasso Brazil Journal of Herpetology 26 66ndash69

Cooper Jr WE (1994) Prey chemical discrimination foraging mode and phylogeny In Lizard ecology historical and experimental perspectives 95ndash116 Vitt LJ amp Pianka ER (eds) New Jersey Princeton University Press

Dias EJR amp Lira-da-Silva RM (1998) Utilizaccedilatildeo dos recursos alimentares por quatro espeacutecies de lagartos (Phyllopezus pollicaris Tropidurus hispidus Mabuya macrorhyncha e Vanzossaura rubricauda) da caatinga (Usina Hidroeleacutetrica de Xingoacute) Brazilian Journal of Ecology 2 97ndash101

Faria RG amp Arauacutejo AFB (2004) Sintopy of two Tropidurus

Interact ion of sympatr ic Tropidur idae

38

lizard species (Squamata Tropiduridae) on a rocky cerrado habitat in Central Brazil Brazilian Journal of Biology 64 775ndash786

Fernandes ACM amp Oliveira EF (1997) Diversidade na dieta e aspectos reprodutivos de duas espeacutecies simpaacutetricas e sintoacutepicas de Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 35ndash40

Freitas MA amp Silva TFS (2007) Guia ilustrado A herpetofauna das caatingas e aacutereas de altitudes do Nordeste Brasileiro Pelotas USEB (Coleccedilatildeo Manuais de Campo USEB 6) 384 pp

Frost DR Rodrigues MT Grant T amp Titus TA (2001) Phylogenetics of the lizard genus Tropidurus (Squamata Tropiduridae Tropidurinae) Direct optimization descriptive efficiency and analysis of congruence between molecular data and morphology Molecular Plylogenetics and Evolution 21 352ndash371

Hatano FH Vrcibradic D Galdino CAB Cunha-Barros M et al (2001) Thermal ecology and activity patterns of the lizard community of the restinga of Jurubatiba Macaeacute RJ Revista Brasileira de Biologia 61 287ndash294

Herfindal I Linnell JDC Odden J Birkeland Nilsen E amp Andersen R (2005) Prey density environmental productivity and home-range size in the Eurasian lynx (Lynx lynx) Journal of Zoology 265 63ndash71

Huey RB amp Pianka ER (1977) Patterns of niche overlap among broadly sympatric versus narrowly sympatric Kalahari lizards (Scincidae Mabuya) Ecology 58 119ndash128

Huey RB amp Slatkin M (1976) Cost and benefits of lizard thermoregulation The Quarterly Review of Biology 51 363ndash384

Hutchinson GE (1957) Concluding remarks Cold Spring Harbour Symposium on Quantitative Biology 22 415ndash427

Janzen DH amp Schoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season Ecology 49 96ndash110

Jolicoeur P (1963) The multivariate generalization of the allometry equation Biometrics 19 497ndash499

Kolodiuk MF Ribeiro LB amp Freire EMX (2009) The effects of seasonality on the foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) living in sympatry in the caatinga of northeastern Brazil Revista Brasileira de Zoologia 26 581ndash585

Krol MS Jaegar A Bronstert A amp Krywkow J (2001) The semiarid integrated model (SDIM) a regional integrated model assessing water availability vulnerability of ecosystems and society in NE-Brazil Physics and Chemistry of the Earth 26 529ndash533

Losos JB (1990) Ecomorphology performance capability and scaling of west Indian Anolis lizards an evolutionary analysis Ecological Monographs 60 369ndash388

Losos JB (2008) Phylogenetic niche conservatism phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species Ecology Letters 11 995ndash1007

Magnusson WE amp Silva EV (1993) Relative effects of size season and species on the diets of some Amazonian Savanna lizards Journal of Herpetology 27 380ndash385

Magnusson WE Lima PA Silva WA amp Arauacutejo MC (2003) Use of geometric forms to estimate volume of invertebrates

in ecological studies of dietary overlap Copeia 2003 13ndash19Manzani PR amp Abe AS (1990) A new species of Tapinurus

from the Caatinga of Piauiacute Northeastern Brazil (Squamata Tropiduridae) Herpetologica 46 462ndash467

MrsquoCloskey RT amp Hecnar ESJ (1994) Interspecific spatial overlap Oikos 71 65ndash74

Meira KT Faria RG Silva MDM Miranda VT amp Zahn-Silva W (2007) Histoacuteria natural de Tropidurus oreadicus em uma aacuterea de cerrado rupestre do Brasil Central Biota Neotropica 7 155ndash163

Mesquita DO Costa GC amp Colli GR (2006) Ecology of an Amazonian savanna lizard assemblage in Monte Alegre Paraacute state Brazil South American Journal of Herpetology 1 61ndash71

Milstead WW (1965) Changes in competing populations of whiptail lizards (Cnemidophorus) in southwestern Texas The American Midland Naturalist 7375ndash80

Nimer E (1972) Climatologia da Regiatildeo Nordeste do Brasil In Introduccedilatildeo agrave Climatologia Dinacircmica Revista Brasileira de Geografia 34 3ndash51

Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia Ecology 50 1012ndash 1030

Pianka ER (1973) The structure of lizard communities Annual Review of Ecology and Systematics 4 53ndash74

Pianka ER amp Vitt LJ (2003) Lizards Windows to The Evolution of Diversity Berkeley University of California Press 333 pp

Prado D (2005) As Caatingas da Ameacuterica do Sul In Ecologia e Conservaccedilatildeo da Caatinga 3ndash73 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ramos L amp Denisson S (1997) Notas sobre os habitats e microhabitats de duas espeacutecies simpaacutetricas de lagartos do gecircnero Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 29ndash34

Reis AMS Arauacutejo EL Ferraz EMN amp Moura AN (2006) Inter-annual variations in the floristic and population structure of an herbaceous community of ldquocaatingardquo vegetation in Pernambuco Brazil Revista Brasileira de Botacircnica 29 497ndash508

Ribeiro LB amp Freire EMX (2009) Tropidurus semitaeniatus (NCN) Drinking behavior Herpetological Review 40 228ndash229

Ribeiro LB amp Freire EMX (2010) Thermal ecology and thermoregulatory behaviour of Tropidurus hispidus and T semitaeniatus in a caatinga area of northeastern Brazil Herpetological Journal 20 201ndash208

Ribeiro LB amp Freire EMX (2011) Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) in a caatinga area of northeastern Brazil Iheringia Seacuterie Zoologia 101 225ndash232

Ricklefs RE Cochran D amp Pianka ER (1981) A morphological analysis of the structure of communities of lizards in desert habitats Ecology 62 1474ndash1478

Rocha CFD amp Bergallo HG (1990) Thermal biology and flight distance of Tropidurus oreadicus (Sauria Iguanidae) in an area of Amazonian Brazil Ethology Ecology amp Evolution 2 263ndash268

Rocha CFD amp Bergallo HG (1992) Tropidurus torquatus (collared lizard) diet Herpetological Review 25 69

Rodrigues MT (1984) Uma nova espeacutecie brasileira de

FFA Gomes et a l

39

Tropidurus com crista dorsal (Sauria Iguanidae) Papeacuteis Avulsos de Zoologia 35 169ndash175

Rodrigues MT (1987) Sistemaacutetica ecologia e zoogeografia dos Tropidurus do grupo torquatus ao sul do Rio Amazonas (Sauridae Iguanidae) Arquivos de Zoologia 31 105ndash230

Rodrigues MT (2005) Herpetofauna da Caatinga In Ecologia e Conservaccedilatildeo da Caatinga 181ndash236 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ruiz-Esparza J Gouveia SF Rocha PA Ribeiro AS amp Ferrari SF (2011) Birds of the Grota do Angico Natural Monument in the semi-arid caatinga scrublands of northeastern Brazil Biota Neotropica 11 1ndash8

Santos GMM Delabie JHC amp Resende JJ (1999) Caracterizaccedilatildeo da mirmecofauna (Hymenoptera-Formicidae) associada agrave vegetaccedilatildeo perifeacuterica de inselbergs (caatinga-arboacuterea-estacional-semi-deciacutedua) em Itatim ndash Bahia ndash Brasil Sitientibus 20 33ndash43

Sampaio EVSB (1995) Overview of the Brazilian Caatinga In Seasonally Dry Forests 35ndash58 Bullock HA Mooney HA amp Medina E (eds) Reino Unido Cambridge University Press

Schoener TW (1975) Presence and absence of habitat shift in some widespread lizards species Ecological Monographs 45 233ndash258

Silva VN amp Arauacutejo AFB (2008) Ecologia dos Lagartos Brasileiros 1st ed Rio de Janeiro Technical Books 271p

Simpson EH (1949) Measurement of diversity Nature 163 688

Somers KM (1986) Multivariate allometry and removal of size with principal components analysis Systematic Zoology 35 359ndash368

Teixeira-Filho P Rocha CFD amp Ribas S (1996) Ecologia termal e uso do habitat por Tropidurus torquatus (Sauria Tropiduridae) em uma aacuterea de restinga do sudeste do Brasil In Herpetologia Neotropical 255ndash267 Peacutefaur JE (ed) Actas del II Congreso Latinoamericano de Herpetologia II Volumen Universidad de Los Andes Merida Venezuela Consejo de Publicaciones

Toft CA (1985) Resource partitioning in amphibians and reptilies Copeia 1 1ndash21

VanSluys M (1992) Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae) em uma aacuterea do sudeste do Brasil Revista Brasileira de Biologia 52 181ndash185

VanSluys M (1993) Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Journal of Herpetology 27 347ndash351

VanSluys M (1995) Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Ciecircncia e Cultura 47 61ndash65

VanSluys M Rocha CFD Vrcibradic D Galdino CAB amp Fontes AF (2004) Diet activity and microhabitat use of two syntopic Tropidurus species (Lacertilia Tropiduridae) in Minas Gerais Brazil Journal of Herpetology 38 606ndash611

Vitt LJ (1981) Lizard reproduction habitat specificity and constraints on relative clutch mass The American Naturalist 117 506ndash514

Vitt LJ (1991) An introduction to the ecology of cerrado lizards Journal of Herpetology 25 79ndash90

Vitt LJ (1993) Ecology of isolated open-formation Tropidurus (Reptilia Tropiduridae) in Amazonian lowland rain forest Canadian Journal of Zoology 71 2370ndash2390

Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil Occasional Papers of the Oklahoma Museum of Natural History 1 29ndash34

Vitt LJ Zani PA amp Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia Journal of Tropical Ecology 12 81ndash101

Vitt LJ Caldwell JP Zani PA amp Titus TA (1997) The role of habitat shift in the evolution of lizard morphology evidence from tropical Tropidurus Proceedings of the National Academy of Sciences 94 3828ndash3832

Vitt LJ amp Carvalho CM (1995) Niche partitioning in a tropical wet season lizards in the Lavrado area of Northern Brazil Copeia 2 305ndash329

Vitt LJ amp Pianka ER (1994) Introduction and Acknowledgments In Lizard Ecology Historical and Experimental Perspectives 9ndash12 Vitt LJ amp Pianka ER (eds) Princeton University Press 403 pp

Vitt LJ amp Zani PA (1998) Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14 63ndash86

Vrcibradic D amp Rocha CFD (1998) Ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil Journal of Herpetology 32 229ndash237

Webb CO Ackerly DD McPeek MA amp Donoghue MJ (2002) Phylogenies and community ecology Annual Review of Ecology and Systematics 33 475ndash505

Zug GR Vitt LJ amp Caldwell JP (2001) Herpetology An Introductory Biology of Amphibians and Reptiles 2nd ed San Diego Academic Press 630 pp

Accepted 8 July 2014

Interact ion of sympatr ic Tropidur idae

29

Interact ion of sympatr ic Tropidur idae

where p is the proportion of resource category (trophic spatial or temporal) used and n is the number of resource categories adopted B ranges between 1 (exclusive use of a resource type) and 0 (homogeneous use of all types of resources) The estimated availability (total and monthly) of food resources was also measured using this method

The overlap between the food spatial and temporal niches were calculated using the formula for symmetrical overlap (Pianka 1973)

sum sum

sum

= =

==n

i

n

iikij

nikij

jk

pp

pp

1 1

22

where j and k represent different species Values close to zero indicate no similarity in resource use and values close to one indicate the similar use of such resources This index was also adopted to compare prey categories ingested with those available in the environments A canonical correlation between two set of variables (maximum length and maximum width of prey versus length width and height of the head) was used to investigate the relationship between the prey dimensions and head measurements

RESULTSIn total 1760 observations were made (422 for T hispidus and 1338 for T semitaeniatus) Morphometric and diet analyses were performed using a total of 102 specimens comprising 51 T hispidus (9 males 9 females and 33 young) and 51 T semitaeniatus (12 males 9 females and 30 young)

No significant differences were observed between both species with respect to substrate use (G=93421 gl=7 p=0229 nT hispidus=421 nT semitaeniatus=1333) In total 8313 and 9317 of T hispidus and T semitaeniatus were found on rocks (Fig 2A) and niche space width (B) was 142 and 115 respectively Overlap in use of microhabitats was high ( φjk=099) The average perch height was 6322plusmn6607 cm (n=300) for T hispidus and 5636plusmn5130 cm (n=912) for T semitaeniatus (including animals found on the ground Fig 2B) without significant differences (MannndashWhitney U=4250 p=05708 n=1212) Niche widths (B) of perch height were 289 for T hispidus and 273 for T semitaeniatus with a high overlap between species ( φjk=099)

Both T hispidus (7867) and T semitaeniatus (8303) preferred sunny days (Fig 2C) without differences between them (G=14534 gl=3 p=06931

Fig 2 Relative frequencies of (A) substrate use when located (B) perch height use (C) weather condition (D) sun exposure (E) activity levels across the day (F) behaviour when sighted (G) behaviour when escaping from the observer (H) substrate use after the approach of the observer of T hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo ndash SE

30

FFA Gomes et a l

Tabl

e 1

Des

crip

tive

data

for

mor

phol

ogic

al c

hara

cter

istics

of r

epro

ducti

ve in

divi

dual

s of

T h

ispi

dus

and

T s

emita

enia

tus

in t

he C

onse

rvati

on U

nit

of t

he S

tate

M

onum

ento

Nat

ural

Gro

ta d

o An

gico

Poccedil

o Re

dond

o - S

E L

inea

r mea

sure

men

ts a

re in

mill

imet

res

the

wei

ght i

s in

gra

ms

and

valu

es in

par

enth

eses

refe

r to

size-

adju

sted

var

iabl

es

Trop

idur

us se

mita

enia

tus

Trop

idur

us h

ispid

us

Varia

bles

Fem

ales

(n=9

)M

ales

(n=1

2)Fe

mal

es (n

=9)

Mal

es (n

=9)

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Body

size

352

plusmn05

32

68ndash4

25

648

plusmn13

43

48ndash8

33

105

0plusmn2

197

81ndash1

358

155

5plusmn6

342

09ndash2

399

Mas

s6

99plusmn1

00

585

ndash90

014

69plusmn

391

800

ndash20

2523

48plusmn

553

165

0ndash31

00

312

2plusmn14

17

142

5ndash52

00

(00

52plusmn0

110

)(-0

068

ndash02

42)

(-00

94plusmn0

268

)(-0

846

ndash01

60)

(00

75plusmn0

127

)(-0

085

ndash03

27)

(00

04plusmn0

061

)(-0

100

ndash00

81)

SVL

651

6plusmn3

6759

69-

719

979

68plusmn

456

731

7ndash87

32

840

5plusmn7

9074

16-

961

195

54plusmn

136

471

19ndash

114

08(0

047

plusmn00

20)

(00

17ndash0

073

)(0

073

plusmn00

14)

(00

49ndash0

095

)(0

017

plusmn00

15)

(-00

10ndash0

043

)(-0

028

plusmn00

65)

(-01

25ndash0

110

)Bo

dy w

idth

202

5plusmn1

5417

61ndash

223

723

08plusmn

414

152

3ndash29

83

250

0plusmn2

0619

74-

282

124

82plusmn

404

164

2ndash31

06

(00

97plusmn0

030

)(0

043

ndash01

33)

(00

86plusmn0

061

)(-0

062

ndash01

76)

(00

46plusmn0

039

)(-0

015

ndash01

01)

(-00

62plusmn0

056

)(-0

148

ndash00

32)

Body

hei

ght

745

plusmn11

15

36ndash9

10

848

plusmn10

96

64ndash9

93

140

7plusmn1

4611

22ndash

163

915

64plusmn

439

439

ndash22

09(0

015

plusmn00

60)

(-01

00ndash0

097

)(-0

021

plusmn00

54)

(-01

67ndash0

048

)(0

077

plusmn00

55)

(-00

07ndash0

162

)(-0

055

plusmn01

01)

(-02

26ndash0

073

)He

ad w

idth

120

3plusmn0

7311

04ndash

135

015

61plusmn

172

112

5ndash18

00

171

9plusmn1

7115

21ndash

197

419

93plusmn

395

116

2ndash23

99

(00

11plusmn0

020

)(-0

017

ndash00

49)

(00

57plusmn0

037

)(-0

020

ndash01

02)

(00

16plusmn0

020

)(-0

018

ndash00

49)

(-00

32plusmn0

047

)(-0

109

ndash00

45)

Head

leng

th17

16plusmn

164

125

7ndash18

84

214

4plusmn1

8117

24ndash

248

023

64plusmn

239

208

5ndash26

86

326

1plusmn18

45

168

1ndash91

82

(00

08plusmn0

044

)(-0

112

ndash00

43)

(00

44plusmn0

019

)(0

014

ndash00

79)

(00

02plusmn0

013

)(-0

017

ndash00

33)

(-00

01plusmn0

177

)(-0

153

ndash05

62)

Head

hei

ght

580

plusmn03

74

97ndash6

37

717

plusmn07

65

44ndash8

40

103

1plusmn1

009

23ndash1

240

120

2plusmn3

304

18ndash1

777

(-00

26plusmn0

022

)(-0

067

ndash00

02)

(-00

10plusmn0

029

)(-0

069

ndash00

30)

(00

42plusmn0

025

)(0

002

ndash00

76)

(-00

42plusmn0

061

)(-0

127

ndash00

84)

Tail

leng

th98

60

plusmn67

589

72ndash

116

8713

155

plusmn12

5110

487

ndash149

18

122

44plusmn1

716

887

2ndash14

131

144

13plusmn1

902

111

62ndash1

713

6(-0

004

plusmn00

28)

(-00

36ndash0

070

)(0

078

plusmn00

42)

(-00

10ndash0

148

)(-0

111

plusmn00

56)

(-01

11ndash0

056

)(-0

014

plusmn00

55)

(-00

82ndash0

080

)Fo

rele

g le

ngth

326

6plusmn1

6429

99ndash

350

039

83plusmn

303

932

55ndash

444

340

41plusmn

256

361

3ndash43

83

460

5plusmn7

6233

27ndash

564

0(0

044

plusmn00

18)

(00

06ndash0

063

)(0

073

plusmn00

19)

(00

40ndash0

106

)(0

009

plusmn00

23)

(-00

42ndash0

042

)(-0

029

plusmn00

53)

(-01

14ndash0

074

)Hi

nd li

mb

leng

th45

25plusmn

262

402

1ndash48

89

570

5plusmn3

8249

61ndash

629

457

64plusmn

365

505

0ndash62

82

681

5plusmn9

7950

56ndash

807

2(0

022

plusmn00

20)

(-00

12ndash0

043

)(0

066

plusmn00

11)

(00

50ndash0

085

)(0

001

plusmn00

23)

(-00

42ndash0

034

)(-0

018

plusmn00

51)

(-00

97ndash0

090

)

31

Interact ion of sympatr ic Tropidur idae

nT hispidus=422 and nT semitaeniatus=1338) Tropidurus hispidus was most often observed in shaded (3871) and mosaic sites (3776) whereas T semitaeniatus was most often found at sites exposed to the sun (3638) followed by mosaic sites (3443) (Fig 2D) The difference between species was significant (T=8597 df=364 plt0001 nT

hispidus=421 and nT semitaeniatus =1333)Tropidurus hispidus and T semitaeniatus showed the same temporal activity patterns (G=82992 gl=11 p=06863 nT hispidus=422 and nT semitaeniatus=1356) Both species were bi-modally active Tropidurus hispidus activity was highest between 0800 and 1100 hours declining at midday and rising again between 1400 and 1600 (Fig 2E) For T semitaeniatus the highest peaks occurred between 0700 and 1000 and between 1400 and 1700 (Fig 2E) The niche widths for activity times were 1078 and 1041 for T hispidus and T semitaeniatus respectively with a high overlap of these schedules ( φ

jk=092) The two species were indiscernible with regard to activity when sighted (G=04808 gl=4 p=09753 nT hispidus=461 and nT semitaeniatus=1338) A standing position dominated for both T hispidus (8178) and T semitaeniatus (8079) (Fig 2F) Running for shelter was the main activity after having been encountered for both species (Tropidurus hispidus 6580 T semitaeniatus 7427) (Fig 2G) without statistical differences (G=72499 gl=6 p=02984 nT hispidus=421 and nT semitaeniatus=1337) Similar shelters were chosen by the two species (G=133158 gl=7 p=00648 nT hispidus=421 and nT semitaeniatus=1331) Rocks were used most frequently (T hispidus 6674 and T semitaeniatus 8136) followed by crevices (T hispidus 1069 and T semitaeniatus 1254) (Fig 2H) Niche width for shelters use was 211 and 147 for T hispidus and T semitaeniatus respectively with a high overlap ( φ jk = 099) Adult T hispidus were larger than T semitaeniatus (ANOVA F136=42119 plt0001 n=382 Table 1) Average SVL of T hispidus was 9268plusmn1358 mm for adults and 6391plusmn1413 mm for juveniles average SVL of T semitaeniatus adults and young was 7366plusmn904 mm and 5555plusmn1303 mm respectively The size-adjusted masses (adults) were similar between the species (ANOVA F128=1283 p=0267 n=30 Table 1) Adults and young of T hispidus had masses of 3208plusmn1151 g and 1095plusmn646 g T semitaeniatus weighed 1219plusmn506 g and 507plusmn381 g respectively (Tables 1 and 2)

Trop

idur

us se

mita

enia

tus

Trop

idur

us h

ispid

us

Varia

bles

Fem

ales

(n=1

3)M

ales

(n=1

7)Fe

mal

es (n

=15)

Mal

es (n

=18)

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Body

size

100

plusmn04

90

25ndash2

01

295

plusmn16

00

75ndash6

17

388

plusmn17

81

37ndash6

84

395

plusmn17

11

15ndash6

44

Mas

s1

96plusmn0

88

075

ndash35

05

62plusmn3

84

110

ndash13

007

77plusmn3

78

200

ndash15

258

07plusmn3

38

250

ndash12

50(-0

009

plusmn00

63)

(-01

40ndash0

072

)(-0

015

plusmn00

74)

(-01

59ndash0

112

)(-0

029

plusmn01

11)

(-02

64ndash0

068

)(0

035

plusmn00

40)

(-00

24ndash0

104

)SV

L44

22plusmn

782

269

6ndash56

84

596

5plusmn10

67

416

7ndash72

76

574

2plusmn10

99

399

1ndash72

71

579

1plusmn8

7238

82ndash

693

6(-0

094

plusmn00

72)

(-02

76ndash-

000

8)(0

010

plusmn00

54)

(-00

98ndash0

075

)(-0

025

plusmn00

61)

(-01

67ndash0

031

)(-0

020

plusmn00

40)

(-01

35ndash0

022

)Bo

dy w

idth

117

2plusmn2

216

93ndash1

468

164

5plusmn3

7610

87ndash

226

615

38plusmn

330

112

6ndash21

02

154

4plusmn3

044

105

0ndash19

44

(-01

05plusmn0

086

)(-0

306

ndash-0

006)

(00

05plusmn0

073

)(-0

122

ndash00

92)

(-00

41plusmn0

060

)(-0

120

ndash00

45)

(-00

40plusmn0

058

)(-0

143

ndash00

35)

Body

hei

ght

465

plusmn11

53

37ndash7

69

626

plusmn14

803

51ndash8

73

889

plusmn21

65

38ndash1

230

897

plusmn23

25

57ndash1

219

(-01

13plusmn0

089

)(-0

256

ndash00

78)

(-00

53plusmn0

079

)(-0

224

ndash00

46)

(00

71plusmn0

068

)(-0

058

ndash01

43)

(00

72plusmn0

074

)(-0

036

ndash01

73)

Head

wid

th9

07plusmn1

80

606

ndash11

9411

91plusmn

243

762

ndash15

7212

05plusmn

171

933

ndash14

5012

28plusmn

180

920

ndash15

14(-0

082

plusmn00

74)

(-02

21ndash0

019

)(0

007

plusmn00

62)

(-01

34ndash0

075

)(-0

002

plusmn00

31)

(-00

57ndash0

053

)(0

004

plusmn00

34)

(-00

59ndash0

070

)He

ad le

ngth

129

6plusmn1

899

33ndash1

555

159

4plusmn3

129

45ndash2

022

175

7plusmn2

6013

14ndash

222

317

63plusmn

246

125

5ndash21

52

(-00

70plusmn0

057

)(-0

185

ndash00

10)

(-00

18plusmn0

075

)(-0

248

ndash00

47)

(00

10plusmn0

031

)(-0

062

ndash00

58)

(00

10plusmn0

033

)(-0

075

ndash00

53)

Head

hei

ght

402

plusmn05

52

99ndash4

97

562

plusmn09

83

99ndash7

20

744

plusmn10

95

71ndash8

73

773

plusmn12

25

69ndash9

55

(-01

20plusmn0

054

)(-0

224

ndash-0

049)

(-00

27plusmn0

044

)(-0

112

ndash00

30)

(00

72plusmn0

030

)(0

028

ndash01

32)

(00

86plusmn0

035

)(0

027

ndash01

61)

Tail

leng

th81

15plusmn

163

853

34ndash

102

4510

703

plusmn20

9876

87ndash

150

9097

02plusmn

118

475

06ndash

112

8797

32plusmn

119

269

96ndash

119

44(-0

072

plusmn00

89)

(-02

31ndash0

046

)(0

033

plusmn00

65)

(-00

73ndash0

144

)(-0

019

plusmn00

43)

(-00

91ndash0

056

)(-0

018

plusmn00

46)

(-01

18ndash0

058

)Fo

rele

g le

ngth

232

4plusmn4

2413

97ndash

293

730

57plusmn

572

194

6ndash37

79

294

0plusmn4

7721

03ndash

358

728

47plusmn

414

197

2ndash35

55

(-00

81plusmn0

077

)(-0

270

ndash00

13)

(00

15plusmn0

063

)(-0

135

ndash01

02)

(-00

17plusmn0

047

)(-0

112

ndash00

41)

(-00

31plusmn0

040

)(-0

136

ndash00

26)

Hind

lim

b le

ngth

343

7plusmn5

5522

80ndash

434

444

36plusmn

755

311

5ndash53

59

434

5plusmn5

9532

67ndash

503

843

08plusmn

635

310

8ndash52

01

(-00

75plusmn0

064

)(-0

224

ndash-0

008)

(00

12plusmn0

055

)(-0

097

ndash00

77)

(-00

11plusmn0

039

)(-0

087

ndash00

24)

(-00

16plusmn0

043

)(-0

105

ndash00

40)

Tabl

e 2

Des

crip

tive

data

for m

orph

olog

ical

cha

ract

eristi

cs o

f non

-rep

rodu

ctive

indi

vidu

als

of T

hisp

idus

and

T s

emita

enia

tus

in th

e Co

nser

vatio

n U

nit o

f the

Sta

te

Mon

umen

to N

atur

al G

rota

do

Angi

co P

occedilo

Redo

ndo

- SE

Lin

ear m

easu

rem

ents

are

in m

illim

etre

s th

e w

eigh

t is

in g

ram

s an

d va

lues

in p

aren

thes

es re

fer

to s

ize-

adju

sted

var

iabl

es

32

FFA Gomes et a l

Both T hispidus (7867) and T semitaeniatus (8303) preferred sunny days (Fig 2C) without differences between them (G=14534 gl=3 p=06931 nT hispidus=422 and nT semitaeniatus=1338) Tropidurus hispidus was most often observed in shaded (3871) and mosaic sites (3776) whereas T semitaeniatus was most often found at sites exposed to the sun (3638) followed by mosaic sites (3443) (Fig 2D) The difference between species was significant (T=8597 df=364 plt0001 nT

hispidus=421 and nT semitaeniatus =1333)

Tropidurus hispidus and T semitaeniatus showed the same temporal activity patterns (G=82992 gl=11 p=06863 nT hispidus=422 and nT semitaeniatus=1356) Both species were bi-modally active Tropidurus hispidus activity was highest between 0800 and 1100 hours declining at midday and rising again between 1400 and 1600 (Fig 2E) For T semitaeniatus the highest peaks occurred between 0700 and 1000 and between 1400 and 1700 (Fig 2E) The niche widths for activity times were 1078 and 1041 for T hispidus and T semitaeniatus

Taxon Availability Tropidurus semitaeniatus (n=60) Tropidurus hispidus (n=60)

n n F F n n V (mm3) V F F n n V (mm3) V

Acarina 268 074 2 333 2 014 039 000 4 667 14 049 71176 231

Araneae 523 145 20 3333 35 236 27219 227 16 2667 26 090 69893 226

Blattaria 272 076 1 007 5 833 5 017 9811 032

Chilopoda 8 002 1 167 1 007 122 010 1 167 1 003 57009 185

Coleoptera 3497 971 19 3167 32 216 13121 109 36 6000 98 341 148896 482

Dermaptera 3 001

Diplopoda 92 026 1 167 1 003 2925 009

Diplura 1 000

Diptera 5386 1495 15 2500 33 223 24458 204 10 1667 12 042 10033 033

Embioptera 1 000

Ephemeoptera 6 002

Gastropoda 24 007 2 333 4 027 3754 031 1 167 1 003 347 001

Hemiptera 20 006 2 333 2 007 30919 100

Homoptera 56 016 2 333 5 034 1739 014 3 500 10 035 2731 009

Hymenoptera 24908 6916 54 9000 989 6682 277634 2313 56 9333 2088 7265 867513 2811

Isopoda 9 002 1 167 1 003 2028 007

Isoptera 72 020 7 1167 39 264 4505 038 8 1333 412 1434 114157 370

Insect larvae 118 033 30 5000 309 2088 767065 6390 30 5000 175 609 1342030 4348

Lepidoptera 693 192 15 2500 21 142 32576 271 15 2500 22 077 39560 128

Mantodea 1 lt001

Organic material 5 833 055 00046 17 2833 1730 560

Mecoptera 1 lt001

Neuroptera 6 002

Odonata 3 001

Opilionidae 13 004

Orthoptera 4 667 4 027 45371 378 4 667 4 014 144351 468

Protura 2 001 000

Pseudoscorpionida 14 004 2 333 4 027 461 004 1 167 2 007 187 001

Pscoptera 1 lt001 000

Scorpionida 12 003 1 167 1 007 1299 011

Siphonoptera 1 lt001

Strepsitera 1 lt001

Thrichoptera 1 lt001

Thysanura 2 001

TOTAL 36015 100 1480 100 1200516 100 2874 100 3086566 100

B 202 296 206 226

Table 3 Summary of prey availability and diets of Tropidurus hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo - SE n ndash number of prey n ndash percentage of prey F ndash frequency of prey V ndash volume V ndash percentage of volume

33

Interact ion of sympatr ic Tropidur idae

respectively with a high overlap of these schedules ( φ

jk=092) The two species were indiscernible with regard to

activity when sighted (G=04808 gl=4 p=09753 nT

hispidus=461 and nT semitaeniatus=1338) A standing position dominated for both T hispidus (8178) and T semitaeniatus (8079) (Fig 2F) Running for shelter was the main activity after having been encountered for both species (Tropidurus hispidus 6580 T semitaeniatus 7427) (Fig 2G) without statistical differences (G=72499 gl=6 p=02984 nT hispidus=421 and nT

semitaeniatus=1337) Similar shelters were chosen by the two species (G=133158 gl=7 p=00648 nT hispidus=421 and nT semitaeniatus=1331) Rocks were used most frequently (T hispidus 6674 and T semitaeniatus 8136) followed by crevices (T hispidus 1069 and T semitaeniatus 1254) (Fig 2H) Niche width for shelters use was 211 and 147 for T hispidus and T semitaeniatus respectively with a high overlap ( φjk = 099)

Adult T hispidus were larger than T semitaeniatus (ANOVA F136=42119 plt0001 n=382 Table 1) Average SVL of T hispidus was 9268plusmn1358 mm for adults and 6391plusmn1413 mm for juveniles average SVL of T semitaeniatus adults and young was 7366plusmn904 mm and 5555plusmn1303 mm respectively The size-adjusted masses (adults) were similar between the species (ANOVA F128=1283 p=0267 n=30 Table 1) Adults and young of T hispidus had masses of 3208plusmn1151 g and 1095plusmn646 g T semitaeniatus weighed 1219plusmn506 g and 507plusmn381 g respectively (Tables 1 and 2)

The first and second principal components of a PCA together explained 70 of the variation in morphology of the two species The first principal component was related to SVL anterior and posterior limb length and head width The two species did not significantly differ in shape (MANOVA Wilkrsquos Lambda=0893 p=0566) although T hispidus is slightly larger than T semitaeniatus with a larger and higher head longer limbs and a higher body

A total of 60 stomachs were analysed for T semitaeniatus and T hispidus each Eighteen prey categories were used by T hispidus and 15 were used by T semitaeniatus The most frequent prey categories for T hispidus were Hymenoptera Coleoptera insect larvae Araneae and Lepidoptera The corresponding groups for T semitaeniatus were Hymenoptera insect larvae Araneae Coleoptera Diptera and Lepidoptera The most abundant prey types were Hymenoptera and Isoptera for T hispidus and Hymenoptera and insect larvae for T semitaeniatus Highest prey volumes were represented by insect larvae and Hymenoptera for T hispidus and insect larvae and Hymenoptera for T semitaeniatus (Table 3) Formicidae represented 9995 of the Hymenoptera ingested by the two species (Table 3) Both species also consumed plant material (28 of T hispidus individuals representing 60 of the volume of food consumed and 833 of T semitaeniatus representing 00046 of food volume

The trophic niche widths estimated for T hispidus and T semitaeniatus were 206 and 202 for prey number and 226 and 296 for prey volume respectively Overlap

was higher with regards to prey number ( φjk=096 prey volume φ jk=097) but prey number and prey volume were significantly different from each other (prey number KolmogorovndashSmirnov Dmax=01584 plt001 prey volume KolmogorovndashSmirnov Dmax=01816 plt001 Table 3) A total of 36015 invertebrates distributed into 33 categories were used to estimate prey availability in the environment The distribution of available prey differed from the consumed prey for both species (T hispidus Dmax=02267 plt001 T semitaeniatus Dmax=02294 plt001)

The mean number of prey categories consumed for each species was seven (T semitaeniatus 5ndash11 T hispidus 4ndash11) Five categories comprised more than 10 in at least one monthly sample for T hispidus (Hymenoptera insect larvae Isoptera Coleoptera and Lepidoptera) and four of these also comprised more than 10 in at least one monthly sample for T semitaeniatus (all except Lepidoptera) The largest niche widths (B) were observed in February (254) June (248) April (245) and May (204) for T hispidus and in July (310) February (289) June (284) and May (221) for T semitaeniatus Diet overlap was high (Oslashgt050) in all months except April (011) and December (020) However significant differences between the diets were found in December February April May and August (Table 4)

The proportion of items most used in the diets was similar to available prey in January April September and October for T hispidus and in December January September and October for T semitaeniatus (Table 4) The prey availability occurred between December 2008 and March 2009 and between October and November 2009 (Table 4) The numbers of available prey categories ranged from eight (August) to 19 (February) The highest diversity of available prey was observed in May (378) (Table 4)

Focusing on the two most common food items Hymenoptera were most abundantly available in December 2008 and January 2009 and between September and November 2009 (Table 4) Tropidurus semitaeniatus largely consumed Hymenoptera (over 50 of diet) in the months of December 2008 January March and July to November 2009 whereas insect larvae were more consumed in February April May and June For T hispidus Hymenoptera comprised gt50 of the diet in all month except December and February (Table 4) Insect larvae never exceeded 50 of the number of prey consumed

A strong relationship was seen when comparing the morphology of the head of each species Tropidurus with the dimensions of prey actually consumed by them (Table 5) The first canonical variable for T semitaeniatus showed an inverse relationship in which animals with narrower heads were related to larger prey (Table 5) Already T hispidus for the first canonical variable was significantly positive for the relation between animals with large heads and longer prey (Table 5)

34

FFA Gomes et a l

Dece

mbe

rJa

nuar

yFe

brua

ryM

arch

April

May

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

(126

)(4

51)

(407

2)(9

0)(5

05)

(141

85)

(73)

(83)

(430

8)(1

07)

(151

)(3

895)

(178

)(4

5)(7

99)

(108

)(2

67)

(826

)Ac

arin

a1

650

590

570

070

030

750

36Ar

anea

e1

590

440

612

250

200

731

371

201

183

740

631

826

133

700

75Bl

attar

ia0

440

101

120

200

480

260

100

380

370

12Ch

ilopo

da0

220

010

030

48Co

leop

tera

317

044

447

562

079

851

274

361

474

093

125

137

62

2524

44

160

20

934

8718

52

Derm

apte

ra0

08Di

plop

oda

009

138

037

763

Dipl

ura

002

Dipt

era

142

91

922

250

592

874

8247

47

187

188

447

215

77

377

7Em

biop

tera

013

Ephe

meo

pter

a0

75Ga

stro

poda

100

109

Hem

ipte

ra0

010

020

030

371

21Ho

mop

tera

007

001

063

093

037

073

Hym

enop

tera

793

716

41

908

480

90

906

986

75

397

346

99

389

784

11

800

028

11

337

577

852

44

314

865

17

284

5Is

opod

a0

22Is

opte

ra0

7981

82

002

112

634

424

70

911

870

562

220

631

120

61In

sect

larv

a0

790

223

370

016

8540

96

042

093

938

036

932

64

443

7559

26

250

91

94Le

pido

pter

a2

250

592

742

415

646

546

2510

94

056

111

10

501

851

120

85M

anto

dea

002

Mec

opte

ra0

02N

euro

pter

aO

dona

ta0

05O

pilio

nida

e0

03O

rtho

pter

a1

121

850

37Pr

otur

a0

010

02Ps

eudo

scor

pion

ida

002

411

025

024

Pscoacute

pter

a0

02Sc

orpi

onid

a0

050

020

050

13Si

phon

opte

ra0

02St

reps

itera

002

Thric

hopt

era

002

Thys

anur

a0

01 B

153

143

121

151

121

131

289

254

261

140

153

322

115

245

302

221

204

378

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

099

010

gt00

51

000

08gt0

05

044

050

lt00

10

540

54lt0

01

010

089

lt00

10

300

63lt0

01

Th x

Disp

020

082

lt00

10

990

11gt0

05

054

044

lt00

10

540

57lt0

01

094

018

gt00

50

550

61lt0

01

Ts x

Th

020

080

lt00

10

990

09gt0

05

059

030

lt00

10

990

08gt0

05

011

078

lt00

10

750

36lt0

01

Tabl

e 4

Mon

thly

dist

ributi

on o

f foo

d av

aila

bilty

(D) a

nd o

f the

sto

mac

h co

nten

ts o

f T h

ispi

dus

(Th)

and

T s

emita

enia

tus

(Ts)

in t

he C

onse

rvati

on U

nit

of t

he S

tate

M

onum

ento

Nat

ural

Gro

ta d

o An

gico

Poccedil

o Re

dond

o - S

E (B

razil

) Th

e va

lues

in p

aren

thes

es re

fer t

o th

e nu

mbe

r of i

nver

tebr

ates

per

sam

ple

35

Interact ion of sympatr ic Tropidur idae

Tabl

e 4

(Con

tinue

d)

June

July

Augu

stSe

ptem

ber

Oct

ober

Nov

embe

rTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

D

(95)

(120

)(9

33)

(59)

(156

)(8

99)

(46)

(63)

(219

)(1

50)

(170

)(1

023)

(240

)(5

64)

(242

4)(2

09)

(294

)(2

432)

Acar

ina

169

011

317

042

160

223

214

Aran

eae

421

244

493

678

445

100

52

671

762

251

251

241

533

350

342

26Bl

attar

ia0

430

640

220

490

176

83Ch

ilopo

da0

111

690

11Co

leop

tera

421

732

202

63

396

4126

59

476

168

93

3312

35

181

80

421

425

901

444

0812

05

Derm

apte

raDi

plop

oda

150

Dipl

ura

Dipt

era

316

081

390

13

3913

90

435

913

067

059

225

042

239

096

354

Embi

opte

raEp

hem

eopt

era

Gast

ropo

da5

081

370

590

200

040

480

04He

mip

tera

081

032

011

046

008

Hom

opte

ra0

810

963

390

641

454

353

171

832

350

290

620

08Hy

men

opte

ra42

11

561

029

26

525

485

26

525

065

22

746

058

45

906

779

41

742

996

67

937

986

10

904

394

90

722

0Is

opod

a1

59Is

opte

ra1

6911

11

133

059

058

008

Inse

ct la

rva

410

528

46

236

186

47

050

2223

91

159

067

176

039

071

017

335

068

029

Lepi

dopt

era

316

244

021

169

033

217

183

059

039

083

071

Man

tode

aM

ecop

tera

Neu

ropt

era

064

Odo

nata

004

Opi

lioni

dae

039

012

021

Ort

hopt

era

105

081

059

018

Prot

ura

Pseu

dosc

orpi

onid

a1

050

350

080

21Ps

coacutept

era

Scor

pion

ida

067

029

004

Siph

onop

tera

Stre

psite

raTh

richo

pter

aTh

ysan

ura

B2

842

483

543

101

362

722

051

742

571

211

541

711

071

131

341

221

111

84

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

049

056

lt00

10

850

28lt0

01

089

001

lt00

10

980

17gt0

05

100

010

gt00

50

980

21lt0

05

Th x

Disp

056

056

lt00

10

560

39lt0

01

094

030

lt00

11

000

08gt0

05

100

009

gt00

50

990

23lt0

05

Ts x

Th

095

015

gt00

50

950

18gt0

05

093

025

lt00

10

990

11gt0

05

100

002

gt00

51

000

03gt0

05

36

DIsCUssION The presence of a species in an environment may be related to specific physiological needs improved access to food availability of resources presence of refuges morphological adaptations inter and intraspecific interactions as well as historical factors (Pianka 1973 Herfindal et al 2005 Borger et al 2006 Silva amp Arauacutejo 2008) The habitat and microhabitat chosen by a species should meet their essential needs to allow viable populations (Silva amp Arauacutejo 2008) In the study area T hispidus and T semitaeniatus largely were active on rocky substrates Such sites are able to maximise the uptake of heat necessary for thermoregulation both through direct exposure and contact with heated surfaces (Rocha amp Bergallo 1990 VanSluys 1992 Meira et al 2007)

Tropidurus semitaeniatus is considered to be a saxicolous species endemic of Caatinga environments whereas T hispidus occupies a generalist habitat in open formations of various biomes (Rodrigues 1987) Despite this variation in the use of microhabitats T hispidus tends towards a saxicolous habit in places where rocks are abundant Vitt et al (1997) found that where T hispidus use rocks individuals displayed greater dorso-ventral flattening than when in habitat areas without rocks This suggests that the flattening in these individuals could be adaptive to the use of cracks in rock outcrops In the present study no differences were established in body shape between the species

The preference of these species for rocks has been recorded in other localities and environments Tropidurus hispidus uses rocks in Caatinga environments (Vitt 1981 Dias amp Lira-da-Silva 1998 Kolodiuk et al 2009) in the Amazonian rainforest (Vitt amp Carvalho 1995 Vitt et al 1996 Vitt amp Zani 1998) Amazonian savannahs (Mesquita et al 2006) and fields in Minas Gerais (VanSluys et al 2004) T semitaeniatus uses rocky substrates in the Caatinga biome (Vitt 1981 Kolodiuk et al 2009 Ribeiro amp Freire 2010) and in Agreste Sergipe (Fernandes amp Oliveira 1997 Ramos amp Denisson 1997) The use of rocks is common to others species of the semitaeniatus group (T helenae and T pinima Rodrigues 1984 Manzani amp Abe 1990 Rodrigues 2005) as well as for several

Table 5 Canonical correlation between the measurements of the head and the size of prey of T hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo ndash SE (Brazil)

species of the torquatus group (T montanus T itambere and T oreadicus Rodrigues 1987 Faria amp Araujo 2004 VanSluys et al 2004 Meira et al 2007) Both species adopted vertical positions which were in most cases lt40 cm above ground (5064 and 5178 of observations for T hispidus and T semitaeniatus respectively) Teixeira-Filho et al (1996) suggest that layers close to the ground are heated up more quickly with advantages for thermoregulation and a consequently lower risk of predation and more time for other activities such as foraging

Tropidurus individuals were active throughout the data collection period Both species are sit-and-wait predators implying a shorter time searching for prey and more energy invested in prey capture than is the case for more active foragers (Dias amp Lira-da-Silva 1998 Pianka amp Vitt 2003) Similar findings were already obtained for T hispidus (Vitt 1995 Vitt amp Zani 1998 VanSluys et al 2004) T semitaeniatus (Vitt 1995) T torquatus (Bergallo amp Rocha 1993 Teixeira-Filho et al 1996 Hatano et al 2001) T itambere (VanSluys 1992 Faria amp Araujo 2004) T montanus (VanSluys et al 2004) and T oreadicus (Faria amp Araujo 2004 Meira et al 2007) The observed bimodal patterns of activity have previously been found by VanSluys (1992) for T itambere and by Vrcibradic amp Rocha (1998) for Mabuya frenata during the wet season at high temperatures The Caatinga biome is characterised by particularly hot temperatures (Prado 2005) explaining the observed bimodal pattern for the present study species

According to Huey amp Slatkin (1976) thermoregulation in diurnal lizards involves a set of behavioural activities and options for microhabitat use Displacement between environments with a differential exposure to sun will help to achieve the optimum temperature sought (Rocha amp Bergallo 1990 Vitt amp Carvalho 1995 Hatano et al 2001) We observed a preference for sunny days and exposure to sun was distributed between categories (sun mosaic shadow) for both species with T semitaeniatus having a preference for sun and T hispidus having a preference for shadow The difference in exposure adopted by each species may reflect their physiological needs Vitt (1995) and Ribeiro amp Freire (2010) verified that T semitaeniatus

FFA Gomes et a l

Tropidurus semitaeniatus Tropidurus hispidus

Canonical coefficients Canonical coefficients

Head 1st Canonical Variable 2nd Canonical Variable 1st Canonical Variable 2nd Canonical Variable

Length 165 645 025 123

Height -217 -686 136 028

Width 151 032 -064 -160

Prey

Greater Length 038 139 129 -164

Greater Width 068 -127 -035 206

Canonical Correlation c2 p Canonical Correlation c2 p

I 095 13634 lt00001 053 14437 00251

II 055 1883 lt00001 014 0865 06488

37

presents a mean body temperature that is higher than T hispidus In the study area of the present work T hispidus may prefer shady places to avoid negative effects of high temperatures (Teixeira-Filho et al 1996)

Ecological historical and behavioural factors must be considered when evaluating the reasons why certain species consume particular types of prey (Vitt amp Zani 1998 Pianka amp Vitt 2003) and morphological limitations may further interfere with the type of food consumed (Toft 1985 Magnusson amp Silva 1993) An opportunistic pattern in food use was observed for both species in this study given the strong correlation between use and availability The use of ants is widely observed in the diet of the genus Tropidurus and has been reported for several species (T hispidus Dias amp Lira-da-Silva 1998 T torquatus group Arauacutejo 1987 T itambere VanSluys 1995 T oreadicus and T spinulosos Colli et al 1992 T torquatus Bergallo amp Rocha 1994 T hispidus T oreadicus T semitaeniatus Vitt 1993 T semitaeniatus and T hispidus Ribeiro amp Freire 2011) Ants are abundant in the Caatinga (Santos et al 1999) Insect larvae were mainly used in the rainy season probably due to their higher availability during this period

For lizards prey composition is largely related to the type of foraging used and the habitat they occupy (Vitt 1991 Toft 1985) Diet overlap is common among sympatric species that hunt by stalking since they have a preference for active prey (Zug et al 2001 Silva amp Arauacutejo 2008) In periods of higher rainfall both species became more selective since the number of invertebrates in the environment was larger Tropidurus semitaeniatus changed their diet towards insect larvae which were not the most abundant prey category T hispidus continued to consume Hymenoptera as the main item in their diet Considering the reduction in availability of Hymenoptera during the rainy season it is likely that individuals of Tropidurus species broaden the diversity of food items to meet their daily nutritional needs The seasonal change in food habits of T semitaeniatus during the rainy season might be due to avoidance of competition during this period Head morphology is reflected in the consumption of prey of different dimensions it is expected that animals with larger heads consume larger prey (Pianka 1969) However this pattern was not observed for the target species of this study Since T semitaeniatus that has a smaller width head was observed consuming relatively larger prey whereas T hispidus with larger heads prefers more elongated prey Food availability in the environment probably best explains the observed pattern Besides invertebrates large quantities of plant material (flowers leaves and seeds) were found in stomachs and T hispidus consumed more plants than T semitaeniatus Ingestion of plant material in Tropidurus and other lizards is relatively common to provide energy as well as possibly water (Rocha amp Bergallo 1992 VanSluys 1993 Dias amp Lira-da-Silva 1998) In our study area the coexistence of T hispidus and T semitaeniatus on rocky outcrops is probably facilitated by small variations in spatial arrangement the morphology of the trophic apparatus and temporary niche shifts in their diets depending on rather unpredictable rainfall patterns

ACKNOWLEDGEMENTs

We thank Mr Manuel Messias and his entire family for their support in the collection area We are grateful to CAPES for providing the research grant and SISBIO for licensing the collection the Secretaria do Meio-Ambiente e Recursos Hiacutedricos de Sergipe (SEMARH SE) for support with transport to the area and other aid at UC and the Nuacutecleo de Pesquisa em Ecologia e Conservaccedilatildeo (NPEC) and the Universidade Federal de Sergipe (UFS) for logistical support The data collection was authorised by license number 19237-1 issued by SISBIO (System of Authorization and Information on Biodiversity)

REFERENCEs

Arauacutejo AFB (1987) Comportamento alimentar dos lagartos o caso dos Tropidurus da Serra dos Carajaacutes Paraacute (Sauria Iguanidae) In Anais de Etologia 203ndash234 Encontro Anual de Etologia (1987) Ribeiratildeo Preto Jaboticabal FUNEP 5

Bergallo HG amp Rocha D (1993) Activity patterns and body temperatures of two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics in southeastern Brazil Amphibia-Reptilia 14 312ndash315

Bergallo HG amp Rocha D (1994) Spatial and trophic niche differentiation in two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics Australian Journal of Ecology 19 72ndash75

Beacuternils RS amp Costa HC (2012) Reacutepteis brasileiros lista de espeacutecies Versatildeo 20122 Available from lthttpwwwsbherpetologiaorgbrgt Sociedade Brasileira de Herpetologia Accessed 2 October 2013

Borger L Franconi N De Michele G Gantz A et al (2006) Effects of sampling regime on the mean and variance of home range size estimates Journal of Animal Ecology 75 1393ndash1405

Carvalho ALG Brito MR amp Fernandes DS (2013) Biogeography of the lizard genus Tropidurus Wied-Neuwied 1825 (Squamata Tropiduridae) distribution endemism and area relationships in South America Public Library of Science 8 1ndash14

Carvalho CM Vilar JC amp Oliveira FF (2005) Reacutepteis e anfiacutebios In Parque Nacional Serra de Itabaiana - Levantamento da Biota 39ndash61 Carvalho CM and Vilar JC (eds) Aracaju Ibama Biologia Geral e Experimental ndash UFS

Chiang JCH amp Koutavas A (2004) Tropical Flip-flop connections Nature 432 684ndash685

Colli GR Arauacutejo AFB Silveira R amp Roma F (1992) Niche partitioning and morphology of two syntopic Tropidurus (Sauria Tropiduridae) in Mato Grasso Brazil Journal of Herpetology 26 66ndash69

Cooper Jr WE (1994) Prey chemical discrimination foraging mode and phylogeny In Lizard ecology historical and experimental perspectives 95ndash116 Vitt LJ amp Pianka ER (eds) New Jersey Princeton University Press

Dias EJR amp Lira-da-Silva RM (1998) Utilizaccedilatildeo dos recursos alimentares por quatro espeacutecies de lagartos (Phyllopezus pollicaris Tropidurus hispidus Mabuya macrorhyncha e Vanzossaura rubricauda) da caatinga (Usina Hidroeleacutetrica de Xingoacute) Brazilian Journal of Ecology 2 97ndash101

Faria RG amp Arauacutejo AFB (2004) Sintopy of two Tropidurus

Interact ion of sympatr ic Tropidur idae

38

lizard species (Squamata Tropiduridae) on a rocky cerrado habitat in Central Brazil Brazilian Journal of Biology 64 775ndash786

Fernandes ACM amp Oliveira EF (1997) Diversidade na dieta e aspectos reprodutivos de duas espeacutecies simpaacutetricas e sintoacutepicas de Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 35ndash40

Freitas MA amp Silva TFS (2007) Guia ilustrado A herpetofauna das caatingas e aacutereas de altitudes do Nordeste Brasileiro Pelotas USEB (Coleccedilatildeo Manuais de Campo USEB 6) 384 pp

Frost DR Rodrigues MT Grant T amp Titus TA (2001) Phylogenetics of the lizard genus Tropidurus (Squamata Tropiduridae Tropidurinae) Direct optimization descriptive efficiency and analysis of congruence between molecular data and morphology Molecular Plylogenetics and Evolution 21 352ndash371

Hatano FH Vrcibradic D Galdino CAB Cunha-Barros M et al (2001) Thermal ecology and activity patterns of the lizard community of the restinga of Jurubatiba Macaeacute RJ Revista Brasileira de Biologia 61 287ndash294

Herfindal I Linnell JDC Odden J Birkeland Nilsen E amp Andersen R (2005) Prey density environmental productivity and home-range size in the Eurasian lynx (Lynx lynx) Journal of Zoology 265 63ndash71

Huey RB amp Pianka ER (1977) Patterns of niche overlap among broadly sympatric versus narrowly sympatric Kalahari lizards (Scincidae Mabuya) Ecology 58 119ndash128

Huey RB amp Slatkin M (1976) Cost and benefits of lizard thermoregulation The Quarterly Review of Biology 51 363ndash384

Hutchinson GE (1957) Concluding remarks Cold Spring Harbour Symposium on Quantitative Biology 22 415ndash427

Janzen DH amp Schoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season Ecology 49 96ndash110

Jolicoeur P (1963) The multivariate generalization of the allometry equation Biometrics 19 497ndash499

Kolodiuk MF Ribeiro LB amp Freire EMX (2009) The effects of seasonality on the foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) living in sympatry in the caatinga of northeastern Brazil Revista Brasileira de Zoologia 26 581ndash585

Krol MS Jaegar A Bronstert A amp Krywkow J (2001) The semiarid integrated model (SDIM) a regional integrated model assessing water availability vulnerability of ecosystems and society in NE-Brazil Physics and Chemistry of the Earth 26 529ndash533

Losos JB (1990) Ecomorphology performance capability and scaling of west Indian Anolis lizards an evolutionary analysis Ecological Monographs 60 369ndash388

Losos JB (2008) Phylogenetic niche conservatism phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species Ecology Letters 11 995ndash1007

Magnusson WE amp Silva EV (1993) Relative effects of size season and species on the diets of some Amazonian Savanna lizards Journal of Herpetology 27 380ndash385

Magnusson WE Lima PA Silva WA amp Arauacutejo MC (2003) Use of geometric forms to estimate volume of invertebrates

in ecological studies of dietary overlap Copeia 2003 13ndash19Manzani PR amp Abe AS (1990) A new species of Tapinurus

from the Caatinga of Piauiacute Northeastern Brazil (Squamata Tropiduridae) Herpetologica 46 462ndash467

MrsquoCloskey RT amp Hecnar ESJ (1994) Interspecific spatial overlap Oikos 71 65ndash74

Meira KT Faria RG Silva MDM Miranda VT amp Zahn-Silva W (2007) Histoacuteria natural de Tropidurus oreadicus em uma aacuterea de cerrado rupestre do Brasil Central Biota Neotropica 7 155ndash163

Mesquita DO Costa GC amp Colli GR (2006) Ecology of an Amazonian savanna lizard assemblage in Monte Alegre Paraacute state Brazil South American Journal of Herpetology 1 61ndash71

Milstead WW (1965) Changes in competing populations of whiptail lizards (Cnemidophorus) in southwestern Texas The American Midland Naturalist 7375ndash80

Nimer E (1972) Climatologia da Regiatildeo Nordeste do Brasil In Introduccedilatildeo agrave Climatologia Dinacircmica Revista Brasileira de Geografia 34 3ndash51

Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia Ecology 50 1012ndash 1030

Pianka ER (1973) The structure of lizard communities Annual Review of Ecology and Systematics 4 53ndash74

Pianka ER amp Vitt LJ (2003) Lizards Windows to The Evolution of Diversity Berkeley University of California Press 333 pp

Prado D (2005) As Caatingas da Ameacuterica do Sul In Ecologia e Conservaccedilatildeo da Caatinga 3ndash73 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ramos L amp Denisson S (1997) Notas sobre os habitats e microhabitats de duas espeacutecies simpaacutetricas de lagartos do gecircnero Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 29ndash34

Reis AMS Arauacutejo EL Ferraz EMN amp Moura AN (2006) Inter-annual variations in the floristic and population structure of an herbaceous community of ldquocaatingardquo vegetation in Pernambuco Brazil Revista Brasileira de Botacircnica 29 497ndash508

Ribeiro LB amp Freire EMX (2009) Tropidurus semitaeniatus (NCN) Drinking behavior Herpetological Review 40 228ndash229

Ribeiro LB amp Freire EMX (2010) Thermal ecology and thermoregulatory behaviour of Tropidurus hispidus and T semitaeniatus in a caatinga area of northeastern Brazil Herpetological Journal 20 201ndash208

Ribeiro LB amp Freire EMX (2011) Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) in a caatinga area of northeastern Brazil Iheringia Seacuterie Zoologia 101 225ndash232

Ricklefs RE Cochran D amp Pianka ER (1981) A morphological analysis of the structure of communities of lizards in desert habitats Ecology 62 1474ndash1478

Rocha CFD amp Bergallo HG (1990) Thermal biology and flight distance of Tropidurus oreadicus (Sauria Iguanidae) in an area of Amazonian Brazil Ethology Ecology amp Evolution 2 263ndash268

Rocha CFD amp Bergallo HG (1992) Tropidurus torquatus (collared lizard) diet Herpetological Review 25 69

Rodrigues MT (1984) Uma nova espeacutecie brasileira de

FFA Gomes et a l

39

Tropidurus com crista dorsal (Sauria Iguanidae) Papeacuteis Avulsos de Zoologia 35 169ndash175

Rodrigues MT (1987) Sistemaacutetica ecologia e zoogeografia dos Tropidurus do grupo torquatus ao sul do Rio Amazonas (Sauridae Iguanidae) Arquivos de Zoologia 31 105ndash230

Rodrigues MT (2005) Herpetofauna da Caatinga In Ecologia e Conservaccedilatildeo da Caatinga 181ndash236 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ruiz-Esparza J Gouveia SF Rocha PA Ribeiro AS amp Ferrari SF (2011) Birds of the Grota do Angico Natural Monument in the semi-arid caatinga scrublands of northeastern Brazil Biota Neotropica 11 1ndash8

Santos GMM Delabie JHC amp Resende JJ (1999) Caracterizaccedilatildeo da mirmecofauna (Hymenoptera-Formicidae) associada agrave vegetaccedilatildeo perifeacuterica de inselbergs (caatinga-arboacuterea-estacional-semi-deciacutedua) em Itatim ndash Bahia ndash Brasil Sitientibus 20 33ndash43

Sampaio EVSB (1995) Overview of the Brazilian Caatinga In Seasonally Dry Forests 35ndash58 Bullock HA Mooney HA amp Medina E (eds) Reino Unido Cambridge University Press

Schoener TW (1975) Presence and absence of habitat shift in some widespread lizards species Ecological Monographs 45 233ndash258

Silva VN amp Arauacutejo AFB (2008) Ecologia dos Lagartos Brasileiros 1st ed Rio de Janeiro Technical Books 271p

Simpson EH (1949) Measurement of diversity Nature 163 688

Somers KM (1986) Multivariate allometry and removal of size with principal components analysis Systematic Zoology 35 359ndash368

Teixeira-Filho P Rocha CFD amp Ribas S (1996) Ecologia termal e uso do habitat por Tropidurus torquatus (Sauria Tropiduridae) em uma aacuterea de restinga do sudeste do Brasil In Herpetologia Neotropical 255ndash267 Peacutefaur JE (ed) Actas del II Congreso Latinoamericano de Herpetologia II Volumen Universidad de Los Andes Merida Venezuela Consejo de Publicaciones

Toft CA (1985) Resource partitioning in amphibians and reptilies Copeia 1 1ndash21

VanSluys M (1992) Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae) em uma aacuterea do sudeste do Brasil Revista Brasileira de Biologia 52 181ndash185

VanSluys M (1993) Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Journal of Herpetology 27 347ndash351

VanSluys M (1995) Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Ciecircncia e Cultura 47 61ndash65

VanSluys M Rocha CFD Vrcibradic D Galdino CAB amp Fontes AF (2004) Diet activity and microhabitat use of two syntopic Tropidurus species (Lacertilia Tropiduridae) in Minas Gerais Brazil Journal of Herpetology 38 606ndash611

Vitt LJ (1981) Lizard reproduction habitat specificity and constraints on relative clutch mass The American Naturalist 117 506ndash514

Vitt LJ (1991) An introduction to the ecology of cerrado lizards Journal of Herpetology 25 79ndash90

Vitt LJ (1993) Ecology of isolated open-formation Tropidurus (Reptilia Tropiduridae) in Amazonian lowland rain forest Canadian Journal of Zoology 71 2370ndash2390

Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil Occasional Papers of the Oklahoma Museum of Natural History 1 29ndash34

Vitt LJ Zani PA amp Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia Journal of Tropical Ecology 12 81ndash101

Vitt LJ Caldwell JP Zani PA amp Titus TA (1997) The role of habitat shift in the evolution of lizard morphology evidence from tropical Tropidurus Proceedings of the National Academy of Sciences 94 3828ndash3832

Vitt LJ amp Carvalho CM (1995) Niche partitioning in a tropical wet season lizards in the Lavrado area of Northern Brazil Copeia 2 305ndash329

Vitt LJ amp Pianka ER (1994) Introduction and Acknowledgments In Lizard Ecology Historical and Experimental Perspectives 9ndash12 Vitt LJ amp Pianka ER (eds) Princeton University Press 403 pp

Vitt LJ amp Zani PA (1998) Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14 63ndash86

Vrcibradic D amp Rocha CFD (1998) Ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil Journal of Herpetology 32 229ndash237

Webb CO Ackerly DD McPeek MA amp Donoghue MJ (2002) Phylogenies and community ecology Annual Review of Ecology and Systematics 33 475ndash505

Zug GR Vitt LJ amp Caldwell JP (2001) Herpetology An Introductory Biology of Amphibians and Reptiles 2nd ed San Diego Academic Press 630 pp

Accepted 8 July 2014

Interact ion of sympatr ic Tropidur idae

30

FFA Gomes et a l

Tabl

e 1

Des

crip

tive

data

for

mor

phol

ogic

al c

hara

cter

istics

of r

epro

ducti

ve in

divi

dual

s of

T h

ispi

dus

and

T s

emita

enia

tus

in t

he C

onse

rvati

on U

nit

of t

he S

tate

M

onum

ento

Nat

ural

Gro

ta d

o An

gico

Poccedil

o Re

dond

o - S

E L

inea

r mea

sure

men

ts a

re in

mill

imet

res

the

wei

ght i

s in

gra

ms

and

valu

es in

par

enth

eses

refe

r to

size-

adju

sted

var

iabl

es

Trop

idur

us se

mita

enia

tus

Trop

idur

us h

ispid

us

Varia

bles

Fem

ales

(n=9

)M

ales

(n=1

2)Fe

mal

es (n

=9)

Mal

es (n

=9)

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Body

size

352

plusmn05

32

68ndash4

25

648

plusmn13

43

48ndash8

33

105

0plusmn2

197

81ndash1

358

155

5plusmn6

342

09ndash2

399

Mas

s6

99plusmn1

00

585

ndash90

014

69plusmn

391

800

ndash20

2523

48plusmn

553

165

0ndash31

00

312

2plusmn14

17

142

5ndash52

00

(00

52plusmn0

110

)(-0

068

ndash02

42)

(-00

94plusmn0

268

)(-0

846

ndash01

60)

(00

75plusmn0

127

)(-0

085

ndash03

27)

(00

04plusmn0

061

)(-0

100

ndash00

81)

SVL

651

6plusmn3

6759

69-

719

979

68plusmn

456

731

7ndash87

32

840

5plusmn7

9074

16-

961

195

54plusmn

136

471

19ndash

114

08(0

047

plusmn00

20)

(00

17ndash0

073

)(0

073

plusmn00

14)

(00

49ndash0

095

)(0

017

plusmn00

15)

(-00

10ndash0

043

)(-0

028

plusmn00

65)

(-01

25ndash0

110

)Bo

dy w

idth

202

5plusmn1

5417

61ndash

223

723

08plusmn

414

152

3ndash29

83

250

0plusmn2

0619

74-

282

124

82plusmn

404

164

2ndash31

06

(00

97plusmn0

030

)(0

043

ndash01

33)

(00

86plusmn0

061

)(-0

062

ndash01

76)

(00

46plusmn0

039

)(-0

015

ndash01

01)

(-00

62plusmn0

056

)(-0

148

ndash00

32)

Body

hei

ght

745

plusmn11

15

36ndash9

10

848

plusmn10

96

64ndash9

93

140

7plusmn1

4611

22ndash

163

915

64plusmn

439

439

ndash22

09(0

015

plusmn00

60)

(-01

00ndash0

097

)(-0

021

plusmn00

54)

(-01

67ndash0

048

)(0

077

plusmn00

55)

(-00

07ndash0

162

)(-0

055

plusmn01

01)

(-02

26ndash0

073

)He

ad w

idth

120

3plusmn0

7311

04ndash

135

015

61plusmn

172

112

5ndash18

00

171

9plusmn1

7115

21ndash

197

419

93plusmn

395

116

2ndash23

99

(00

11plusmn0

020

)(-0

017

ndash00

49)

(00

57plusmn0

037

)(-0

020

ndash01

02)

(00

16plusmn0

020

)(-0

018

ndash00

49)

(-00

32plusmn0

047

)(-0

109

ndash00

45)

Head

leng

th17

16plusmn

164

125

7ndash18

84

214

4plusmn1

8117

24ndash

248

023

64plusmn

239

208

5ndash26

86

326

1plusmn18

45

168

1ndash91

82

(00

08plusmn0

044

)(-0

112

ndash00

43)

(00

44plusmn0

019

)(0

014

ndash00

79)

(00

02plusmn0

013

)(-0

017

ndash00

33)

(-00

01plusmn0

177

)(-0

153

ndash05

62)

Head

hei

ght

580

plusmn03

74

97ndash6

37

717

plusmn07

65

44ndash8

40

103

1plusmn1

009

23ndash1

240

120

2plusmn3

304

18ndash1

777

(-00

26plusmn0

022

)(-0

067

ndash00

02)

(-00

10plusmn0

029

)(-0

069

ndash00

30)

(00

42plusmn0

025

)(0

002

ndash00

76)

(-00

42plusmn0

061

)(-0

127

ndash00

84)

Tail

leng

th98

60

plusmn67

589

72ndash

116

8713

155

plusmn12

5110

487

ndash149

18

122

44plusmn1

716

887

2ndash14

131

144

13plusmn1

902

111

62ndash1

713

6(-0

004

plusmn00

28)

(-00

36ndash0

070

)(0

078

plusmn00

42)

(-00

10ndash0

148

)(-0

111

plusmn00

56)

(-01

11ndash0

056

)(-0

014

plusmn00

55)

(-00

82ndash0

080

)Fo

rele

g le

ngth

326

6plusmn1

6429

99ndash

350

039

83plusmn

303

932

55ndash

444

340

41plusmn

256

361

3ndash43

83

460

5plusmn7

6233

27ndash

564

0(0

044

plusmn00

18)

(00

06ndash0

063

)(0

073

plusmn00

19)

(00

40ndash0

106

)(0

009

plusmn00

23)

(-00

42ndash0

042

)(-0

029

plusmn00

53)

(-01

14ndash0

074

)Hi

nd li

mb

leng

th45

25plusmn

262

402

1ndash48

89

570

5plusmn3

8249

61ndash

629

457

64plusmn

365

505

0ndash62

82

681

5plusmn9

7950

56ndash

807

2(0

022

plusmn00

20)

(-00

12ndash0

043

)(0

066

plusmn00

11)

(00

50ndash0

085

)(0

001

plusmn00

23)

(-00

42ndash0

034

)(-0

018

plusmn00

51)

(-00

97ndash0

090

)

31

Interact ion of sympatr ic Tropidur idae

nT hispidus=422 and nT semitaeniatus=1338) Tropidurus hispidus was most often observed in shaded (3871) and mosaic sites (3776) whereas T semitaeniatus was most often found at sites exposed to the sun (3638) followed by mosaic sites (3443) (Fig 2D) The difference between species was significant (T=8597 df=364 plt0001 nT

hispidus=421 and nT semitaeniatus =1333)Tropidurus hispidus and T semitaeniatus showed the same temporal activity patterns (G=82992 gl=11 p=06863 nT hispidus=422 and nT semitaeniatus=1356) Both species were bi-modally active Tropidurus hispidus activity was highest between 0800 and 1100 hours declining at midday and rising again between 1400 and 1600 (Fig 2E) For T semitaeniatus the highest peaks occurred between 0700 and 1000 and between 1400 and 1700 (Fig 2E) The niche widths for activity times were 1078 and 1041 for T hispidus and T semitaeniatus respectively with a high overlap of these schedules ( φ

jk=092) The two species were indiscernible with regard to activity when sighted (G=04808 gl=4 p=09753 nT hispidus=461 and nT semitaeniatus=1338) A standing position dominated for both T hispidus (8178) and T semitaeniatus (8079) (Fig 2F) Running for shelter was the main activity after having been encountered for both species (Tropidurus hispidus 6580 T semitaeniatus 7427) (Fig 2G) without statistical differences (G=72499 gl=6 p=02984 nT hispidus=421 and nT semitaeniatus=1337) Similar shelters were chosen by the two species (G=133158 gl=7 p=00648 nT hispidus=421 and nT semitaeniatus=1331) Rocks were used most frequently (T hispidus 6674 and T semitaeniatus 8136) followed by crevices (T hispidus 1069 and T semitaeniatus 1254) (Fig 2H) Niche width for shelters use was 211 and 147 for T hispidus and T semitaeniatus respectively with a high overlap ( φ jk = 099) Adult T hispidus were larger than T semitaeniatus (ANOVA F136=42119 plt0001 n=382 Table 1) Average SVL of T hispidus was 9268plusmn1358 mm for adults and 6391plusmn1413 mm for juveniles average SVL of T semitaeniatus adults and young was 7366plusmn904 mm and 5555plusmn1303 mm respectively The size-adjusted masses (adults) were similar between the species (ANOVA F128=1283 p=0267 n=30 Table 1) Adults and young of T hispidus had masses of 3208plusmn1151 g and 1095plusmn646 g T semitaeniatus weighed 1219plusmn506 g and 507plusmn381 g respectively (Tables 1 and 2)

Trop

idur

us se

mita

enia

tus

Trop

idur

us h

ispid

us

Varia

bles

Fem

ales

(n=1

3)M

ales

(n=1

7)Fe

mal

es (n

=15)

Mal

es (n

=18)

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Body

size

100

plusmn04

90

25ndash2

01

295

plusmn16

00

75ndash6

17

388

plusmn17

81

37ndash6

84

395

plusmn17

11

15ndash6

44

Mas

s1

96plusmn0

88

075

ndash35

05

62plusmn3

84

110

ndash13

007

77plusmn3

78

200

ndash15

258

07plusmn3

38

250

ndash12

50(-0

009

plusmn00

63)

(-01

40ndash0

072

)(-0

015

plusmn00

74)

(-01

59ndash0

112

)(-0

029

plusmn01

11)

(-02

64ndash0

068

)(0

035

plusmn00

40)

(-00

24ndash0

104

)SV

L44

22plusmn

782

269

6ndash56

84

596

5plusmn10

67

416

7ndash72

76

574

2plusmn10

99

399

1ndash72

71

579

1plusmn8

7238

82ndash

693

6(-0

094

plusmn00

72)

(-02

76ndash-

000

8)(0

010

plusmn00

54)

(-00

98ndash0

075

)(-0

025

plusmn00

61)

(-01

67ndash0

031

)(-0

020

plusmn00

40)

(-01

35ndash0

022

)Bo

dy w

idth

117

2plusmn2

216

93ndash1

468

164

5plusmn3

7610

87ndash

226

615

38plusmn

330

112

6ndash21

02

154

4plusmn3

044

105

0ndash19

44

(-01

05plusmn0

086

)(-0

306

ndash-0

006)

(00

05plusmn0

073

)(-0

122

ndash00

92)

(-00

41plusmn0

060

)(-0

120

ndash00

45)

(-00

40plusmn0

058

)(-0

143

ndash00

35)

Body

hei

ght

465

plusmn11

53

37ndash7

69

626

plusmn14

803

51ndash8

73

889

plusmn21

65

38ndash1

230

897

plusmn23

25

57ndash1

219

(-01

13plusmn0

089

)(-0

256

ndash00

78)

(-00

53plusmn0

079

)(-0

224

ndash00

46)

(00

71plusmn0

068

)(-0

058

ndash01

43)

(00

72plusmn0

074

)(-0

036

ndash01

73)

Head

wid

th9

07plusmn1

80

606

ndash11

9411

91plusmn

243

762

ndash15

7212

05plusmn

171

933

ndash14

5012

28plusmn

180

920

ndash15

14(-0

082

plusmn00

74)

(-02

21ndash0

019

)(0

007

plusmn00

62)

(-01

34ndash0

075

)(-0

002

plusmn00

31)

(-00

57ndash0

053

)(0

004

plusmn00

34)

(-00

59ndash0

070

)He

ad le

ngth

129

6plusmn1

899

33ndash1

555

159

4plusmn3

129

45ndash2

022

175

7plusmn2

6013

14ndash

222

317

63plusmn

246

125

5ndash21

52

(-00

70plusmn0

057

)(-0

185

ndash00

10)

(-00

18plusmn0

075

)(-0

248

ndash00

47)

(00

10plusmn0

031

)(-0

062

ndash00

58)

(00

10plusmn0

033

)(-0

075

ndash00

53)

Head

hei

ght

402

plusmn05

52

99ndash4

97

562

plusmn09

83

99ndash7

20

744

plusmn10

95

71ndash8

73

773

plusmn12

25

69ndash9

55

(-01

20plusmn0

054

)(-0

224

ndash-0

049)

(-00

27plusmn0

044

)(-0

112

ndash00

30)

(00

72plusmn0

030

)(0

028

ndash01

32)

(00

86plusmn0

035

)(0

027

ndash01

61)

Tail

leng

th81

15plusmn

163

853

34ndash

102

4510

703

plusmn20

9876

87ndash

150

9097

02plusmn

118

475

06ndash

112

8797

32plusmn

119

269

96ndash

119

44(-0

072

plusmn00

89)

(-02

31ndash0

046

)(0

033

plusmn00

65)

(-00

73ndash0

144

)(-0

019

plusmn00

43)

(-00

91ndash0

056

)(-0

018

plusmn00

46)

(-01

18ndash0

058

)Fo

rele

g le

ngth

232

4plusmn4

2413

97ndash

293

730

57plusmn

572

194

6ndash37

79

294

0plusmn4

7721

03ndash

358

728

47plusmn

414

197

2ndash35

55

(-00

81plusmn0

077

)(-0

270

ndash00

13)

(00

15plusmn0

063

)(-0

135

ndash01

02)

(-00

17plusmn0

047

)(-0

112

ndash00

41)

(-00

31plusmn0

040

)(-0

136

ndash00

26)

Hind

lim

b le

ngth

343

7plusmn5

5522

80ndash

434

444

36plusmn

755

311

5ndash53

59

434

5plusmn5

9532

67ndash

503

843

08plusmn

635

310

8ndash52

01

(-00

75plusmn0

064

)(-0

224

ndash-0

008)

(00

12plusmn0

055

)(-0

097

ndash00

77)

(-00

11plusmn0

039

)(-0

087

ndash00

24)

(-00

16plusmn0

043

)(-0

105

ndash00

40)

Tabl

e 2

Des

crip

tive

data

for m

orph

olog

ical

cha

ract

eristi

cs o

f non

-rep

rodu

ctive

indi

vidu

als

of T

hisp

idus

and

T s

emita

enia

tus

in th

e Co

nser

vatio

n U

nit o

f the

Sta

te

Mon

umen

to N

atur

al G

rota

do

Angi

co P

occedilo

Redo

ndo

- SE

Lin

ear m

easu

rem

ents

are

in m

illim

etre

s th

e w

eigh

t is

in g

ram

s an

d va

lues

in p

aren

thes

es re

fer

to s

ize-

adju

sted

var

iabl

es

32

FFA Gomes et a l

Both T hispidus (7867) and T semitaeniatus (8303) preferred sunny days (Fig 2C) without differences between them (G=14534 gl=3 p=06931 nT hispidus=422 and nT semitaeniatus=1338) Tropidurus hispidus was most often observed in shaded (3871) and mosaic sites (3776) whereas T semitaeniatus was most often found at sites exposed to the sun (3638) followed by mosaic sites (3443) (Fig 2D) The difference between species was significant (T=8597 df=364 plt0001 nT

hispidus=421 and nT semitaeniatus =1333)

Tropidurus hispidus and T semitaeniatus showed the same temporal activity patterns (G=82992 gl=11 p=06863 nT hispidus=422 and nT semitaeniatus=1356) Both species were bi-modally active Tropidurus hispidus activity was highest between 0800 and 1100 hours declining at midday and rising again between 1400 and 1600 (Fig 2E) For T semitaeniatus the highest peaks occurred between 0700 and 1000 and between 1400 and 1700 (Fig 2E) The niche widths for activity times were 1078 and 1041 for T hispidus and T semitaeniatus

Taxon Availability Tropidurus semitaeniatus (n=60) Tropidurus hispidus (n=60)

n n F F n n V (mm3) V F F n n V (mm3) V

Acarina 268 074 2 333 2 014 039 000 4 667 14 049 71176 231

Araneae 523 145 20 3333 35 236 27219 227 16 2667 26 090 69893 226

Blattaria 272 076 1 007 5 833 5 017 9811 032

Chilopoda 8 002 1 167 1 007 122 010 1 167 1 003 57009 185

Coleoptera 3497 971 19 3167 32 216 13121 109 36 6000 98 341 148896 482

Dermaptera 3 001

Diplopoda 92 026 1 167 1 003 2925 009

Diplura 1 000

Diptera 5386 1495 15 2500 33 223 24458 204 10 1667 12 042 10033 033

Embioptera 1 000

Ephemeoptera 6 002

Gastropoda 24 007 2 333 4 027 3754 031 1 167 1 003 347 001

Hemiptera 20 006 2 333 2 007 30919 100

Homoptera 56 016 2 333 5 034 1739 014 3 500 10 035 2731 009

Hymenoptera 24908 6916 54 9000 989 6682 277634 2313 56 9333 2088 7265 867513 2811

Isopoda 9 002 1 167 1 003 2028 007

Isoptera 72 020 7 1167 39 264 4505 038 8 1333 412 1434 114157 370

Insect larvae 118 033 30 5000 309 2088 767065 6390 30 5000 175 609 1342030 4348

Lepidoptera 693 192 15 2500 21 142 32576 271 15 2500 22 077 39560 128

Mantodea 1 lt001

Organic material 5 833 055 00046 17 2833 1730 560

Mecoptera 1 lt001

Neuroptera 6 002

Odonata 3 001

Opilionidae 13 004

Orthoptera 4 667 4 027 45371 378 4 667 4 014 144351 468

Protura 2 001 000

Pseudoscorpionida 14 004 2 333 4 027 461 004 1 167 2 007 187 001

Pscoptera 1 lt001 000

Scorpionida 12 003 1 167 1 007 1299 011

Siphonoptera 1 lt001

Strepsitera 1 lt001

Thrichoptera 1 lt001

Thysanura 2 001

TOTAL 36015 100 1480 100 1200516 100 2874 100 3086566 100

B 202 296 206 226

Table 3 Summary of prey availability and diets of Tropidurus hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo - SE n ndash number of prey n ndash percentage of prey F ndash frequency of prey V ndash volume V ndash percentage of volume

33

Interact ion of sympatr ic Tropidur idae

respectively with a high overlap of these schedules ( φ

jk=092) The two species were indiscernible with regard to

activity when sighted (G=04808 gl=4 p=09753 nT

hispidus=461 and nT semitaeniatus=1338) A standing position dominated for both T hispidus (8178) and T semitaeniatus (8079) (Fig 2F) Running for shelter was the main activity after having been encountered for both species (Tropidurus hispidus 6580 T semitaeniatus 7427) (Fig 2G) without statistical differences (G=72499 gl=6 p=02984 nT hispidus=421 and nT

semitaeniatus=1337) Similar shelters were chosen by the two species (G=133158 gl=7 p=00648 nT hispidus=421 and nT semitaeniatus=1331) Rocks were used most frequently (T hispidus 6674 and T semitaeniatus 8136) followed by crevices (T hispidus 1069 and T semitaeniatus 1254) (Fig 2H) Niche width for shelters use was 211 and 147 for T hispidus and T semitaeniatus respectively with a high overlap ( φjk = 099)

Adult T hispidus were larger than T semitaeniatus (ANOVA F136=42119 plt0001 n=382 Table 1) Average SVL of T hispidus was 9268plusmn1358 mm for adults and 6391plusmn1413 mm for juveniles average SVL of T semitaeniatus adults and young was 7366plusmn904 mm and 5555plusmn1303 mm respectively The size-adjusted masses (adults) were similar between the species (ANOVA F128=1283 p=0267 n=30 Table 1) Adults and young of T hispidus had masses of 3208plusmn1151 g and 1095plusmn646 g T semitaeniatus weighed 1219plusmn506 g and 507plusmn381 g respectively (Tables 1 and 2)

The first and second principal components of a PCA together explained 70 of the variation in morphology of the two species The first principal component was related to SVL anterior and posterior limb length and head width The two species did not significantly differ in shape (MANOVA Wilkrsquos Lambda=0893 p=0566) although T hispidus is slightly larger than T semitaeniatus with a larger and higher head longer limbs and a higher body

A total of 60 stomachs were analysed for T semitaeniatus and T hispidus each Eighteen prey categories were used by T hispidus and 15 were used by T semitaeniatus The most frequent prey categories for T hispidus were Hymenoptera Coleoptera insect larvae Araneae and Lepidoptera The corresponding groups for T semitaeniatus were Hymenoptera insect larvae Araneae Coleoptera Diptera and Lepidoptera The most abundant prey types were Hymenoptera and Isoptera for T hispidus and Hymenoptera and insect larvae for T semitaeniatus Highest prey volumes were represented by insect larvae and Hymenoptera for T hispidus and insect larvae and Hymenoptera for T semitaeniatus (Table 3) Formicidae represented 9995 of the Hymenoptera ingested by the two species (Table 3) Both species also consumed plant material (28 of T hispidus individuals representing 60 of the volume of food consumed and 833 of T semitaeniatus representing 00046 of food volume

The trophic niche widths estimated for T hispidus and T semitaeniatus were 206 and 202 for prey number and 226 and 296 for prey volume respectively Overlap

was higher with regards to prey number ( φjk=096 prey volume φ jk=097) but prey number and prey volume were significantly different from each other (prey number KolmogorovndashSmirnov Dmax=01584 plt001 prey volume KolmogorovndashSmirnov Dmax=01816 plt001 Table 3) A total of 36015 invertebrates distributed into 33 categories were used to estimate prey availability in the environment The distribution of available prey differed from the consumed prey for both species (T hispidus Dmax=02267 plt001 T semitaeniatus Dmax=02294 plt001)

The mean number of prey categories consumed for each species was seven (T semitaeniatus 5ndash11 T hispidus 4ndash11) Five categories comprised more than 10 in at least one monthly sample for T hispidus (Hymenoptera insect larvae Isoptera Coleoptera and Lepidoptera) and four of these also comprised more than 10 in at least one monthly sample for T semitaeniatus (all except Lepidoptera) The largest niche widths (B) were observed in February (254) June (248) April (245) and May (204) for T hispidus and in July (310) February (289) June (284) and May (221) for T semitaeniatus Diet overlap was high (Oslashgt050) in all months except April (011) and December (020) However significant differences between the diets were found in December February April May and August (Table 4)

The proportion of items most used in the diets was similar to available prey in January April September and October for T hispidus and in December January September and October for T semitaeniatus (Table 4) The prey availability occurred between December 2008 and March 2009 and between October and November 2009 (Table 4) The numbers of available prey categories ranged from eight (August) to 19 (February) The highest diversity of available prey was observed in May (378) (Table 4)

Focusing on the two most common food items Hymenoptera were most abundantly available in December 2008 and January 2009 and between September and November 2009 (Table 4) Tropidurus semitaeniatus largely consumed Hymenoptera (over 50 of diet) in the months of December 2008 January March and July to November 2009 whereas insect larvae were more consumed in February April May and June For T hispidus Hymenoptera comprised gt50 of the diet in all month except December and February (Table 4) Insect larvae never exceeded 50 of the number of prey consumed

A strong relationship was seen when comparing the morphology of the head of each species Tropidurus with the dimensions of prey actually consumed by them (Table 5) The first canonical variable for T semitaeniatus showed an inverse relationship in which animals with narrower heads were related to larger prey (Table 5) Already T hispidus for the first canonical variable was significantly positive for the relation between animals with large heads and longer prey (Table 5)

34

FFA Gomes et a l

Dece

mbe

rJa

nuar

yFe

brua

ryM

arch

April

May

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

(126

)(4

51)

(407

2)(9

0)(5

05)

(141

85)

(73)

(83)

(430

8)(1

07)

(151

)(3

895)

(178

)(4

5)(7

99)

(108

)(2

67)

(826

)Ac

arin

a1

650

590

570

070

030

750

36Ar

anea

e1

590

440

612

250

200

731

371

201

183

740

631

826

133

700

75Bl

attar

ia0

440

101

120

200

480

260

100

380

370

12Ch

ilopo

da0

220

010

030

48Co

leop

tera

317

044

447

562

079

851

274

361

474

093

125

137

62

2524

44

160

20

934

8718

52

Derm

apte

ra0

08Di

plop

oda

009

138

037

763

Dipl

ura

002

Dipt

era

142

91

922

250

592

874

8247

47

187

188

447

215

77

377

7Em

biop

tera

013

Ephe

meo

pter

a0

75Ga

stro

poda

100

109

Hem

ipte

ra0

010

020

030

371

21Ho

mop

tera

007

001

063

093

037

073

Hym

enop

tera

793

716

41

908

480

90

906

986

75

397

346

99

389

784

11

800

028

11

337

577

852

44

314

865

17

284

5Is

opod

a0

22Is

opte

ra0

7981

82

002

112

634

424

70

911

870

562

220

631

120

61In

sect

larv

a0

790

223

370

016

8540

96

042

093

938

036

932

64

443

7559

26

250

91

94Le

pido

pter

a2

250

592

742

415

646

546

2510

94

056

111

10

501

851

120

85M

anto

dea

002

Mec

opte

ra0

02N

euro

pter

aO

dona

ta0

05O

pilio

nida

e0

03O

rtho

pter

a1

121

850

37Pr

otur

a0

010

02Ps

eudo

scor

pion

ida

002

411

025

024

Pscoacute

pter

a0

02Sc

orpi

onid

a0

050

020

050

13Si

phon

opte

ra0

02St

reps

itera

002

Thric

hopt

era

002

Thys

anur

a0

01 B

153

143

121

151

121

131

289

254

261

140

153

322

115

245

302

221

204

378

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

099

010

gt00

51

000

08gt0

05

044

050

lt00

10

540

54lt0

01

010

089

lt00

10

300

63lt0

01

Th x

Disp

020

082

lt00

10

990

11gt0

05

054

044

lt00

10

540

57lt0

01

094

018

gt00

50

550

61lt0

01

Ts x

Th

020

080

lt00

10

990

09gt0

05

059

030

lt00

10

990

08gt0

05

011

078

lt00

10

750

36lt0

01

Tabl

e 4

Mon

thly

dist

ributi

on o

f foo

d av

aila

bilty

(D) a

nd o

f the

sto

mac

h co

nten

ts o

f T h

ispi

dus

(Th)

and

T s

emita

enia

tus

(Ts)

in t

he C

onse

rvati

on U

nit

of t

he S

tate

M

onum

ento

Nat

ural

Gro

ta d

o An

gico

Poccedil

o Re

dond

o - S

E (B

razil

) Th

e va

lues

in p

aren

thes

es re

fer t

o th

e nu

mbe

r of i

nver

tebr

ates

per

sam

ple

35

Interact ion of sympatr ic Tropidur idae

Tabl

e 4

(Con

tinue

d)

June

July

Augu

stSe

ptem

ber

Oct

ober

Nov

embe

rTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

D

(95)

(120

)(9

33)

(59)

(156

)(8

99)

(46)

(63)

(219

)(1

50)

(170

)(1

023)

(240

)(5

64)

(242

4)(2

09)

(294

)(2

432)

Acar

ina

169

011

317

042

160

223

214

Aran

eae

421

244

493

678

445

100

52

671

762

251

251

241

533

350

342

26Bl

attar

ia0

430

640

220

490

176

83Ch

ilopo

da0

111

690

11Co

leop

tera

421

732

202

63

396

4126

59

476

168

93

3312

35

181

80

421

425

901

444

0812

05

Derm

apte

raDi

plop

oda

150

Dipl

ura

Dipt

era

316

081

390

13

3913

90

435

913

067

059

225

042

239

096

354

Embi

opte

raEp

hem

eopt

era

Gast

ropo

da5

081

370

590

200

040

480

04He

mip

tera

081

032

011

046

008

Hom

opte

ra0

810

963

390

641

454

353

171

832

350

290

620

08Hy

men

opte

ra42

11

561

029

26

525

485

26

525

065

22

746

058

45

906

779

41

742

996

67

937

986

10

904

394

90

722

0Is

opod

a1

59Is

opte

ra1

6911

11

133

059

058

008

Inse

ct la

rva

410

528

46

236

186

47

050

2223

91

159

067

176

039

071

017

335

068

029

Lepi

dopt

era

316

244

021

169

033

217

183

059

039

083

071

Man

tode

aM

ecop

tera

Neu

ropt

era

064

Odo

nata

004

Opi

lioni

dae

039

012

021

Ort

hopt

era

105

081

059

018

Prot

ura

Pseu

dosc

orpi

onid

a1

050

350

080

21Ps

coacutept

era

Scor

pion

ida

067

029

004

Siph

onop

tera

Stre

psite

raTh

richo

pter

aTh

ysan

ura

B2

842

483

543

101

362

722

051

742

571

211

541

711

071

131

341

221

111

84

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

049

056

lt00

10

850

28lt0

01

089

001

lt00

10

980

17gt0

05

100

010

gt00

50

980

21lt0

05

Th x

Disp

056

056

lt00

10

560

39lt0

01

094

030

lt00

11

000

08gt0

05

100

009

gt00

50

990

23lt0

05

Ts x

Th

095

015

gt00

50

950

18gt0

05

093

025

lt00

10

990

11gt0

05

100

002

gt00

51

000

03gt0

05

36

DIsCUssION The presence of a species in an environment may be related to specific physiological needs improved access to food availability of resources presence of refuges morphological adaptations inter and intraspecific interactions as well as historical factors (Pianka 1973 Herfindal et al 2005 Borger et al 2006 Silva amp Arauacutejo 2008) The habitat and microhabitat chosen by a species should meet their essential needs to allow viable populations (Silva amp Arauacutejo 2008) In the study area T hispidus and T semitaeniatus largely were active on rocky substrates Such sites are able to maximise the uptake of heat necessary for thermoregulation both through direct exposure and contact with heated surfaces (Rocha amp Bergallo 1990 VanSluys 1992 Meira et al 2007)

Tropidurus semitaeniatus is considered to be a saxicolous species endemic of Caatinga environments whereas T hispidus occupies a generalist habitat in open formations of various biomes (Rodrigues 1987) Despite this variation in the use of microhabitats T hispidus tends towards a saxicolous habit in places where rocks are abundant Vitt et al (1997) found that where T hispidus use rocks individuals displayed greater dorso-ventral flattening than when in habitat areas without rocks This suggests that the flattening in these individuals could be adaptive to the use of cracks in rock outcrops In the present study no differences were established in body shape between the species

The preference of these species for rocks has been recorded in other localities and environments Tropidurus hispidus uses rocks in Caatinga environments (Vitt 1981 Dias amp Lira-da-Silva 1998 Kolodiuk et al 2009) in the Amazonian rainforest (Vitt amp Carvalho 1995 Vitt et al 1996 Vitt amp Zani 1998) Amazonian savannahs (Mesquita et al 2006) and fields in Minas Gerais (VanSluys et al 2004) T semitaeniatus uses rocky substrates in the Caatinga biome (Vitt 1981 Kolodiuk et al 2009 Ribeiro amp Freire 2010) and in Agreste Sergipe (Fernandes amp Oliveira 1997 Ramos amp Denisson 1997) The use of rocks is common to others species of the semitaeniatus group (T helenae and T pinima Rodrigues 1984 Manzani amp Abe 1990 Rodrigues 2005) as well as for several

Table 5 Canonical correlation between the measurements of the head and the size of prey of T hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo ndash SE (Brazil)

species of the torquatus group (T montanus T itambere and T oreadicus Rodrigues 1987 Faria amp Araujo 2004 VanSluys et al 2004 Meira et al 2007) Both species adopted vertical positions which were in most cases lt40 cm above ground (5064 and 5178 of observations for T hispidus and T semitaeniatus respectively) Teixeira-Filho et al (1996) suggest that layers close to the ground are heated up more quickly with advantages for thermoregulation and a consequently lower risk of predation and more time for other activities such as foraging

Tropidurus individuals were active throughout the data collection period Both species are sit-and-wait predators implying a shorter time searching for prey and more energy invested in prey capture than is the case for more active foragers (Dias amp Lira-da-Silva 1998 Pianka amp Vitt 2003) Similar findings were already obtained for T hispidus (Vitt 1995 Vitt amp Zani 1998 VanSluys et al 2004) T semitaeniatus (Vitt 1995) T torquatus (Bergallo amp Rocha 1993 Teixeira-Filho et al 1996 Hatano et al 2001) T itambere (VanSluys 1992 Faria amp Araujo 2004) T montanus (VanSluys et al 2004) and T oreadicus (Faria amp Araujo 2004 Meira et al 2007) The observed bimodal patterns of activity have previously been found by VanSluys (1992) for T itambere and by Vrcibradic amp Rocha (1998) for Mabuya frenata during the wet season at high temperatures The Caatinga biome is characterised by particularly hot temperatures (Prado 2005) explaining the observed bimodal pattern for the present study species

According to Huey amp Slatkin (1976) thermoregulation in diurnal lizards involves a set of behavioural activities and options for microhabitat use Displacement between environments with a differential exposure to sun will help to achieve the optimum temperature sought (Rocha amp Bergallo 1990 Vitt amp Carvalho 1995 Hatano et al 2001) We observed a preference for sunny days and exposure to sun was distributed between categories (sun mosaic shadow) for both species with T semitaeniatus having a preference for sun and T hispidus having a preference for shadow The difference in exposure adopted by each species may reflect their physiological needs Vitt (1995) and Ribeiro amp Freire (2010) verified that T semitaeniatus

FFA Gomes et a l

Tropidurus semitaeniatus Tropidurus hispidus

Canonical coefficients Canonical coefficients

Head 1st Canonical Variable 2nd Canonical Variable 1st Canonical Variable 2nd Canonical Variable

Length 165 645 025 123

Height -217 -686 136 028

Width 151 032 -064 -160

Prey

Greater Length 038 139 129 -164

Greater Width 068 -127 -035 206

Canonical Correlation c2 p Canonical Correlation c2 p

I 095 13634 lt00001 053 14437 00251

II 055 1883 lt00001 014 0865 06488

37

presents a mean body temperature that is higher than T hispidus In the study area of the present work T hispidus may prefer shady places to avoid negative effects of high temperatures (Teixeira-Filho et al 1996)

Ecological historical and behavioural factors must be considered when evaluating the reasons why certain species consume particular types of prey (Vitt amp Zani 1998 Pianka amp Vitt 2003) and morphological limitations may further interfere with the type of food consumed (Toft 1985 Magnusson amp Silva 1993) An opportunistic pattern in food use was observed for both species in this study given the strong correlation between use and availability The use of ants is widely observed in the diet of the genus Tropidurus and has been reported for several species (T hispidus Dias amp Lira-da-Silva 1998 T torquatus group Arauacutejo 1987 T itambere VanSluys 1995 T oreadicus and T spinulosos Colli et al 1992 T torquatus Bergallo amp Rocha 1994 T hispidus T oreadicus T semitaeniatus Vitt 1993 T semitaeniatus and T hispidus Ribeiro amp Freire 2011) Ants are abundant in the Caatinga (Santos et al 1999) Insect larvae were mainly used in the rainy season probably due to their higher availability during this period

For lizards prey composition is largely related to the type of foraging used and the habitat they occupy (Vitt 1991 Toft 1985) Diet overlap is common among sympatric species that hunt by stalking since they have a preference for active prey (Zug et al 2001 Silva amp Arauacutejo 2008) In periods of higher rainfall both species became more selective since the number of invertebrates in the environment was larger Tropidurus semitaeniatus changed their diet towards insect larvae which were not the most abundant prey category T hispidus continued to consume Hymenoptera as the main item in their diet Considering the reduction in availability of Hymenoptera during the rainy season it is likely that individuals of Tropidurus species broaden the diversity of food items to meet their daily nutritional needs The seasonal change in food habits of T semitaeniatus during the rainy season might be due to avoidance of competition during this period Head morphology is reflected in the consumption of prey of different dimensions it is expected that animals with larger heads consume larger prey (Pianka 1969) However this pattern was not observed for the target species of this study Since T semitaeniatus that has a smaller width head was observed consuming relatively larger prey whereas T hispidus with larger heads prefers more elongated prey Food availability in the environment probably best explains the observed pattern Besides invertebrates large quantities of plant material (flowers leaves and seeds) were found in stomachs and T hispidus consumed more plants than T semitaeniatus Ingestion of plant material in Tropidurus and other lizards is relatively common to provide energy as well as possibly water (Rocha amp Bergallo 1992 VanSluys 1993 Dias amp Lira-da-Silva 1998) In our study area the coexistence of T hispidus and T semitaeniatus on rocky outcrops is probably facilitated by small variations in spatial arrangement the morphology of the trophic apparatus and temporary niche shifts in their diets depending on rather unpredictable rainfall patterns

ACKNOWLEDGEMENTs

We thank Mr Manuel Messias and his entire family for their support in the collection area We are grateful to CAPES for providing the research grant and SISBIO for licensing the collection the Secretaria do Meio-Ambiente e Recursos Hiacutedricos de Sergipe (SEMARH SE) for support with transport to the area and other aid at UC and the Nuacutecleo de Pesquisa em Ecologia e Conservaccedilatildeo (NPEC) and the Universidade Federal de Sergipe (UFS) for logistical support The data collection was authorised by license number 19237-1 issued by SISBIO (System of Authorization and Information on Biodiversity)

REFERENCEs

Arauacutejo AFB (1987) Comportamento alimentar dos lagartos o caso dos Tropidurus da Serra dos Carajaacutes Paraacute (Sauria Iguanidae) In Anais de Etologia 203ndash234 Encontro Anual de Etologia (1987) Ribeiratildeo Preto Jaboticabal FUNEP 5

Bergallo HG amp Rocha D (1993) Activity patterns and body temperatures of two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics in southeastern Brazil Amphibia-Reptilia 14 312ndash315

Bergallo HG amp Rocha D (1994) Spatial and trophic niche differentiation in two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics Australian Journal of Ecology 19 72ndash75

Beacuternils RS amp Costa HC (2012) Reacutepteis brasileiros lista de espeacutecies Versatildeo 20122 Available from lthttpwwwsbherpetologiaorgbrgt Sociedade Brasileira de Herpetologia Accessed 2 October 2013

Borger L Franconi N De Michele G Gantz A et al (2006) Effects of sampling regime on the mean and variance of home range size estimates Journal of Animal Ecology 75 1393ndash1405

Carvalho ALG Brito MR amp Fernandes DS (2013) Biogeography of the lizard genus Tropidurus Wied-Neuwied 1825 (Squamata Tropiduridae) distribution endemism and area relationships in South America Public Library of Science 8 1ndash14

Carvalho CM Vilar JC amp Oliveira FF (2005) Reacutepteis e anfiacutebios In Parque Nacional Serra de Itabaiana - Levantamento da Biota 39ndash61 Carvalho CM and Vilar JC (eds) Aracaju Ibama Biologia Geral e Experimental ndash UFS

Chiang JCH amp Koutavas A (2004) Tropical Flip-flop connections Nature 432 684ndash685

Colli GR Arauacutejo AFB Silveira R amp Roma F (1992) Niche partitioning and morphology of two syntopic Tropidurus (Sauria Tropiduridae) in Mato Grasso Brazil Journal of Herpetology 26 66ndash69

Cooper Jr WE (1994) Prey chemical discrimination foraging mode and phylogeny In Lizard ecology historical and experimental perspectives 95ndash116 Vitt LJ amp Pianka ER (eds) New Jersey Princeton University Press

Dias EJR amp Lira-da-Silva RM (1998) Utilizaccedilatildeo dos recursos alimentares por quatro espeacutecies de lagartos (Phyllopezus pollicaris Tropidurus hispidus Mabuya macrorhyncha e Vanzossaura rubricauda) da caatinga (Usina Hidroeleacutetrica de Xingoacute) Brazilian Journal of Ecology 2 97ndash101

Faria RG amp Arauacutejo AFB (2004) Sintopy of two Tropidurus

Interact ion of sympatr ic Tropidur idae

38

lizard species (Squamata Tropiduridae) on a rocky cerrado habitat in Central Brazil Brazilian Journal of Biology 64 775ndash786

Fernandes ACM amp Oliveira EF (1997) Diversidade na dieta e aspectos reprodutivos de duas espeacutecies simpaacutetricas e sintoacutepicas de Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 35ndash40

Freitas MA amp Silva TFS (2007) Guia ilustrado A herpetofauna das caatingas e aacutereas de altitudes do Nordeste Brasileiro Pelotas USEB (Coleccedilatildeo Manuais de Campo USEB 6) 384 pp

Frost DR Rodrigues MT Grant T amp Titus TA (2001) Phylogenetics of the lizard genus Tropidurus (Squamata Tropiduridae Tropidurinae) Direct optimization descriptive efficiency and analysis of congruence between molecular data and morphology Molecular Plylogenetics and Evolution 21 352ndash371

Hatano FH Vrcibradic D Galdino CAB Cunha-Barros M et al (2001) Thermal ecology and activity patterns of the lizard community of the restinga of Jurubatiba Macaeacute RJ Revista Brasileira de Biologia 61 287ndash294

Herfindal I Linnell JDC Odden J Birkeland Nilsen E amp Andersen R (2005) Prey density environmental productivity and home-range size in the Eurasian lynx (Lynx lynx) Journal of Zoology 265 63ndash71

Huey RB amp Pianka ER (1977) Patterns of niche overlap among broadly sympatric versus narrowly sympatric Kalahari lizards (Scincidae Mabuya) Ecology 58 119ndash128

Huey RB amp Slatkin M (1976) Cost and benefits of lizard thermoregulation The Quarterly Review of Biology 51 363ndash384

Hutchinson GE (1957) Concluding remarks Cold Spring Harbour Symposium on Quantitative Biology 22 415ndash427

Janzen DH amp Schoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season Ecology 49 96ndash110

Jolicoeur P (1963) The multivariate generalization of the allometry equation Biometrics 19 497ndash499

Kolodiuk MF Ribeiro LB amp Freire EMX (2009) The effects of seasonality on the foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) living in sympatry in the caatinga of northeastern Brazil Revista Brasileira de Zoologia 26 581ndash585

Krol MS Jaegar A Bronstert A amp Krywkow J (2001) The semiarid integrated model (SDIM) a regional integrated model assessing water availability vulnerability of ecosystems and society in NE-Brazil Physics and Chemistry of the Earth 26 529ndash533

Losos JB (1990) Ecomorphology performance capability and scaling of west Indian Anolis lizards an evolutionary analysis Ecological Monographs 60 369ndash388

Losos JB (2008) Phylogenetic niche conservatism phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species Ecology Letters 11 995ndash1007

Magnusson WE amp Silva EV (1993) Relative effects of size season and species on the diets of some Amazonian Savanna lizards Journal of Herpetology 27 380ndash385

Magnusson WE Lima PA Silva WA amp Arauacutejo MC (2003) Use of geometric forms to estimate volume of invertebrates

in ecological studies of dietary overlap Copeia 2003 13ndash19Manzani PR amp Abe AS (1990) A new species of Tapinurus

from the Caatinga of Piauiacute Northeastern Brazil (Squamata Tropiduridae) Herpetologica 46 462ndash467

MrsquoCloskey RT amp Hecnar ESJ (1994) Interspecific spatial overlap Oikos 71 65ndash74

Meira KT Faria RG Silva MDM Miranda VT amp Zahn-Silva W (2007) Histoacuteria natural de Tropidurus oreadicus em uma aacuterea de cerrado rupestre do Brasil Central Biota Neotropica 7 155ndash163

Mesquita DO Costa GC amp Colli GR (2006) Ecology of an Amazonian savanna lizard assemblage in Monte Alegre Paraacute state Brazil South American Journal of Herpetology 1 61ndash71

Milstead WW (1965) Changes in competing populations of whiptail lizards (Cnemidophorus) in southwestern Texas The American Midland Naturalist 7375ndash80

Nimer E (1972) Climatologia da Regiatildeo Nordeste do Brasil In Introduccedilatildeo agrave Climatologia Dinacircmica Revista Brasileira de Geografia 34 3ndash51

Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia Ecology 50 1012ndash 1030

Pianka ER (1973) The structure of lizard communities Annual Review of Ecology and Systematics 4 53ndash74

Pianka ER amp Vitt LJ (2003) Lizards Windows to The Evolution of Diversity Berkeley University of California Press 333 pp

Prado D (2005) As Caatingas da Ameacuterica do Sul In Ecologia e Conservaccedilatildeo da Caatinga 3ndash73 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ramos L amp Denisson S (1997) Notas sobre os habitats e microhabitats de duas espeacutecies simpaacutetricas de lagartos do gecircnero Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 29ndash34

Reis AMS Arauacutejo EL Ferraz EMN amp Moura AN (2006) Inter-annual variations in the floristic and population structure of an herbaceous community of ldquocaatingardquo vegetation in Pernambuco Brazil Revista Brasileira de Botacircnica 29 497ndash508

Ribeiro LB amp Freire EMX (2009) Tropidurus semitaeniatus (NCN) Drinking behavior Herpetological Review 40 228ndash229

Ribeiro LB amp Freire EMX (2010) Thermal ecology and thermoregulatory behaviour of Tropidurus hispidus and T semitaeniatus in a caatinga area of northeastern Brazil Herpetological Journal 20 201ndash208

Ribeiro LB amp Freire EMX (2011) Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) in a caatinga area of northeastern Brazil Iheringia Seacuterie Zoologia 101 225ndash232

Ricklefs RE Cochran D amp Pianka ER (1981) A morphological analysis of the structure of communities of lizards in desert habitats Ecology 62 1474ndash1478

Rocha CFD amp Bergallo HG (1990) Thermal biology and flight distance of Tropidurus oreadicus (Sauria Iguanidae) in an area of Amazonian Brazil Ethology Ecology amp Evolution 2 263ndash268

Rocha CFD amp Bergallo HG (1992) Tropidurus torquatus (collared lizard) diet Herpetological Review 25 69

Rodrigues MT (1984) Uma nova espeacutecie brasileira de

FFA Gomes et a l

39

Tropidurus com crista dorsal (Sauria Iguanidae) Papeacuteis Avulsos de Zoologia 35 169ndash175

Rodrigues MT (1987) Sistemaacutetica ecologia e zoogeografia dos Tropidurus do grupo torquatus ao sul do Rio Amazonas (Sauridae Iguanidae) Arquivos de Zoologia 31 105ndash230

Rodrigues MT (2005) Herpetofauna da Caatinga In Ecologia e Conservaccedilatildeo da Caatinga 181ndash236 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ruiz-Esparza J Gouveia SF Rocha PA Ribeiro AS amp Ferrari SF (2011) Birds of the Grota do Angico Natural Monument in the semi-arid caatinga scrublands of northeastern Brazil Biota Neotropica 11 1ndash8

Santos GMM Delabie JHC amp Resende JJ (1999) Caracterizaccedilatildeo da mirmecofauna (Hymenoptera-Formicidae) associada agrave vegetaccedilatildeo perifeacuterica de inselbergs (caatinga-arboacuterea-estacional-semi-deciacutedua) em Itatim ndash Bahia ndash Brasil Sitientibus 20 33ndash43

Sampaio EVSB (1995) Overview of the Brazilian Caatinga In Seasonally Dry Forests 35ndash58 Bullock HA Mooney HA amp Medina E (eds) Reino Unido Cambridge University Press

Schoener TW (1975) Presence and absence of habitat shift in some widespread lizards species Ecological Monographs 45 233ndash258

Silva VN amp Arauacutejo AFB (2008) Ecologia dos Lagartos Brasileiros 1st ed Rio de Janeiro Technical Books 271p

Simpson EH (1949) Measurement of diversity Nature 163 688

Somers KM (1986) Multivariate allometry and removal of size with principal components analysis Systematic Zoology 35 359ndash368

Teixeira-Filho P Rocha CFD amp Ribas S (1996) Ecologia termal e uso do habitat por Tropidurus torquatus (Sauria Tropiduridae) em uma aacuterea de restinga do sudeste do Brasil In Herpetologia Neotropical 255ndash267 Peacutefaur JE (ed) Actas del II Congreso Latinoamericano de Herpetologia II Volumen Universidad de Los Andes Merida Venezuela Consejo de Publicaciones

Toft CA (1985) Resource partitioning in amphibians and reptilies Copeia 1 1ndash21

VanSluys M (1992) Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae) em uma aacuterea do sudeste do Brasil Revista Brasileira de Biologia 52 181ndash185

VanSluys M (1993) Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Journal of Herpetology 27 347ndash351

VanSluys M (1995) Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Ciecircncia e Cultura 47 61ndash65

VanSluys M Rocha CFD Vrcibradic D Galdino CAB amp Fontes AF (2004) Diet activity and microhabitat use of two syntopic Tropidurus species (Lacertilia Tropiduridae) in Minas Gerais Brazil Journal of Herpetology 38 606ndash611

Vitt LJ (1981) Lizard reproduction habitat specificity and constraints on relative clutch mass The American Naturalist 117 506ndash514

Vitt LJ (1991) An introduction to the ecology of cerrado lizards Journal of Herpetology 25 79ndash90

Vitt LJ (1993) Ecology of isolated open-formation Tropidurus (Reptilia Tropiduridae) in Amazonian lowland rain forest Canadian Journal of Zoology 71 2370ndash2390

Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil Occasional Papers of the Oklahoma Museum of Natural History 1 29ndash34

Vitt LJ Zani PA amp Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia Journal of Tropical Ecology 12 81ndash101

Vitt LJ Caldwell JP Zani PA amp Titus TA (1997) The role of habitat shift in the evolution of lizard morphology evidence from tropical Tropidurus Proceedings of the National Academy of Sciences 94 3828ndash3832

Vitt LJ amp Carvalho CM (1995) Niche partitioning in a tropical wet season lizards in the Lavrado area of Northern Brazil Copeia 2 305ndash329

Vitt LJ amp Pianka ER (1994) Introduction and Acknowledgments In Lizard Ecology Historical and Experimental Perspectives 9ndash12 Vitt LJ amp Pianka ER (eds) Princeton University Press 403 pp

Vitt LJ amp Zani PA (1998) Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14 63ndash86

Vrcibradic D amp Rocha CFD (1998) Ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil Journal of Herpetology 32 229ndash237

Webb CO Ackerly DD McPeek MA amp Donoghue MJ (2002) Phylogenies and community ecology Annual Review of Ecology and Systematics 33 475ndash505

Zug GR Vitt LJ amp Caldwell JP (2001) Herpetology An Introductory Biology of Amphibians and Reptiles 2nd ed San Diego Academic Press 630 pp

Accepted 8 July 2014

Interact ion of sympatr ic Tropidur idae

31

Interact ion of sympatr ic Tropidur idae

nT hispidus=422 and nT semitaeniatus=1338) Tropidurus hispidus was most often observed in shaded (3871) and mosaic sites (3776) whereas T semitaeniatus was most often found at sites exposed to the sun (3638) followed by mosaic sites (3443) (Fig 2D) The difference between species was significant (T=8597 df=364 plt0001 nT

hispidus=421 and nT semitaeniatus =1333)Tropidurus hispidus and T semitaeniatus showed the same temporal activity patterns (G=82992 gl=11 p=06863 nT hispidus=422 and nT semitaeniatus=1356) Both species were bi-modally active Tropidurus hispidus activity was highest between 0800 and 1100 hours declining at midday and rising again between 1400 and 1600 (Fig 2E) For T semitaeniatus the highest peaks occurred between 0700 and 1000 and between 1400 and 1700 (Fig 2E) The niche widths for activity times were 1078 and 1041 for T hispidus and T semitaeniatus respectively with a high overlap of these schedules ( φ

jk=092) The two species were indiscernible with regard to activity when sighted (G=04808 gl=4 p=09753 nT hispidus=461 and nT semitaeniatus=1338) A standing position dominated for both T hispidus (8178) and T semitaeniatus (8079) (Fig 2F) Running for shelter was the main activity after having been encountered for both species (Tropidurus hispidus 6580 T semitaeniatus 7427) (Fig 2G) without statistical differences (G=72499 gl=6 p=02984 nT hispidus=421 and nT semitaeniatus=1337) Similar shelters were chosen by the two species (G=133158 gl=7 p=00648 nT hispidus=421 and nT semitaeniatus=1331) Rocks were used most frequently (T hispidus 6674 and T semitaeniatus 8136) followed by crevices (T hispidus 1069 and T semitaeniatus 1254) (Fig 2H) Niche width for shelters use was 211 and 147 for T hispidus and T semitaeniatus respectively with a high overlap ( φ jk = 099) Adult T hispidus were larger than T semitaeniatus (ANOVA F136=42119 plt0001 n=382 Table 1) Average SVL of T hispidus was 9268plusmn1358 mm for adults and 6391plusmn1413 mm for juveniles average SVL of T semitaeniatus adults and young was 7366plusmn904 mm and 5555plusmn1303 mm respectively The size-adjusted masses (adults) were similar between the species (ANOVA F128=1283 p=0267 n=30 Table 1) Adults and young of T hispidus had masses of 3208plusmn1151 g and 1095plusmn646 g T semitaeniatus weighed 1219plusmn506 g and 507plusmn381 g respectively (Tables 1 and 2)

Trop

idur

us se

mita

enia

tus

Trop

idur

us h

ispid

us

Varia

bles

Fem

ales

(n=1

3)M

ales

(n=1

7)Fe

mal

es (n

=15)

Mal

es (n

=18)

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Aver

ageplusmn

sdM

inndash

Max

Av

erag

eplusmnsd

Min

ndashM

ax

Body

size

100

plusmn04

90

25ndash2

01

295

plusmn16

00

75ndash6

17

388

plusmn17

81

37ndash6

84

395

plusmn17

11

15ndash6

44

Mas

s1

96plusmn0

88

075

ndash35

05

62plusmn3

84

110

ndash13

007

77plusmn3

78

200

ndash15

258

07plusmn3

38

250

ndash12

50(-0

009

plusmn00

63)

(-01

40ndash0

072

)(-0

015

plusmn00

74)

(-01

59ndash0

112

)(-0

029

plusmn01

11)

(-02

64ndash0

068

)(0

035

plusmn00

40)

(-00

24ndash0

104

)SV

L44

22plusmn

782

269

6ndash56

84

596

5plusmn10

67

416

7ndash72

76

574

2plusmn10

99

399

1ndash72

71

579

1plusmn8

7238

82ndash

693

6(-0

094

plusmn00

72)

(-02

76ndash-

000

8)(0

010

plusmn00

54)

(-00

98ndash0

075

)(-0

025

plusmn00

61)

(-01

67ndash0

031

)(-0

020

plusmn00

40)

(-01

35ndash0

022

)Bo

dy w

idth

117

2plusmn2

216

93ndash1

468

164

5plusmn3

7610

87ndash

226

615

38plusmn

330

112

6ndash21

02

154

4plusmn3

044

105

0ndash19

44

(-01

05plusmn0

086

)(-0

306

ndash-0

006)

(00

05plusmn0

073

)(-0

122

ndash00

92)

(-00

41plusmn0

060

)(-0

120

ndash00

45)

(-00

40plusmn0

058

)(-0

143

ndash00

35)

Body

hei

ght

465

plusmn11

53

37ndash7

69

626

plusmn14

803

51ndash8

73

889

plusmn21

65

38ndash1

230

897

plusmn23

25

57ndash1

219

(-01

13plusmn0

089

)(-0

256

ndash00

78)

(-00

53plusmn0

079

)(-0

224

ndash00

46)

(00

71plusmn0

068

)(-0

058

ndash01

43)

(00

72plusmn0

074

)(-0

036

ndash01

73)

Head

wid

th9

07plusmn1

80

606

ndash11

9411

91plusmn

243

762

ndash15

7212

05plusmn

171

933

ndash14

5012

28plusmn

180

920

ndash15

14(-0

082

plusmn00

74)

(-02

21ndash0

019

)(0

007

plusmn00

62)

(-01

34ndash0

075

)(-0

002

plusmn00

31)

(-00

57ndash0

053

)(0

004

plusmn00

34)

(-00

59ndash0

070

)He

ad le

ngth

129

6plusmn1

899

33ndash1

555

159

4plusmn3

129

45ndash2

022

175

7plusmn2

6013

14ndash

222

317

63plusmn

246

125

5ndash21

52

(-00

70plusmn0

057

)(-0

185

ndash00

10)

(-00

18plusmn0

075

)(-0

248

ndash00

47)

(00

10plusmn0

031

)(-0

062

ndash00

58)

(00

10plusmn0

033

)(-0

075

ndash00

53)

Head

hei

ght

402

plusmn05

52

99ndash4

97

562

plusmn09

83

99ndash7

20

744

plusmn10

95

71ndash8

73

773

plusmn12

25

69ndash9

55

(-01

20plusmn0

054

)(-0

224

ndash-0

049)

(-00

27plusmn0

044

)(-0

112

ndash00

30)

(00

72plusmn0

030

)(0

028

ndash01

32)

(00

86plusmn0

035

)(0

027

ndash01

61)

Tail

leng

th81

15plusmn

163

853

34ndash

102

4510

703

plusmn20

9876

87ndash

150

9097

02plusmn

118

475

06ndash

112

8797

32plusmn

119

269

96ndash

119

44(-0

072

plusmn00

89)

(-02

31ndash0

046

)(0

033

plusmn00

65)

(-00

73ndash0

144

)(-0

019

plusmn00

43)

(-00

91ndash0

056

)(-0

018

plusmn00

46)

(-01

18ndash0

058

)Fo

rele

g le

ngth

232

4plusmn4

2413

97ndash

293

730

57plusmn

572

194

6ndash37

79

294

0plusmn4

7721

03ndash

358

728

47plusmn

414

197

2ndash35

55

(-00

81plusmn0

077

)(-0

270

ndash00

13)

(00

15plusmn0

063

)(-0

135

ndash01

02)

(-00

17plusmn0

047

)(-0

112

ndash00

41)

(-00

31plusmn0

040

)(-0

136

ndash00

26)

Hind

lim

b le

ngth

343

7plusmn5

5522

80ndash

434

444

36plusmn

755

311

5ndash53

59

434

5plusmn5

9532

67ndash

503

843

08plusmn

635

310

8ndash52

01

(-00

75plusmn0

064

)(-0

224

ndash-0

008)

(00

12plusmn0

055

)(-0

097

ndash00

77)

(-00

11plusmn0

039

)(-0

087

ndash00

24)

(-00

16plusmn0

043

)(-0

105

ndash00

40)

Tabl

e 2

Des

crip

tive

data

for m

orph

olog

ical

cha

ract

eristi

cs o

f non

-rep

rodu

ctive

indi

vidu

als

of T

hisp

idus

and

T s

emita

enia

tus

in th

e Co

nser

vatio

n U

nit o

f the

Sta

te

Mon

umen

to N

atur

al G

rota

do

Angi

co P

occedilo

Redo

ndo

- SE

Lin

ear m

easu

rem

ents

are

in m

illim

etre

s th

e w

eigh

t is

in g

ram

s an

d va

lues

in p

aren

thes

es re

fer

to s

ize-

adju

sted

var

iabl

es

32

FFA Gomes et a l

Both T hispidus (7867) and T semitaeniatus (8303) preferred sunny days (Fig 2C) without differences between them (G=14534 gl=3 p=06931 nT hispidus=422 and nT semitaeniatus=1338) Tropidurus hispidus was most often observed in shaded (3871) and mosaic sites (3776) whereas T semitaeniatus was most often found at sites exposed to the sun (3638) followed by mosaic sites (3443) (Fig 2D) The difference between species was significant (T=8597 df=364 plt0001 nT

hispidus=421 and nT semitaeniatus =1333)

Tropidurus hispidus and T semitaeniatus showed the same temporal activity patterns (G=82992 gl=11 p=06863 nT hispidus=422 and nT semitaeniatus=1356) Both species were bi-modally active Tropidurus hispidus activity was highest between 0800 and 1100 hours declining at midday and rising again between 1400 and 1600 (Fig 2E) For T semitaeniatus the highest peaks occurred between 0700 and 1000 and between 1400 and 1700 (Fig 2E) The niche widths for activity times were 1078 and 1041 for T hispidus and T semitaeniatus

Taxon Availability Tropidurus semitaeniatus (n=60) Tropidurus hispidus (n=60)

n n F F n n V (mm3) V F F n n V (mm3) V

Acarina 268 074 2 333 2 014 039 000 4 667 14 049 71176 231

Araneae 523 145 20 3333 35 236 27219 227 16 2667 26 090 69893 226

Blattaria 272 076 1 007 5 833 5 017 9811 032

Chilopoda 8 002 1 167 1 007 122 010 1 167 1 003 57009 185

Coleoptera 3497 971 19 3167 32 216 13121 109 36 6000 98 341 148896 482

Dermaptera 3 001

Diplopoda 92 026 1 167 1 003 2925 009

Diplura 1 000

Diptera 5386 1495 15 2500 33 223 24458 204 10 1667 12 042 10033 033

Embioptera 1 000

Ephemeoptera 6 002

Gastropoda 24 007 2 333 4 027 3754 031 1 167 1 003 347 001

Hemiptera 20 006 2 333 2 007 30919 100

Homoptera 56 016 2 333 5 034 1739 014 3 500 10 035 2731 009

Hymenoptera 24908 6916 54 9000 989 6682 277634 2313 56 9333 2088 7265 867513 2811

Isopoda 9 002 1 167 1 003 2028 007

Isoptera 72 020 7 1167 39 264 4505 038 8 1333 412 1434 114157 370

Insect larvae 118 033 30 5000 309 2088 767065 6390 30 5000 175 609 1342030 4348

Lepidoptera 693 192 15 2500 21 142 32576 271 15 2500 22 077 39560 128

Mantodea 1 lt001

Organic material 5 833 055 00046 17 2833 1730 560

Mecoptera 1 lt001

Neuroptera 6 002

Odonata 3 001

Opilionidae 13 004

Orthoptera 4 667 4 027 45371 378 4 667 4 014 144351 468

Protura 2 001 000

Pseudoscorpionida 14 004 2 333 4 027 461 004 1 167 2 007 187 001

Pscoptera 1 lt001 000

Scorpionida 12 003 1 167 1 007 1299 011

Siphonoptera 1 lt001

Strepsitera 1 lt001

Thrichoptera 1 lt001

Thysanura 2 001

TOTAL 36015 100 1480 100 1200516 100 2874 100 3086566 100

B 202 296 206 226

Table 3 Summary of prey availability and diets of Tropidurus hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo - SE n ndash number of prey n ndash percentage of prey F ndash frequency of prey V ndash volume V ndash percentage of volume

33

Interact ion of sympatr ic Tropidur idae

respectively with a high overlap of these schedules ( φ

jk=092) The two species were indiscernible with regard to

activity when sighted (G=04808 gl=4 p=09753 nT

hispidus=461 and nT semitaeniatus=1338) A standing position dominated for both T hispidus (8178) and T semitaeniatus (8079) (Fig 2F) Running for shelter was the main activity after having been encountered for both species (Tropidurus hispidus 6580 T semitaeniatus 7427) (Fig 2G) without statistical differences (G=72499 gl=6 p=02984 nT hispidus=421 and nT

semitaeniatus=1337) Similar shelters were chosen by the two species (G=133158 gl=7 p=00648 nT hispidus=421 and nT semitaeniatus=1331) Rocks were used most frequently (T hispidus 6674 and T semitaeniatus 8136) followed by crevices (T hispidus 1069 and T semitaeniatus 1254) (Fig 2H) Niche width for shelters use was 211 and 147 for T hispidus and T semitaeniatus respectively with a high overlap ( φjk = 099)

Adult T hispidus were larger than T semitaeniatus (ANOVA F136=42119 plt0001 n=382 Table 1) Average SVL of T hispidus was 9268plusmn1358 mm for adults and 6391plusmn1413 mm for juveniles average SVL of T semitaeniatus adults and young was 7366plusmn904 mm and 5555plusmn1303 mm respectively The size-adjusted masses (adults) were similar between the species (ANOVA F128=1283 p=0267 n=30 Table 1) Adults and young of T hispidus had masses of 3208plusmn1151 g and 1095plusmn646 g T semitaeniatus weighed 1219plusmn506 g and 507plusmn381 g respectively (Tables 1 and 2)

The first and second principal components of a PCA together explained 70 of the variation in morphology of the two species The first principal component was related to SVL anterior and posterior limb length and head width The two species did not significantly differ in shape (MANOVA Wilkrsquos Lambda=0893 p=0566) although T hispidus is slightly larger than T semitaeniatus with a larger and higher head longer limbs and a higher body

A total of 60 stomachs were analysed for T semitaeniatus and T hispidus each Eighteen prey categories were used by T hispidus and 15 were used by T semitaeniatus The most frequent prey categories for T hispidus were Hymenoptera Coleoptera insect larvae Araneae and Lepidoptera The corresponding groups for T semitaeniatus were Hymenoptera insect larvae Araneae Coleoptera Diptera and Lepidoptera The most abundant prey types were Hymenoptera and Isoptera for T hispidus and Hymenoptera and insect larvae for T semitaeniatus Highest prey volumes were represented by insect larvae and Hymenoptera for T hispidus and insect larvae and Hymenoptera for T semitaeniatus (Table 3) Formicidae represented 9995 of the Hymenoptera ingested by the two species (Table 3) Both species also consumed plant material (28 of T hispidus individuals representing 60 of the volume of food consumed and 833 of T semitaeniatus representing 00046 of food volume

The trophic niche widths estimated for T hispidus and T semitaeniatus were 206 and 202 for prey number and 226 and 296 for prey volume respectively Overlap

was higher with regards to prey number ( φjk=096 prey volume φ jk=097) but prey number and prey volume were significantly different from each other (prey number KolmogorovndashSmirnov Dmax=01584 plt001 prey volume KolmogorovndashSmirnov Dmax=01816 plt001 Table 3) A total of 36015 invertebrates distributed into 33 categories were used to estimate prey availability in the environment The distribution of available prey differed from the consumed prey for both species (T hispidus Dmax=02267 plt001 T semitaeniatus Dmax=02294 plt001)

The mean number of prey categories consumed for each species was seven (T semitaeniatus 5ndash11 T hispidus 4ndash11) Five categories comprised more than 10 in at least one monthly sample for T hispidus (Hymenoptera insect larvae Isoptera Coleoptera and Lepidoptera) and four of these also comprised more than 10 in at least one monthly sample for T semitaeniatus (all except Lepidoptera) The largest niche widths (B) were observed in February (254) June (248) April (245) and May (204) for T hispidus and in July (310) February (289) June (284) and May (221) for T semitaeniatus Diet overlap was high (Oslashgt050) in all months except April (011) and December (020) However significant differences between the diets were found in December February April May and August (Table 4)

The proportion of items most used in the diets was similar to available prey in January April September and October for T hispidus and in December January September and October for T semitaeniatus (Table 4) The prey availability occurred between December 2008 and March 2009 and between October and November 2009 (Table 4) The numbers of available prey categories ranged from eight (August) to 19 (February) The highest diversity of available prey was observed in May (378) (Table 4)

Focusing on the two most common food items Hymenoptera were most abundantly available in December 2008 and January 2009 and between September and November 2009 (Table 4) Tropidurus semitaeniatus largely consumed Hymenoptera (over 50 of diet) in the months of December 2008 January March and July to November 2009 whereas insect larvae were more consumed in February April May and June For T hispidus Hymenoptera comprised gt50 of the diet in all month except December and February (Table 4) Insect larvae never exceeded 50 of the number of prey consumed

A strong relationship was seen when comparing the morphology of the head of each species Tropidurus with the dimensions of prey actually consumed by them (Table 5) The first canonical variable for T semitaeniatus showed an inverse relationship in which animals with narrower heads were related to larger prey (Table 5) Already T hispidus for the first canonical variable was significantly positive for the relation between animals with large heads and longer prey (Table 5)

34

FFA Gomes et a l

Dece

mbe

rJa

nuar

yFe

brua

ryM

arch

April

May

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

(126

)(4

51)

(407

2)(9

0)(5

05)

(141

85)

(73)

(83)

(430

8)(1

07)

(151

)(3

895)

(178

)(4

5)(7

99)

(108

)(2

67)

(826

)Ac

arin

a1

650

590

570

070

030

750

36Ar

anea

e1

590

440

612

250

200

731

371

201

183

740

631

826

133

700

75Bl

attar

ia0

440

101

120

200

480

260

100

380

370

12Ch

ilopo

da0

220

010

030

48Co

leop

tera

317

044

447

562

079

851

274

361

474

093

125

137

62

2524

44

160

20

934

8718

52

Derm

apte

ra0

08Di

plop

oda

009

138

037

763

Dipl

ura

002

Dipt

era

142

91

922

250

592

874

8247

47

187

188

447

215

77

377

7Em

biop

tera

013

Ephe

meo

pter

a0

75Ga

stro

poda

100

109

Hem

ipte

ra0

010

020

030

371

21Ho

mop

tera

007

001

063

093

037

073

Hym

enop

tera

793

716

41

908

480

90

906

986

75

397

346

99

389

784

11

800

028

11

337

577

852

44

314

865

17

284

5Is

opod

a0

22Is

opte

ra0

7981

82

002

112

634

424

70

911

870

562

220

631

120

61In

sect

larv

a0

790

223

370

016

8540

96

042

093

938

036

932

64

443

7559

26

250

91

94Le

pido

pter

a2

250

592

742

415

646

546

2510

94

056

111

10

501

851

120

85M

anto

dea

002

Mec

opte

ra0

02N

euro

pter

aO

dona

ta0

05O

pilio

nida

e0

03O

rtho

pter

a1

121

850

37Pr

otur

a0

010

02Ps

eudo

scor

pion

ida

002

411

025

024

Pscoacute

pter

a0

02Sc

orpi

onid

a0

050

020

050

13Si

phon

opte

ra0

02St

reps

itera

002

Thric

hopt

era

002

Thys

anur

a0

01 B

153

143

121

151

121

131

289

254

261

140

153

322

115

245

302

221

204

378

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

099

010

gt00

51

000

08gt0

05

044

050

lt00

10

540

54lt0

01

010

089

lt00

10

300

63lt0

01

Th x

Disp

020

082

lt00

10

990

11gt0

05

054

044

lt00

10

540

57lt0

01

094

018

gt00

50

550

61lt0

01

Ts x

Th

020

080

lt00

10

990

09gt0

05

059

030

lt00

10

990

08gt0

05

011

078

lt00

10

750

36lt0

01

Tabl

e 4

Mon

thly

dist

ributi

on o

f foo

d av

aila

bilty

(D) a

nd o

f the

sto

mac

h co

nten

ts o

f T h

ispi

dus

(Th)

and

T s

emita

enia

tus

(Ts)

in t

he C

onse

rvati

on U

nit

of t

he S

tate

M

onum

ento

Nat

ural

Gro

ta d

o An

gico

Poccedil

o Re

dond

o - S

E (B

razil

) Th

e va

lues

in p

aren

thes

es re

fer t

o th

e nu

mbe

r of i

nver

tebr

ates

per

sam

ple

35

Interact ion of sympatr ic Tropidur idae

Tabl

e 4

(Con

tinue

d)

June

July

Augu

stSe

ptem

ber

Oct

ober

Nov

embe

rTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

D

(95)

(120

)(9

33)

(59)

(156

)(8

99)

(46)

(63)

(219

)(1

50)

(170

)(1

023)

(240

)(5

64)

(242

4)(2

09)

(294

)(2

432)

Acar

ina

169

011

317

042

160

223

214

Aran

eae

421

244

493

678

445

100

52

671

762

251

251

241

533

350

342

26Bl

attar

ia0

430

640

220

490

176

83Ch

ilopo

da0

111

690

11Co

leop

tera

421

732

202

63

396

4126

59

476

168

93

3312

35

181

80

421

425

901

444

0812

05

Derm

apte

raDi

plop

oda

150

Dipl

ura

Dipt

era

316

081

390

13

3913

90

435

913

067

059

225

042

239

096

354

Embi

opte

raEp

hem

eopt

era

Gast

ropo

da5

081

370

590

200

040

480

04He

mip

tera

081

032

011

046

008

Hom

opte

ra0

810

963

390

641

454

353

171

832

350

290

620

08Hy

men

opte

ra42

11

561

029

26

525

485

26

525

065

22

746

058

45

906

779

41

742

996

67

937

986

10

904

394

90

722

0Is

opod

a1

59Is

opte

ra1

6911

11

133

059

058

008

Inse

ct la

rva

410

528

46

236

186

47

050

2223

91

159

067

176

039

071

017

335

068

029

Lepi

dopt

era

316

244

021

169

033

217

183

059

039

083

071

Man

tode

aM

ecop

tera

Neu

ropt

era

064

Odo

nata

004

Opi

lioni

dae

039

012

021

Ort

hopt

era

105

081

059

018

Prot

ura

Pseu

dosc

orpi

onid

a1

050

350

080

21Ps

coacutept

era

Scor

pion

ida

067

029

004

Siph

onop

tera

Stre

psite

raTh

richo

pter

aTh

ysan

ura

B2

842

483

543

101

362

722

051

742

571

211

541

711

071

131

341

221

111

84

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

049

056

lt00

10

850

28lt0

01

089

001

lt00

10

980

17gt0

05

100

010

gt00

50

980

21lt0

05

Th x

Disp

056

056

lt00

10

560

39lt0

01

094

030

lt00

11

000

08gt0

05

100

009

gt00

50

990

23lt0

05

Ts x

Th

095

015

gt00

50

950

18gt0

05

093

025

lt00

10

990

11gt0

05

100

002

gt00

51

000

03gt0

05

36

DIsCUssION The presence of a species in an environment may be related to specific physiological needs improved access to food availability of resources presence of refuges morphological adaptations inter and intraspecific interactions as well as historical factors (Pianka 1973 Herfindal et al 2005 Borger et al 2006 Silva amp Arauacutejo 2008) The habitat and microhabitat chosen by a species should meet their essential needs to allow viable populations (Silva amp Arauacutejo 2008) In the study area T hispidus and T semitaeniatus largely were active on rocky substrates Such sites are able to maximise the uptake of heat necessary for thermoregulation both through direct exposure and contact with heated surfaces (Rocha amp Bergallo 1990 VanSluys 1992 Meira et al 2007)

Tropidurus semitaeniatus is considered to be a saxicolous species endemic of Caatinga environments whereas T hispidus occupies a generalist habitat in open formations of various biomes (Rodrigues 1987) Despite this variation in the use of microhabitats T hispidus tends towards a saxicolous habit in places where rocks are abundant Vitt et al (1997) found that where T hispidus use rocks individuals displayed greater dorso-ventral flattening than when in habitat areas without rocks This suggests that the flattening in these individuals could be adaptive to the use of cracks in rock outcrops In the present study no differences were established in body shape between the species

The preference of these species for rocks has been recorded in other localities and environments Tropidurus hispidus uses rocks in Caatinga environments (Vitt 1981 Dias amp Lira-da-Silva 1998 Kolodiuk et al 2009) in the Amazonian rainforest (Vitt amp Carvalho 1995 Vitt et al 1996 Vitt amp Zani 1998) Amazonian savannahs (Mesquita et al 2006) and fields in Minas Gerais (VanSluys et al 2004) T semitaeniatus uses rocky substrates in the Caatinga biome (Vitt 1981 Kolodiuk et al 2009 Ribeiro amp Freire 2010) and in Agreste Sergipe (Fernandes amp Oliveira 1997 Ramos amp Denisson 1997) The use of rocks is common to others species of the semitaeniatus group (T helenae and T pinima Rodrigues 1984 Manzani amp Abe 1990 Rodrigues 2005) as well as for several

Table 5 Canonical correlation between the measurements of the head and the size of prey of T hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo ndash SE (Brazil)

species of the torquatus group (T montanus T itambere and T oreadicus Rodrigues 1987 Faria amp Araujo 2004 VanSluys et al 2004 Meira et al 2007) Both species adopted vertical positions which were in most cases lt40 cm above ground (5064 and 5178 of observations for T hispidus and T semitaeniatus respectively) Teixeira-Filho et al (1996) suggest that layers close to the ground are heated up more quickly with advantages for thermoregulation and a consequently lower risk of predation and more time for other activities such as foraging

Tropidurus individuals were active throughout the data collection period Both species are sit-and-wait predators implying a shorter time searching for prey and more energy invested in prey capture than is the case for more active foragers (Dias amp Lira-da-Silva 1998 Pianka amp Vitt 2003) Similar findings were already obtained for T hispidus (Vitt 1995 Vitt amp Zani 1998 VanSluys et al 2004) T semitaeniatus (Vitt 1995) T torquatus (Bergallo amp Rocha 1993 Teixeira-Filho et al 1996 Hatano et al 2001) T itambere (VanSluys 1992 Faria amp Araujo 2004) T montanus (VanSluys et al 2004) and T oreadicus (Faria amp Araujo 2004 Meira et al 2007) The observed bimodal patterns of activity have previously been found by VanSluys (1992) for T itambere and by Vrcibradic amp Rocha (1998) for Mabuya frenata during the wet season at high temperatures The Caatinga biome is characterised by particularly hot temperatures (Prado 2005) explaining the observed bimodal pattern for the present study species

According to Huey amp Slatkin (1976) thermoregulation in diurnal lizards involves a set of behavioural activities and options for microhabitat use Displacement between environments with a differential exposure to sun will help to achieve the optimum temperature sought (Rocha amp Bergallo 1990 Vitt amp Carvalho 1995 Hatano et al 2001) We observed a preference for sunny days and exposure to sun was distributed between categories (sun mosaic shadow) for both species with T semitaeniatus having a preference for sun and T hispidus having a preference for shadow The difference in exposure adopted by each species may reflect their physiological needs Vitt (1995) and Ribeiro amp Freire (2010) verified that T semitaeniatus

FFA Gomes et a l

Tropidurus semitaeniatus Tropidurus hispidus

Canonical coefficients Canonical coefficients

Head 1st Canonical Variable 2nd Canonical Variable 1st Canonical Variable 2nd Canonical Variable

Length 165 645 025 123

Height -217 -686 136 028

Width 151 032 -064 -160

Prey

Greater Length 038 139 129 -164

Greater Width 068 -127 -035 206

Canonical Correlation c2 p Canonical Correlation c2 p

I 095 13634 lt00001 053 14437 00251

II 055 1883 lt00001 014 0865 06488

37

presents a mean body temperature that is higher than T hispidus In the study area of the present work T hispidus may prefer shady places to avoid negative effects of high temperatures (Teixeira-Filho et al 1996)

Ecological historical and behavioural factors must be considered when evaluating the reasons why certain species consume particular types of prey (Vitt amp Zani 1998 Pianka amp Vitt 2003) and morphological limitations may further interfere with the type of food consumed (Toft 1985 Magnusson amp Silva 1993) An opportunistic pattern in food use was observed for both species in this study given the strong correlation between use and availability The use of ants is widely observed in the diet of the genus Tropidurus and has been reported for several species (T hispidus Dias amp Lira-da-Silva 1998 T torquatus group Arauacutejo 1987 T itambere VanSluys 1995 T oreadicus and T spinulosos Colli et al 1992 T torquatus Bergallo amp Rocha 1994 T hispidus T oreadicus T semitaeniatus Vitt 1993 T semitaeniatus and T hispidus Ribeiro amp Freire 2011) Ants are abundant in the Caatinga (Santos et al 1999) Insect larvae were mainly used in the rainy season probably due to their higher availability during this period

For lizards prey composition is largely related to the type of foraging used and the habitat they occupy (Vitt 1991 Toft 1985) Diet overlap is common among sympatric species that hunt by stalking since they have a preference for active prey (Zug et al 2001 Silva amp Arauacutejo 2008) In periods of higher rainfall both species became more selective since the number of invertebrates in the environment was larger Tropidurus semitaeniatus changed their diet towards insect larvae which were not the most abundant prey category T hispidus continued to consume Hymenoptera as the main item in their diet Considering the reduction in availability of Hymenoptera during the rainy season it is likely that individuals of Tropidurus species broaden the diversity of food items to meet their daily nutritional needs The seasonal change in food habits of T semitaeniatus during the rainy season might be due to avoidance of competition during this period Head morphology is reflected in the consumption of prey of different dimensions it is expected that animals with larger heads consume larger prey (Pianka 1969) However this pattern was not observed for the target species of this study Since T semitaeniatus that has a smaller width head was observed consuming relatively larger prey whereas T hispidus with larger heads prefers more elongated prey Food availability in the environment probably best explains the observed pattern Besides invertebrates large quantities of plant material (flowers leaves and seeds) were found in stomachs and T hispidus consumed more plants than T semitaeniatus Ingestion of plant material in Tropidurus and other lizards is relatively common to provide energy as well as possibly water (Rocha amp Bergallo 1992 VanSluys 1993 Dias amp Lira-da-Silva 1998) In our study area the coexistence of T hispidus and T semitaeniatus on rocky outcrops is probably facilitated by small variations in spatial arrangement the morphology of the trophic apparatus and temporary niche shifts in their diets depending on rather unpredictable rainfall patterns

ACKNOWLEDGEMENTs

We thank Mr Manuel Messias and his entire family for their support in the collection area We are grateful to CAPES for providing the research grant and SISBIO for licensing the collection the Secretaria do Meio-Ambiente e Recursos Hiacutedricos de Sergipe (SEMARH SE) for support with transport to the area and other aid at UC and the Nuacutecleo de Pesquisa em Ecologia e Conservaccedilatildeo (NPEC) and the Universidade Federal de Sergipe (UFS) for logistical support The data collection was authorised by license number 19237-1 issued by SISBIO (System of Authorization and Information on Biodiversity)

REFERENCEs

Arauacutejo AFB (1987) Comportamento alimentar dos lagartos o caso dos Tropidurus da Serra dos Carajaacutes Paraacute (Sauria Iguanidae) In Anais de Etologia 203ndash234 Encontro Anual de Etologia (1987) Ribeiratildeo Preto Jaboticabal FUNEP 5

Bergallo HG amp Rocha D (1993) Activity patterns and body temperatures of two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics in southeastern Brazil Amphibia-Reptilia 14 312ndash315

Bergallo HG amp Rocha D (1994) Spatial and trophic niche differentiation in two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics Australian Journal of Ecology 19 72ndash75

Beacuternils RS amp Costa HC (2012) Reacutepteis brasileiros lista de espeacutecies Versatildeo 20122 Available from lthttpwwwsbherpetologiaorgbrgt Sociedade Brasileira de Herpetologia Accessed 2 October 2013

Borger L Franconi N De Michele G Gantz A et al (2006) Effects of sampling regime on the mean and variance of home range size estimates Journal of Animal Ecology 75 1393ndash1405

Carvalho ALG Brito MR amp Fernandes DS (2013) Biogeography of the lizard genus Tropidurus Wied-Neuwied 1825 (Squamata Tropiduridae) distribution endemism and area relationships in South America Public Library of Science 8 1ndash14

Carvalho CM Vilar JC amp Oliveira FF (2005) Reacutepteis e anfiacutebios In Parque Nacional Serra de Itabaiana - Levantamento da Biota 39ndash61 Carvalho CM and Vilar JC (eds) Aracaju Ibama Biologia Geral e Experimental ndash UFS

Chiang JCH amp Koutavas A (2004) Tropical Flip-flop connections Nature 432 684ndash685

Colli GR Arauacutejo AFB Silveira R amp Roma F (1992) Niche partitioning and morphology of two syntopic Tropidurus (Sauria Tropiduridae) in Mato Grasso Brazil Journal of Herpetology 26 66ndash69

Cooper Jr WE (1994) Prey chemical discrimination foraging mode and phylogeny In Lizard ecology historical and experimental perspectives 95ndash116 Vitt LJ amp Pianka ER (eds) New Jersey Princeton University Press

Dias EJR amp Lira-da-Silva RM (1998) Utilizaccedilatildeo dos recursos alimentares por quatro espeacutecies de lagartos (Phyllopezus pollicaris Tropidurus hispidus Mabuya macrorhyncha e Vanzossaura rubricauda) da caatinga (Usina Hidroeleacutetrica de Xingoacute) Brazilian Journal of Ecology 2 97ndash101

Faria RG amp Arauacutejo AFB (2004) Sintopy of two Tropidurus

Interact ion of sympatr ic Tropidur idae

38

lizard species (Squamata Tropiduridae) on a rocky cerrado habitat in Central Brazil Brazilian Journal of Biology 64 775ndash786

Fernandes ACM amp Oliveira EF (1997) Diversidade na dieta e aspectos reprodutivos de duas espeacutecies simpaacutetricas e sintoacutepicas de Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 35ndash40

Freitas MA amp Silva TFS (2007) Guia ilustrado A herpetofauna das caatingas e aacutereas de altitudes do Nordeste Brasileiro Pelotas USEB (Coleccedilatildeo Manuais de Campo USEB 6) 384 pp

Frost DR Rodrigues MT Grant T amp Titus TA (2001) Phylogenetics of the lizard genus Tropidurus (Squamata Tropiduridae Tropidurinae) Direct optimization descriptive efficiency and analysis of congruence between molecular data and morphology Molecular Plylogenetics and Evolution 21 352ndash371

Hatano FH Vrcibradic D Galdino CAB Cunha-Barros M et al (2001) Thermal ecology and activity patterns of the lizard community of the restinga of Jurubatiba Macaeacute RJ Revista Brasileira de Biologia 61 287ndash294

Herfindal I Linnell JDC Odden J Birkeland Nilsen E amp Andersen R (2005) Prey density environmental productivity and home-range size in the Eurasian lynx (Lynx lynx) Journal of Zoology 265 63ndash71

Huey RB amp Pianka ER (1977) Patterns of niche overlap among broadly sympatric versus narrowly sympatric Kalahari lizards (Scincidae Mabuya) Ecology 58 119ndash128

Huey RB amp Slatkin M (1976) Cost and benefits of lizard thermoregulation The Quarterly Review of Biology 51 363ndash384

Hutchinson GE (1957) Concluding remarks Cold Spring Harbour Symposium on Quantitative Biology 22 415ndash427

Janzen DH amp Schoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season Ecology 49 96ndash110

Jolicoeur P (1963) The multivariate generalization of the allometry equation Biometrics 19 497ndash499

Kolodiuk MF Ribeiro LB amp Freire EMX (2009) The effects of seasonality on the foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) living in sympatry in the caatinga of northeastern Brazil Revista Brasileira de Zoologia 26 581ndash585

Krol MS Jaegar A Bronstert A amp Krywkow J (2001) The semiarid integrated model (SDIM) a regional integrated model assessing water availability vulnerability of ecosystems and society in NE-Brazil Physics and Chemistry of the Earth 26 529ndash533

Losos JB (1990) Ecomorphology performance capability and scaling of west Indian Anolis lizards an evolutionary analysis Ecological Monographs 60 369ndash388

Losos JB (2008) Phylogenetic niche conservatism phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species Ecology Letters 11 995ndash1007

Magnusson WE amp Silva EV (1993) Relative effects of size season and species on the diets of some Amazonian Savanna lizards Journal of Herpetology 27 380ndash385

Magnusson WE Lima PA Silva WA amp Arauacutejo MC (2003) Use of geometric forms to estimate volume of invertebrates

in ecological studies of dietary overlap Copeia 2003 13ndash19Manzani PR amp Abe AS (1990) A new species of Tapinurus

from the Caatinga of Piauiacute Northeastern Brazil (Squamata Tropiduridae) Herpetologica 46 462ndash467

MrsquoCloskey RT amp Hecnar ESJ (1994) Interspecific spatial overlap Oikos 71 65ndash74

Meira KT Faria RG Silva MDM Miranda VT amp Zahn-Silva W (2007) Histoacuteria natural de Tropidurus oreadicus em uma aacuterea de cerrado rupestre do Brasil Central Biota Neotropica 7 155ndash163

Mesquita DO Costa GC amp Colli GR (2006) Ecology of an Amazonian savanna lizard assemblage in Monte Alegre Paraacute state Brazil South American Journal of Herpetology 1 61ndash71

Milstead WW (1965) Changes in competing populations of whiptail lizards (Cnemidophorus) in southwestern Texas The American Midland Naturalist 7375ndash80

Nimer E (1972) Climatologia da Regiatildeo Nordeste do Brasil In Introduccedilatildeo agrave Climatologia Dinacircmica Revista Brasileira de Geografia 34 3ndash51

Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia Ecology 50 1012ndash 1030

Pianka ER (1973) The structure of lizard communities Annual Review of Ecology and Systematics 4 53ndash74

Pianka ER amp Vitt LJ (2003) Lizards Windows to The Evolution of Diversity Berkeley University of California Press 333 pp

Prado D (2005) As Caatingas da Ameacuterica do Sul In Ecologia e Conservaccedilatildeo da Caatinga 3ndash73 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ramos L amp Denisson S (1997) Notas sobre os habitats e microhabitats de duas espeacutecies simpaacutetricas de lagartos do gecircnero Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 29ndash34

Reis AMS Arauacutejo EL Ferraz EMN amp Moura AN (2006) Inter-annual variations in the floristic and population structure of an herbaceous community of ldquocaatingardquo vegetation in Pernambuco Brazil Revista Brasileira de Botacircnica 29 497ndash508

Ribeiro LB amp Freire EMX (2009) Tropidurus semitaeniatus (NCN) Drinking behavior Herpetological Review 40 228ndash229

Ribeiro LB amp Freire EMX (2010) Thermal ecology and thermoregulatory behaviour of Tropidurus hispidus and T semitaeniatus in a caatinga area of northeastern Brazil Herpetological Journal 20 201ndash208

Ribeiro LB amp Freire EMX (2011) Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) in a caatinga area of northeastern Brazil Iheringia Seacuterie Zoologia 101 225ndash232

Ricklefs RE Cochran D amp Pianka ER (1981) A morphological analysis of the structure of communities of lizards in desert habitats Ecology 62 1474ndash1478

Rocha CFD amp Bergallo HG (1990) Thermal biology and flight distance of Tropidurus oreadicus (Sauria Iguanidae) in an area of Amazonian Brazil Ethology Ecology amp Evolution 2 263ndash268

Rocha CFD amp Bergallo HG (1992) Tropidurus torquatus (collared lizard) diet Herpetological Review 25 69

Rodrigues MT (1984) Uma nova espeacutecie brasileira de

FFA Gomes et a l

39

Tropidurus com crista dorsal (Sauria Iguanidae) Papeacuteis Avulsos de Zoologia 35 169ndash175

Rodrigues MT (1987) Sistemaacutetica ecologia e zoogeografia dos Tropidurus do grupo torquatus ao sul do Rio Amazonas (Sauridae Iguanidae) Arquivos de Zoologia 31 105ndash230

Rodrigues MT (2005) Herpetofauna da Caatinga In Ecologia e Conservaccedilatildeo da Caatinga 181ndash236 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ruiz-Esparza J Gouveia SF Rocha PA Ribeiro AS amp Ferrari SF (2011) Birds of the Grota do Angico Natural Monument in the semi-arid caatinga scrublands of northeastern Brazil Biota Neotropica 11 1ndash8

Santos GMM Delabie JHC amp Resende JJ (1999) Caracterizaccedilatildeo da mirmecofauna (Hymenoptera-Formicidae) associada agrave vegetaccedilatildeo perifeacuterica de inselbergs (caatinga-arboacuterea-estacional-semi-deciacutedua) em Itatim ndash Bahia ndash Brasil Sitientibus 20 33ndash43

Sampaio EVSB (1995) Overview of the Brazilian Caatinga In Seasonally Dry Forests 35ndash58 Bullock HA Mooney HA amp Medina E (eds) Reino Unido Cambridge University Press

Schoener TW (1975) Presence and absence of habitat shift in some widespread lizards species Ecological Monographs 45 233ndash258

Silva VN amp Arauacutejo AFB (2008) Ecologia dos Lagartos Brasileiros 1st ed Rio de Janeiro Technical Books 271p

Simpson EH (1949) Measurement of diversity Nature 163 688

Somers KM (1986) Multivariate allometry and removal of size with principal components analysis Systematic Zoology 35 359ndash368

Teixeira-Filho P Rocha CFD amp Ribas S (1996) Ecologia termal e uso do habitat por Tropidurus torquatus (Sauria Tropiduridae) em uma aacuterea de restinga do sudeste do Brasil In Herpetologia Neotropical 255ndash267 Peacutefaur JE (ed) Actas del II Congreso Latinoamericano de Herpetologia II Volumen Universidad de Los Andes Merida Venezuela Consejo de Publicaciones

Toft CA (1985) Resource partitioning in amphibians and reptilies Copeia 1 1ndash21

VanSluys M (1992) Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae) em uma aacuterea do sudeste do Brasil Revista Brasileira de Biologia 52 181ndash185

VanSluys M (1993) Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Journal of Herpetology 27 347ndash351

VanSluys M (1995) Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Ciecircncia e Cultura 47 61ndash65

VanSluys M Rocha CFD Vrcibradic D Galdino CAB amp Fontes AF (2004) Diet activity and microhabitat use of two syntopic Tropidurus species (Lacertilia Tropiduridae) in Minas Gerais Brazil Journal of Herpetology 38 606ndash611

Vitt LJ (1981) Lizard reproduction habitat specificity and constraints on relative clutch mass The American Naturalist 117 506ndash514

Vitt LJ (1991) An introduction to the ecology of cerrado lizards Journal of Herpetology 25 79ndash90

Vitt LJ (1993) Ecology of isolated open-formation Tropidurus (Reptilia Tropiduridae) in Amazonian lowland rain forest Canadian Journal of Zoology 71 2370ndash2390

Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil Occasional Papers of the Oklahoma Museum of Natural History 1 29ndash34

Vitt LJ Zani PA amp Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia Journal of Tropical Ecology 12 81ndash101

Vitt LJ Caldwell JP Zani PA amp Titus TA (1997) The role of habitat shift in the evolution of lizard morphology evidence from tropical Tropidurus Proceedings of the National Academy of Sciences 94 3828ndash3832

Vitt LJ amp Carvalho CM (1995) Niche partitioning in a tropical wet season lizards in the Lavrado area of Northern Brazil Copeia 2 305ndash329

Vitt LJ amp Pianka ER (1994) Introduction and Acknowledgments In Lizard Ecology Historical and Experimental Perspectives 9ndash12 Vitt LJ amp Pianka ER (eds) Princeton University Press 403 pp

Vitt LJ amp Zani PA (1998) Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14 63ndash86

Vrcibradic D amp Rocha CFD (1998) Ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil Journal of Herpetology 32 229ndash237

Webb CO Ackerly DD McPeek MA amp Donoghue MJ (2002) Phylogenies and community ecology Annual Review of Ecology and Systematics 33 475ndash505

Zug GR Vitt LJ amp Caldwell JP (2001) Herpetology An Introductory Biology of Amphibians and Reptiles 2nd ed San Diego Academic Press 630 pp

Accepted 8 July 2014

Interact ion of sympatr ic Tropidur idae

32

FFA Gomes et a l

Both T hispidus (7867) and T semitaeniatus (8303) preferred sunny days (Fig 2C) without differences between them (G=14534 gl=3 p=06931 nT hispidus=422 and nT semitaeniatus=1338) Tropidurus hispidus was most often observed in shaded (3871) and mosaic sites (3776) whereas T semitaeniatus was most often found at sites exposed to the sun (3638) followed by mosaic sites (3443) (Fig 2D) The difference between species was significant (T=8597 df=364 plt0001 nT

hispidus=421 and nT semitaeniatus =1333)

Tropidurus hispidus and T semitaeniatus showed the same temporal activity patterns (G=82992 gl=11 p=06863 nT hispidus=422 and nT semitaeniatus=1356) Both species were bi-modally active Tropidurus hispidus activity was highest between 0800 and 1100 hours declining at midday and rising again between 1400 and 1600 (Fig 2E) For T semitaeniatus the highest peaks occurred between 0700 and 1000 and between 1400 and 1700 (Fig 2E) The niche widths for activity times were 1078 and 1041 for T hispidus and T semitaeniatus

Taxon Availability Tropidurus semitaeniatus (n=60) Tropidurus hispidus (n=60)

n n F F n n V (mm3) V F F n n V (mm3) V

Acarina 268 074 2 333 2 014 039 000 4 667 14 049 71176 231

Araneae 523 145 20 3333 35 236 27219 227 16 2667 26 090 69893 226

Blattaria 272 076 1 007 5 833 5 017 9811 032

Chilopoda 8 002 1 167 1 007 122 010 1 167 1 003 57009 185

Coleoptera 3497 971 19 3167 32 216 13121 109 36 6000 98 341 148896 482

Dermaptera 3 001

Diplopoda 92 026 1 167 1 003 2925 009

Diplura 1 000

Diptera 5386 1495 15 2500 33 223 24458 204 10 1667 12 042 10033 033

Embioptera 1 000

Ephemeoptera 6 002

Gastropoda 24 007 2 333 4 027 3754 031 1 167 1 003 347 001

Hemiptera 20 006 2 333 2 007 30919 100

Homoptera 56 016 2 333 5 034 1739 014 3 500 10 035 2731 009

Hymenoptera 24908 6916 54 9000 989 6682 277634 2313 56 9333 2088 7265 867513 2811

Isopoda 9 002 1 167 1 003 2028 007

Isoptera 72 020 7 1167 39 264 4505 038 8 1333 412 1434 114157 370

Insect larvae 118 033 30 5000 309 2088 767065 6390 30 5000 175 609 1342030 4348

Lepidoptera 693 192 15 2500 21 142 32576 271 15 2500 22 077 39560 128

Mantodea 1 lt001

Organic material 5 833 055 00046 17 2833 1730 560

Mecoptera 1 lt001

Neuroptera 6 002

Odonata 3 001

Opilionidae 13 004

Orthoptera 4 667 4 027 45371 378 4 667 4 014 144351 468

Protura 2 001 000

Pseudoscorpionida 14 004 2 333 4 027 461 004 1 167 2 007 187 001

Pscoptera 1 lt001 000

Scorpionida 12 003 1 167 1 007 1299 011

Siphonoptera 1 lt001

Strepsitera 1 lt001

Thrichoptera 1 lt001

Thysanura 2 001

TOTAL 36015 100 1480 100 1200516 100 2874 100 3086566 100

B 202 296 206 226

Table 3 Summary of prey availability and diets of Tropidurus hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo - SE n ndash number of prey n ndash percentage of prey F ndash frequency of prey V ndash volume V ndash percentage of volume

33

Interact ion of sympatr ic Tropidur idae

respectively with a high overlap of these schedules ( φ

jk=092) The two species were indiscernible with regard to

activity when sighted (G=04808 gl=4 p=09753 nT

hispidus=461 and nT semitaeniatus=1338) A standing position dominated for both T hispidus (8178) and T semitaeniatus (8079) (Fig 2F) Running for shelter was the main activity after having been encountered for both species (Tropidurus hispidus 6580 T semitaeniatus 7427) (Fig 2G) without statistical differences (G=72499 gl=6 p=02984 nT hispidus=421 and nT

semitaeniatus=1337) Similar shelters were chosen by the two species (G=133158 gl=7 p=00648 nT hispidus=421 and nT semitaeniatus=1331) Rocks were used most frequently (T hispidus 6674 and T semitaeniatus 8136) followed by crevices (T hispidus 1069 and T semitaeniatus 1254) (Fig 2H) Niche width for shelters use was 211 and 147 for T hispidus and T semitaeniatus respectively with a high overlap ( φjk = 099)

Adult T hispidus were larger than T semitaeniatus (ANOVA F136=42119 plt0001 n=382 Table 1) Average SVL of T hispidus was 9268plusmn1358 mm for adults and 6391plusmn1413 mm for juveniles average SVL of T semitaeniatus adults and young was 7366plusmn904 mm and 5555plusmn1303 mm respectively The size-adjusted masses (adults) were similar between the species (ANOVA F128=1283 p=0267 n=30 Table 1) Adults and young of T hispidus had masses of 3208plusmn1151 g and 1095plusmn646 g T semitaeniatus weighed 1219plusmn506 g and 507plusmn381 g respectively (Tables 1 and 2)

The first and second principal components of a PCA together explained 70 of the variation in morphology of the two species The first principal component was related to SVL anterior and posterior limb length and head width The two species did not significantly differ in shape (MANOVA Wilkrsquos Lambda=0893 p=0566) although T hispidus is slightly larger than T semitaeniatus with a larger and higher head longer limbs and a higher body

A total of 60 stomachs were analysed for T semitaeniatus and T hispidus each Eighteen prey categories were used by T hispidus and 15 were used by T semitaeniatus The most frequent prey categories for T hispidus were Hymenoptera Coleoptera insect larvae Araneae and Lepidoptera The corresponding groups for T semitaeniatus were Hymenoptera insect larvae Araneae Coleoptera Diptera and Lepidoptera The most abundant prey types were Hymenoptera and Isoptera for T hispidus and Hymenoptera and insect larvae for T semitaeniatus Highest prey volumes were represented by insect larvae and Hymenoptera for T hispidus and insect larvae and Hymenoptera for T semitaeniatus (Table 3) Formicidae represented 9995 of the Hymenoptera ingested by the two species (Table 3) Both species also consumed plant material (28 of T hispidus individuals representing 60 of the volume of food consumed and 833 of T semitaeniatus representing 00046 of food volume

The trophic niche widths estimated for T hispidus and T semitaeniatus were 206 and 202 for prey number and 226 and 296 for prey volume respectively Overlap

was higher with regards to prey number ( φjk=096 prey volume φ jk=097) but prey number and prey volume were significantly different from each other (prey number KolmogorovndashSmirnov Dmax=01584 plt001 prey volume KolmogorovndashSmirnov Dmax=01816 plt001 Table 3) A total of 36015 invertebrates distributed into 33 categories were used to estimate prey availability in the environment The distribution of available prey differed from the consumed prey for both species (T hispidus Dmax=02267 plt001 T semitaeniatus Dmax=02294 plt001)

The mean number of prey categories consumed for each species was seven (T semitaeniatus 5ndash11 T hispidus 4ndash11) Five categories comprised more than 10 in at least one monthly sample for T hispidus (Hymenoptera insect larvae Isoptera Coleoptera and Lepidoptera) and four of these also comprised more than 10 in at least one monthly sample for T semitaeniatus (all except Lepidoptera) The largest niche widths (B) were observed in February (254) June (248) April (245) and May (204) for T hispidus and in July (310) February (289) June (284) and May (221) for T semitaeniatus Diet overlap was high (Oslashgt050) in all months except April (011) and December (020) However significant differences between the diets were found in December February April May and August (Table 4)

The proportion of items most used in the diets was similar to available prey in January April September and October for T hispidus and in December January September and October for T semitaeniatus (Table 4) The prey availability occurred between December 2008 and March 2009 and between October and November 2009 (Table 4) The numbers of available prey categories ranged from eight (August) to 19 (February) The highest diversity of available prey was observed in May (378) (Table 4)

Focusing on the two most common food items Hymenoptera were most abundantly available in December 2008 and January 2009 and between September and November 2009 (Table 4) Tropidurus semitaeniatus largely consumed Hymenoptera (over 50 of diet) in the months of December 2008 January March and July to November 2009 whereas insect larvae were more consumed in February April May and June For T hispidus Hymenoptera comprised gt50 of the diet in all month except December and February (Table 4) Insect larvae never exceeded 50 of the number of prey consumed

A strong relationship was seen when comparing the morphology of the head of each species Tropidurus with the dimensions of prey actually consumed by them (Table 5) The first canonical variable for T semitaeniatus showed an inverse relationship in which animals with narrower heads were related to larger prey (Table 5) Already T hispidus for the first canonical variable was significantly positive for the relation between animals with large heads and longer prey (Table 5)

34

FFA Gomes et a l

Dece

mbe

rJa

nuar

yFe

brua

ryM

arch

April

May

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

(126

)(4

51)

(407

2)(9

0)(5

05)

(141

85)

(73)

(83)

(430

8)(1

07)

(151

)(3

895)

(178

)(4

5)(7

99)

(108

)(2

67)

(826

)Ac

arin

a1

650

590

570

070

030

750

36Ar

anea

e1

590

440

612

250

200

731

371

201

183

740

631

826

133

700

75Bl

attar

ia0

440

101

120

200

480

260

100

380

370

12Ch

ilopo

da0

220

010

030

48Co

leop

tera

317

044

447

562

079

851

274

361

474

093

125

137

62

2524

44

160

20

934

8718

52

Derm

apte

ra0

08Di

plop

oda

009

138

037

763

Dipl

ura

002

Dipt

era

142

91

922

250

592

874

8247

47

187

188

447

215

77

377

7Em

biop

tera

013

Ephe

meo

pter

a0

75Ga

stro

poda

100

109

Hem

ipte

ra0

010

020

030

371

21Ho

mop

tera

007

001

063

093

037

073

Hym

enop

tera

793

716

41

908

480

90

906

986

75

397

346

99

389

784

11

800

028

11

337

577

852

44

314

865

17

284

5Is

opod

a0

22Is

opte

ra0

7981

82

002

112

634

424

70

911

870

562

220

631

120

61In

sect

larv

a0

790

223

370

016

8540

96

042

093

938

036

932

64

443

7559

26

250

91

94Le

pido

pter

a2

250

592

742

415

646

546

2510

94

056

111

10

501

851

120

85M

anto

dea

002

Mec

opte

ra0

02N

euro

pter

aO

dona

ta0

05O

pilio

nida

e0

03O

rtho

pter

a1

121

850

37Pr

otur

a0

010

02Ps

eudo

scor

pion

ida

002

411

025

024

Pscoacute

pter

a0

02Sc

orpi

onid

a0

050

020

050

13Si

phon

opte

ra0

02St

reps

itera

002

Thric

hopt

era

002

Thys

anur

a0

01 B

153

143

121

151

121

131

289

254

261

140

153

322

115

245

302

221

204

378

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

099

010

gt00

51

000

08gt0

05

044

050

lt00

10

540

54lt0

01

010

089

lt00

10

300

63lt0

01

Th x

Disp

020

082

lt00

10

990

11gt0

05

054

044

lt00

10

540

57lt0

01

094

018

gt00

50

550

61lt0

01

Ts x

Th

020

080

lt00

10

990

09gt0

05

059

030

lt00

10

990

08gt0

05

011

078

lt00

10

750

36lt0

01

Tabl

e 4

Mon

thly

dist

ributi

on o

f foo

d av

aila

bilty

(D) a

nd o

f the

sto

mac

h co

nten

ts o

f T h

ispi

dus

(Th)

and

T s

emita

enia

tus

(Ts)

in t

he C

onse

rvati

on U

nit

of t

he S

tate

M

onum

ento

Nat

ural

Gro

ta d

o An

gico

Poccedil

o Re

dond

o - S

E (B

razil

) Th

e va

lues

in p

aren

thes

es re

fer t

o th

e nu

mbe

r of i

nver

tebr

ates

per

sam

ple

35

Interact ion of sympatr ic Tropidur idae

Tabl

e 4

(Con

tinue

d)

June

July

Augu

stSe

ptem

ber

Oct

ober

Nov

embe

rTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

D

(95)

(120

)(9

33)

(59)

(156

)(8

99)

(46)

(63)

(219

)(1

50)

(170

)(1

023)

(240

)(5

64)

(242

4)(2

09)

(294

)(2

432)

Acar

ina

169

011

317

042

160

223

214

Aran

eae

421

244

493

678

445

100

52

671

762

251

251

241

533

350

342

26Bl

attar

ia0

430

640

220

490

176

83Ch

ilopo

da0

111

690

11Co

leop

tera

421

732

202

63

396

4126

59

476

168

93

3312

35

181

80

421

425

901

444

0812

05

Derm

apte

raDi

plop

oda

150

Dipl

ura

Dipt

era

316

081

390

13

3913

90

435

913

067

059

225

042

239

096

354

Embi

opte

raEp

hem

eopt

era

Gast

ropo

da5

081

370

590

200

040

480

04He

mip

tera

081

032

011

046

008

Hom

opte

ra0

810

963

390

641

454

353

171

832

350

290

620

08Hy

men

opte

ra42

11

561

029

26

525

485

26

525

065

22

746

058

45

906

779

41

742

996

67

937

986

10

904

394

90

722

0Is

opod

a1

59Is

opte

ra1

6911

11

133

059

058

008

Inse

ct la

rva

410

528

46

236

186

47

050

2223

91

159

067

176

039

071

017

335

068

029

Lepi

dopt

era

316

244

021

169

033

217

183

059

039

083

071

Man

tode

aM

ecop

tera

Neu

ropt

era

064

Odo

nata

004

Opi

lioni

dae

039

012

021

Ort

hopt

era

105

081

059

018

Prot

ura

Pseu

dosc

orpi

onid

a1

050

350

080

21Ps

coacutept

era

Scor

pion

ida

067

029

004

Siph

onop

tera

Stre

psite

raTh

richo

pter

aTh

ysan

ura

B2

842

483

543

101

362

722

051

742

571

211

541

711

071

131

341

221

111

84

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

049

056

lt00

10

850

28lt0

01

089

001

lt00

10

980

17gt0

05

100

010

gt00

50

980

21lt0

05

Th x

Disp

056

056

lt00

10

560

39lt0

01

094

030

lt00

11

000

08gt0

05

100

009

gt00

50

990

23lt0

05

Ts x

Th

095

015

gt00

50

950

18gt0

05

093

025

lt00

10

990

11gt0

05

100

002

gt00

51

000

03gt0

05

36

DIsCUssION The presence of a species in an environment may be related to specific physiological needs improved access to food availability of resources presence of refuges morphological adaptations inter and intraspecific interactions as well as historical factors (Pianka 1973 Herfindal et al 2005 Borger et al 2006 Silva amp Arauacutejo 2008) The habitat and microhabitat chosen by a species should meet their essential needs to allow viable populations (Silva amp Arauacutejo 2008) In the study area T hispidus and T semitaeniatus largely were active on rocky substrates Such sites are able to maximise the uptake of heat necessary for thermoregulation both through direct exposure and contact with heated surfaces (Rocha amp Bergallo 1990 VanSluys 1992 Meira et al 2007)

Tropidurus semitaeniatus is considered to be a saxicolous species endemic of Caatinga environments whereas T hispidus occupies a generalist habitat in open formations of various biomes (Rodrigues 1987) Despite this variation in the use of microhabitats T hispidus tends towards a saxicolous habit in places where rocks are abundant Vitt et al (1997) found that where T hispidus use rocks individuals displayed greater dorso-ventral flattening than when in habitat areas without rocks This suggests that the flattening in these individuals could be adaptive to the use of cracks in rock outcrops In the present study no differences were established in body shape between the species

The preference of these species for rocks has been recorded in other localities and environments Tropidurus hispidus uses rocks in Caatinga environments (Vitt 1981 Dias amp Lira-da-Silva 1998 Kolodiuk et al 2009) in the Amazonian rainforest (Vitt amp Carvalho 1995 Vitt et al 1996 Vitt amp Zani 1998) Amazonian savannahs (Mesquita et al 2006) and fields in Minas Gerais (VanSluys et al 2004) T semitaeniatus uses rocky substrates in the Caatinga biome (Vitt 1981 Kolodiuk et al 2009 Ribeiro amp Freire 2010) and in Agreste Sergipe (Fernandes amp Oliveira 1997 Ramos amp Denisson 1997) The use of rocks is common to others species of the semitaeniatus group (T helenae and T pinima Rodrigues 1984 Manzani amp Abe 1990 Rodrigues 2005) as well as for several

Table 5 Canonical correlation between the measurements of the head and the size of prey of T hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo ndash SE (Brazil)

species of the torquatus group (T montanus T itambere and T oreadicus Rodrigues 1987 Faria amp Araujo 2004 VanSluys et al 2004 Meira et al 2007) Both species adopted vertical positions which were in most cases lt40 cm above ground (5064 and 5178 of observations for T hispidus and T semitaeniatus respectively) Teixeira-Filho et al (1996) suggest that layers close to the ground are heated up more quickly with advantages for thermoregulation and a consequently lower risk of predation and more time for other activities such as foraging

Tropidurus individuals were active throughout the data collection period Both species are sit-and-wait predators implying a shorter time searching for prey and more energy invested in prey capture than is the case for more active foragers (Dias amp Lira-da-Silva 1998 Pianka amp Vitt 2003) Similar findings were already obtained for T hispidus (Vitt 1995 Vitt amp Zani 1998 VanSluys et al 2004) T semitaeniatus (Vitt 1995) T torquatus (Bergallo amp Rocha 1993 Teixeira-Filho et al 1996 Hatano et al 2001) T itambere (VanSluys 1992 Faria amp Araujo 2004) T montanus (VanSluys et al 2004) and T oreadicus (Faria amp Araujo 2004 Meira et al 2007) The observed bimodal patterns of activity have previously been found by VanSluys (1992) for T itambere and by Vrcibradic amp Rocha (1998) for Mabuya frenata during the wet season at high temperatures The Caatinga biome is characterised by particularly hot temperatures (Prado 2005) explaining the observed bimodal pattern for the present study species

According to Huey amp Slatkin (1976) thermoregulation in diurnal lizards involves a set of behavioural activities and options for microhabitat use Displacement between environments with a differential exposure to sun will help to achieve the optimum temperature sought (Rocha amp Bergallo 1990 Vitt amp Carvalho 1995 Hatano et al 2001) We observed a preference for sunny days and exposure to sun was distributed between categories (sun mosaic shadow) for both species with T semitaeniatus having a preference for sun and T hispidus having a preference for shadow The difference in exposure adopted by each species may reflect their physiological needs Vitt (1995) and Ribeiro amp Freire (2010) verified that T semitaeniatus

FFA Gomes et a l

Tropidurus semitaeniatus Tropidurus hispidus

Canonical coefficients Canonical coefficients

Head 1st Canonical Variable 2nd Canonical Variable 1st Canonical Variable 2nd Canonical Variable

Length 165 645 025 123

Height -217 -686 136 028

Width 151 032 -064 -160

Prey

Greater Length 038 139 129 -164

Greater Width 068 -127 -035 206

Canonical Correlation c2 p Canonical Correlation c2 p

I 095 13634 lt00001 053 14437 00251

II 055 1883 lt00001 014 0865 06488

37

presents a mean body temperature that is higher than T hispidus In the study area of the present work T hispidus may prefer shady places to avoid negative effects of high temperatures (Teixeira-Filho et al 1996)

Ecological historical and behavioural factors must be considered when evaluating the reasons why certain species consume particular types of prey (Vitt amp Zani 1998 Pianka amp Vitt 2003) and morphological limitations may further interfere with the type of food consumed (Toft 1985 Magnusson amp Silva 1993) An opportunistic pattern in food use was observed for both species in this study given the strong correlation between use and availability The use of ants is widely observed in the diet of the genus Tropidurus and has been reported for several species (T hispidus Dias amp Lira-da-Silva 1998 T torquatus group Arauacutejo 1987 T itambere VanSluys 1995 T oreadicus and T spinulosos Colli et al 1992 T torquatus Bergallo amp Rocha 1994 T hispidus T oreadicus T semitaeniatus Vitt 1993 T semitaeniatus and T hispidus Ribeiro amp Freire 2011) Ants are abundant in the Caatinga (Santos et al 1999) Insect larvae were mainly used in the rainy season probably due to their higher availability during this period

For lizards prey composition is largely related to the type of foraging used and the habitat they occupy (Vitt 1991 Toft 1985) Diet overlap is common among sympatric species that hunt by stalking since they have a preference for active prey (Zug et al 2001 Silva amp Arauacutejo 2008) In periods of higher rainfall both species became more selective since the number of invertebrates in the environment was larger Tropidurus semitaeniatus changed their diet towards insect larvae which were not the most abundant prey category T hispidus continued to consume Hymenoptera as the main item in their diet Considering the reduction in availability of Hymenoptera during the rainy season it is likely that individuals of Tropidurus species broaden the diversity of food items to meet their daily nutritional needs The seasonal change in food habits of T semitaeniatus during the rainy season might be due to avoidance of competition during this period Head morphology is reflected in the consumption of prey of different dimensions it is expected that animals with larger heads consume larger prey (Pianka 1969) However this pattern was not observed for the target species of this study Since T semitaeniatus that has a smaller width head was observed consuming relatively larger prey whereas T hispidus with larger heads prefers more elongated prey Food availability in the environment probably best explains the observed pattern Besides invertebrates large quantities of plant material (flowers leaves and seeds) were found in stomachs and T hispidus consumed more plants than T semitaeniatus Ingestion of plant material in Tropidurus and other lizards is relatively common to provide energy as well as possibly water (Rocha amp Bergallo 1992 VanSluys 1993 Dias amp Lira-da-Silva 1998) In our study area the coexistence of T hispidus and T semitaeniatus on rocky outcrops is probably facilitated by small variations in spatial arrangement the morphology of the trophic apparatus and temporary niche shifts in their diets depending on rather unpredictable rainfall patterns

ACKNOWLEDGEMENTs

We thank Mr Manuel Messias and his entire family for their support in the collection area We are grateful to CAPES for providing the research grant and SISBIO for licensing the collection the Secretaria do Meio-Ambiente e Recursos Hiacutedricos de Sergipe (SEMARH SE) for support with transport to the area and other aid at UC and the Nuacutecleo de Pesquisa em Ecologia e Conservaccedilatildeo (NPEC) and the Universidade Federal de Sergipe (UFS) for logistical support The data collection was authorised by license number 19237-1 issued by SISBIO (System of Authorization and Information on Biodiversity)

REFERENCEs

Arauacutejo AFB (1987) Comportamento alimentar dos lagartos o caso dos Tropidurus da Serra dos Carajaacutes Paraacute (Sauria Iguanidae) In Anais de Etologia 203ndash234 Encontro Anual de Etologia (1987) Ribeiratildeo Preto Jaboticabal FUNEP 5

Bergallo HG amp Rocha D (1993) Activity patterns and body temperatures of two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics in southeastern Brazil Amphibia-Reptilia 14 312ndash315

Bergallo HG amp Rocha D (1994) Spatial and trophic niche differentiation in two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics Australian Journal of Ecology 19 72ndash75

Beacuternils RS amp Costa HC (2012) Reacutepteis brasileiros lista de espeacutecies Versatildeo 20122 Available from lthttpwwwsbherpetologiaorgbrgt Sociedade Brasileira de Herpetologia Accessed 2 October 2013

Borger L Franconi N De Michele G Gantz A et al (2006) Effects of sampling regime on the mean and variance of home range size estimates Journal of Animal Ecology 75 1393ndash1405

Carvalho ALG Brito MR amp Fernandes DS (2013) Biogeography of the lizard genus Tropidurus Wied-Neuwied 1825 (Squamata Tropiduridae) distribution endemism and area relationships in South America Public Library of Science 8 1ndash14

Carvalho CM Vilar JC amp Oliveira FF (2005) Reacutepteis e anfiacutebios In Parque Nacional Serra de Itabaiana - Levantamento da Biota 39ndash61 Carvalho CM and Vilar JC (eds) Aracaju Ibama Biologia Geral e Experimental ndash UFS

Chiang JCH amp Koutavas A (2004) Tropical Flip-flop connections Nature 432 684ndash685

Colli GR Arauacutejo AFB Silveira R amp Roma F (1992) Niche partitioning and morphology of two syntopic Tropidurus (Sauria Tropiduridae) in Mato Grasso Brazil Journal of Herpetology 26 66ndash69

Cooper Jr WE (1994) Prey chemical discrimination foraging mode and phylogeny In Lizard ecology historical and experimental perspectives 95ndash116 Vitt LJ amp Pianka ER (eds) New Jersey Princeton University Press

Dias EJR amp Lira-da-Silva RM (1998) Utilizaccedilatildeo dos recursos alimentares por quatro espeacutecies de lagartos (Phyllopezus pollicaris Tropidurus hispidus Mabuya macrorhyncha e Vanzossaura rubricauda) da caatinga (Usina Hidroeleacutetrica de Xingoacute) Brazilian Journal of Ecology 2 97ndash101

Faria RG amp Arauacutejo AFB (2004) Sintopy of two Tropidurus

Interact ion of sympatr ic Tropidur idae

38

lizard species (Squamata Tropiduridae) on a rocky cerrado habitat in Central Brazil Brazilian Journal of Biology 64 775ndash786

Fernandes ACM amp Oliveira EF (1997) Diversidade na dieta e aspectos reprodutivos de duas espeacutecies simpaacutetricas e sintoacutepicas de Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 35ndash40

Freitas MA amp Silva TFS (2007) Guia ilustrado A herpetofauna das caatingas e aacutereas de altitudes do Nordeste Brasileiro Pelotas USEB (Coleccedilatildeo Manuais de Campo USEB 6) 384 pp

Frost DR Rodrigues MT Grant T amp Titus TA (2001) Phylogenetics of the lizard genus Tropidurus (Squamata Tropiduridae Tropidurinae) Direct optimization descriptive efficiency and analysis of congruence between molecular data and morphology Molecular Plylogenetics and Evolution 21 352ndash371

Hatano FH Vrcibradic D Galdino CAB Cunha-Barros M et al (2001) Thermal ecology and activity patterns of the lizard community of the restinga of Jurubatiba Macaeacute RJ Revista Brasileira de Biologia 61 287ndash294

Herfindal I Linnell JDC Odden J Birkeland Nilsen E amp Andersen R (2005) Prey density environmental productivity and home-range size in the Eurasian lynx (Lynx lynx) Journal of Zoology 265 63ndash71

Huey RB amp Pianka ER (1977) Patterns of niche overlap among broadly sympatric versus narrowly sympatric Kalahari lizards (Scincidae Mabuya) Ecology 58 119ndash128

Huey RB amp Slatkin M (1976) Cost and benefits of lizard thermoregulation The Quarterly Review of Biology 51 363ndash384

Hutchinson GE (1957) Concluding remarks Cold Spring Harbour Symposium on Quantitative Biology 22 415ndash427

Janzen DH amp Schoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season Ecology 49 96ndash110

Jolicoeur P (1963) The multivariate generalization of the allometry equation Biometrics 19 497ndash499

Kolodiuk MF Ribeiro LB amp Freire EMX (2009) The effects of seasonality on the foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) living in sympatry in the caatinga of northeastern Brazil Revista Brasileira de Zoologia 26 581ndash585

Krol MS Jaegar A Bronstert A amp Krywkow J (2001) The semiarid integrated model (SDIM) a regional integrated model assessing water availability vulnerability of ecosystems and society in NE-Brazil Physics and Chemistry of the Earth 26 529ndash533

Losos JB (1990) Ecomorphology performance capability and scaling of west Indian Anolis lizards an evolutionary analysis Ecological Monographs 60 369ndash388

Losos JB (2008) Phylogenetic niche conservatism phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species Ecology Letters 11 995ndash1007

Magnusson WE amp Silva EV (1993) Relative effects of size season and species on the diets of some Amazonian Savanna lizards Journal of Herpetology 27 380ndash385

Magnusson WE Lima PA Silva WA amp Arauacutejo MC (2003) Use of geometric forms to estimate volume of invertebrates

in ecological studies of dietary overlap Copeia 2003 13ndash19Manzani PR amp Abe AS (1990) A new species of Tapinurus

from the Caatinga of Piauiacute Northeastern Brazil (Squamata Tropiduridae) Herpetologica 46 462ndash467

MrsquoCloskey RT amp Hecnar ESJ (1994) Interspecific spatial overlap Oikos 71 65ndash74

Meira KT Faria RG Silva MDM Miranda VT amp Zahn-Silva W (2007) Histoacuteria natural de Tropidurus oreadicus em uma aacuterea de cerrado rupestre do Brasil Central Biota Neotropica 7 155ndash163

Mesquita DO Costa GC amp Colli GR (2006) Ecology of an Amazonian savanna lizard assemblage in Monte Alegre Paraacute state Brazil South American Journal of Herpetology 1 61ndash71

Milstead WW (1965) Changes in competing populations of whiptail lizards (Cnemidophorus) in southwestern Texas The American Midland Naturalist 7375ndash80

Nimer E (1972) Climatologia da Regiatildeo Nordeste do Brasil In Introduccedilatildeo agrave Climatologia Dinacircmica Revista Brasileira de Geografia 34 3ndash51

Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia Ecology 50 1012ndash 1030

Pianka ER (1973) The structure of lizard communities Annual Review of Ecology and Systematics 4 53ndash74

Pianka ER amp Vitt LJ (2003) Lizards Windows to The Evolution of Diversity Berkeley University of California Press 333 pp

Prado D (2005) As Caatingas da Ameacuterica do Sul In Ecologia e Conservaccedilatildeo da Caatinga 3ndash73 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ramos L amp Denisson S (1997) Notas sobre os habitats e microhabitats de duas espeacutecies simpaacutetricas de lagartos do gecircnero Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 29ndash34

Reis AMS Arauacutejo EL Ferraz EMN amp Moura AN (2006) Inter-annual variations in the floristic and population structure of an herbaceous community of ldquocaatingardquo vegetation in Pernambuco Brazil Revista Brasileira de Botacircnica 29 497ndash508

Ribeiro LB amp Freire EMX (2009) Tropidurus semitaeniatus (NCN) Drinking behavior Herpetological Review 40 228ndash229

Ribeiro LB amp Freire EMX (2010) Thermal ecology and thermoregulatory behaviour of Tropidurus hispidus and T semitaeniatus in a caatinga area of northeastern Brazil Herpetological Journal 20 201ndash208

Ribeiro LB amp Freire EMX (2011) Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) in a caatinga area of northeastern Brazil Iheringia Seacuterie Zoologia 101 225ndash232

Ricklefs RE Cochran D amp Pianka ER (1981) A morphological analysis of the structure of communities of lizards in desert habitats Ecology 62 1474ndash1478

Rocha CFD amp Bergallo HG (1990) Thermal biology and flight distance of Tropidurus oreadicus (Sauria Iguanidae) in an area of Amazonian Brazil Ethology Ecology amp Evolution 2 263ndash268

Rocha CFD amp Bergallo HG (1992) Tropidurus torquatus (collared lizard) diet Herpetological Review 25 69

Rodrigues MT (1984) Uma nova espeacutecie brasileira de

FFA Gomes et a l

39

Tropidurus com crista dorsal (Sauria Iguanidae) Papeacuteis Avulsos de Zoologia 35 169ndash175

Rodrigues MT (1987) Sistemaacutetica ecologia e zoogeografia dos Tropidurus do grupo torquatus ao sul do Rio Amazonas (Sauridae Iguanidae) Arquivos de Zoologia 31 105ndash230

Rodrigues MT (2005) Herpetofauna da Caatinga In Ecologia e Conservaccedilatildeo da Caatinga 181ndash236 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ruiz-Esparza J Gouveia SF Rocha PA Ribeiro AS amp Ferrari SF (2011) Birds of the Grota do Angico Natural Monument in the semi-arid caatinga scrublands of northeastern Brazil Biota Neotropica 11 1ndash8

Santos GMM Delabie JHC amp Resende JJ (1999) Caracterizaccedilatildeo da mirmecofauna (Hymenoptera-Formicidae) associada agrave vegetaccedilatildeo perifeacuterica de inselbergs (caatinga-arboacuterea-estacional-semi-deciacutedua) em Itatim ndash Bahia ndash Brasil Sitientibus 20 33ndash43

Sampaio EVSB (1995) Overview of the Brazilian Caatinga In Seasonally Dry Forests 35ndash58 Bullock HA Mooney HA amp Medina E (eds) Reino Unido Cambridge University Press

Schoener TW (1975) Presence and absence of habitat shift in some widespread lizards species Ecological Monographs 45 233ndash258

Silva VN amp Arauacutejo AFB (2008) Ecologia dos Lagartos Brasileiros 1st ed Rio de Janeiro Technical Books 271p

Simpson EH (1949) Measurement of diversity Nature 163 688

Somers KM (1986) Multivariate allometry and removal of size with principal components analysis Systematic Zoology 35 359ndash368

Teixeira-Filho P Rocha CFD amp Ribas S (1996) Ecologia termal e uso do habitat por Tropidurus torquatus (Sauria Tropiduridae) em uma aacuterea de restinga do sudeste do Brasil In Herpetologia Neotropical 255ndash267 Peacutefaur JE (ed) Actas del II Congreso Latinoamericano de Herpetologia II Volumen Universidad de Los Andes Merida Venezuela Consejo de Publicaciones

Toft CA (1985) Resource partitioning in amphibians and reptilies Copeia 1 1ndash21

VanSluys M (1992) Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae) em uma aacuterea do sudeste do Brasil Revista Brasileira de Biologia 52 181ndash185

VanSluys M (1993) Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Journal of Herpetology 27 347ndash351

VanSluys M (1995) Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Ciecircncia e Cultura 47 61ndash65

VanSluys M Rocha CFD Vrcibradic D Galdino CAB amp Fontes AF (2004) Diet activity and microhabitat use of two syntopic Tropidurus species (Lacertilia Tropiduridae) in Minas Gerais Brazil Journal of Herpetology 38 606ndash611

Vitt LJ (1981) Lizard reproduction habitat specificity and constraints on relative clutch mass The American Naturalist 117 506ndash514

Vitt LJ (1991) An introduction to the ecology of cerrado lizards Journal of Herpetology 25 79ndash90

Vitt LJ (1993) Ecology of isolated open-formation Tropidurus (Reptilia Tropiduridae) in Amazonian lowland rain forest Canadian Journal of Zoology 71 2370ndash2390

Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil Occasional Papers of the Oklahoma Museum of Natural History 1 29ndash34

Vitt LJ Zani PA amp Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia Journal of Tropical Ecology 12 81ndash101

Vitt LJ Caldwell JP Zani PA amp Titus TA (1997) The role of habitat shift in the evolution of lizard morphology evidence from tropical Tropidurus Proceedings of the National Academy of Sciences 94 3828ndash3832

Vitt LJ amp Carvalho CM (1995) Niche partitioning in a tropical wet season lizards in the Lavrado area of Northern Brazil Copeia 2 305ndash329

Vitt LJ amp Pianka ER (1994) Introduction and Acknowledgments In Lizard Ecology Historical and Experimental Perspectives 9ndash12 Vitt LJ amp Pianka ER (eds) Princeton University Press 403 pp

Vitt LJ amp Zani PA (1998) Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14 63ndash86

Vrcibradic D amp Rocha CFD (1998) Ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil Journal of Herpetology 32 229ndash237

Webb CO Ackerly DD McPeek MA amp Donoghue MJ (2002) Phylogenies and community ecology Annual Review of Ecology and Systematics 33 475ndash505

Zug GR Vitt LJ amp Caldwell JP (2001) Herpetology An Introductory Biology of Amphibians and Reptiles 2nd ed San Diego Academic Press 630 pp

Accepted 8 July 2014

Interact ion of sympatr ic Tropidur idae

33

Interact ion of sympatr ic Tropidur idae

respectively with a high overlap of these schedules ( φ

jk=092) The two species were indiscernible with regard to

activity when sighted (G=04808 gl=4 p=09753 nT

hispidus=461 and nT semitaeniatus=1338) A standing position dominated for both T hispidus (8178) and T semitaeniatus (8079) (Fig 2F) Running for shelter was the main activity after having been encountered for both species (Tropidurus hispidus 6580 T semitaeniatus 7427) (Fig 2G) without statistical differences (G=72499 gl=6 p=02984 nT hispidus=421 and nT

semitaeniatus=1337) Similar shelters were chosen by the two species (G=133158 gl=7 p=00648 nT hispidus=421 and nT semitaeniatus=1331) Rocks were used most frequently (T hispidus 6674 and T semitaeniatus 8136) followed by crevices (T hispidus 1069 and T semitaeniatus 1254) (Fig 2H) Niche width for shelters use was 211 and 147 for T hispidus and T semitaeniatus respectively with a high overlap ( φjk = 099)

Adult T hispidus were larger than T semitaeniatus (ANOVA F136=42119 plt0001 n=382 Table 1) Average SVL of T hispidus was 9268plusmn1358 mm for adults and 6391plusmn1413 mm for juveniles average SVL of T semitaeniatus adults and young was 7366plusmn904 mm and 5555plusmn1303 mm respectively The size-adjusted masses (adults) were similar between the species (ANOVA F128=1283 p=0267 n=30 Table 1) Adults and young of T hispidus had masses of 3208plusmn1151 g and 1095plusmn646 g T semitaeniatus weighed 1219plusmn506 g and 507plusmn381 g respectively (Tables 1 and 2)

The first and second principal components of a PCA together explained 70 of the variation in morphology of the two species The first principal component was related to SVL anterior and posterior limb length and head width The two species did not significantly differ in shape (MANOVA Wilkrsquos Lambda=0893 p=0566) although T hispidus is slightly larger than T semitaeniatus with a larger and higher head longer limbs and a higher body

A total of 60 stomachs were analysed for T semitaeniatus and T hispidus each Eighteen prey categories were used by T hispidus and 15 were used by T semitaeniatus The most frequent prey categories for T hispidus were Hymenoptera Coleoptera insect larvae Araneae and Lepidoptera The corresponding groups for T semitaeniatus were Hymenoptera insect larvae Araneae Coleoptera Diptera and Lepidoptera The most abundant prey types were Hymenoptera and Isoptera for T hispidus and Hymenoptera and insect larvae for T semitaeniatus Highest prey volumes were represented by insect larvae and Hymenoptera for T hispidus and insect larvae and Hymenoptera for T semitaeniatus (Table 3) Formicidae represented 9995 of the Hymenoptera ingested by the two species (Table 3) Both species also consumed plant material (28 of T hispidus individuals representing 60 of the volume of food consumed and 833 of T semitaeniatus representing 00046 of food volume

The trophic niche widths estimated for T hispidus and T semitaeniatus were 206 and 202 for prey number and 226 and 296 for prey volume respectively Overlap

was higher with regards to prey number ( φjk=096 prey volume φ jk=097) but prey number and prey volume were significantly different from each other (prey number KolmogorovndashSmirnov Dmax=01584 plt001 prey volume KolmogorovndashSmirnov Dmax=01816 plt001 Table 3) A total of 36015 invertebrates distributed into 33 categories were used to estimate prey availability in the environment The distribution of available prey differed from the consumed prey for both species (T hispidus Dmax=02267 plt001 T semitaeniatus Dmax=02294 plt001)

The mean number of prey categories consumed for each species was seven (T semitaeniatus 5ndash11 T hispidus 4ndash11) Five categories comprised more than 10 in at least one monthly sample for T hispidus (Hymenoptera insect larvae Isoptera Coleoptera and Lepidoptera) and four of these also comprised more than 10 in at least one monthly sample for T semitaeniatus (all except Lepidoptera) The largest niche widths (B) were observed in February (254) June (248) April (245) and May (204) for T hispidus and in July (310) February (289) June (284) and May (221) for T semitaeniatus Diet overlap was high (Oslashgt050) in all months except April (011) and December (020) However significant differences between the diets were found in December February April May and August (Table 4)

The proportion of items most used in the diets was similar to available prey in January April September and October for T hispidus and in December January September and October for T semitaeniatus (Table 4) The prey availability occurred between December 2008 and March 2009 and between October and November 2009 (Table 4) The numbers of available prey categories ranged from eight (August) to 19 (February) The highest diversity of available prey was observed in May (378) (Table 4)

Focusing on the two most common food items Hymenoptera were most abundantly available in December 2008 and January 2009 and between September and November 2009 (Table 4) Tropidurus semitaeniatus largely consumed Hymenoptera (over 50 of diet) in the months of December 2008 January March and July to November 2009 whereas insect larvae were more consumed in February April May and June For T hispidus Hymenoptera comprised gt50 of the diet in all month except December and February (Table 4) Insect larvae never exceeded 50 of the number of prey consumed

A strong relationship was seen when comparing the morphology of the head of each species Tropidurus with the dimensions of prey actually consumed by them (Table 5) The first canonical variable for T semitaeniatus showed an inverse relationship in which animals with narrower heads were related to larger prey (Table 5) Already T hispidus for the first canonical variable was significantly positive for the relation between animals with large heads and longer prey (Table 5)

34

FFA Gomes et a l

Dece

mbe

rJa

nuar

yFe

brua

ryM

arch

April

May

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

(126

)(4

51)

(407

2)(9

0)(5

05)

(141

85)

(73)

(83)

(430

8)(1

07)

(151

)(3

895)

(178

)(4

5)(7

99)

(108

)(2

67)

(826

)Ac

arin

a1

650

590

570

070

030

750

36Ar

anea

e1

590

440

612

250

200

731

371

201

183

740

631

826

133

700

75Bl

attar

ia0

440

101

120

200

480

260

100

380

370

12Ch

ilopo

da0

220

010

030

48Co

leop

tera

317

044

447

562

079

851

274

361

474

093

125

137

62

2524

44

160

20

934

8718

52

Derm

apte

ra0

08Di

plop

oda

009

138

037

763

Dipl

ura

002

Dipt

era

142

91

922

250

592

874

8247

47

187

188

447

215

77

377

7Em

biop

tera

013

Ephe

meo

pter

a0

75Ga

stro

poda

100

109

Hem

ipte

ra0

010

020

030

371

21Ho

mop

tera

007

001

063

093

037

073

Hym

enop

tera

793

716

41

908

480

90

906

986

75

397

346

99

389

784

11

800

028

11

337

577

852

44

314

865

17

284

5Is

opod

a0

22Is

opte

ra0

7981

82

002

112

634

424

70

911

870

562

220

631

120

61In

sect

larv

a0

790

223

370

016

8540

96

042

093

938

036

932

64

443

7559

26

250

91

94Le

pido

pter

a2

250

592

742

415

646

546

2510

94

056

111

10

501

851

120

85M

anto

dea

002

Mec

opte

ra0

02N

euro

pter

aO

dona

ta0

05O

pilio

nida

e0

03O

rtho

pter

a1

121

850

37Pr

otur

a0

010

02Ps

eudo

scor

pion

ida

002

411

025

024

Pscoacute

pter

a0

02Sc

orpi

onid

a0

050

020

050

13Si

phon

opte

ra0

02St

reps

itera

002

Thric

hopt

era

002

Thys

anur

a0

01 B

153

143

121

151

121

131

289

254

261

140

153

322

115

245

302

221

204

378

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

099

010

gt00

51

000

08gt0

05

044

050

lt00

10

540

54lt0

01

010

089

lt00

10

300

63lt0

01

Th x

Disp

020

082

lt00

10

990

11gt0

05

054

044

lt00

10

540

57lt0

01

094

018

gt00

50

550

61lt0

01

Ts x

Th

020

080

lt00

10

990

09gt0

05

059

030

lt00

10

990

08gt0

05

011

078

lt00

10

750

36lt0

01

Tabl

e 4

Mon

thly

dist

ributi

on o

f foo

d av

aila

bilty

(D) a

nd o

f the

sto

mac

h co

nten

ts o

f T h

ispi

dus

(Th)

and

T s

emita

enia

tus

(Ts)

in t

he C

onse

rvati

on U

nit

of t

he S

tate

M

onum

ento

Nat

ural

Gro

ta d

o An

gico

Poccedil

o Re

dond

o - S

E (B

razil

) Th

e va

lues

in p

aren

thes

es re

fer t

o th

e nu

mbe

r of i

nver

tebr

ates

per

sam

ple

35

Interact ion of sympatr ic Tropidur idae

Tabl

e 4

(Con

tinue

d)

June

July

Augu

stSe

ptem

ber

Oct

ober

Nov

embe

rTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

D

(95)

(120

)(9

33)

(59)

(156

)(8

99)

(46)

(63)

(219

)(1

50)

(170

)(1

023)

(240

)(5

64)

(242

4)(2

09)

(294

)(2

432)

Acar

ina

169

011

317

042

160

223

214

Aran

eae

421

244

493

678

445

100

52

671

762

251

251

241

533

350

342

26Bl

attar

ia0

430

640

220

490

176

83Ch

ilopo

da0

111

690

11Co

leop

tera

421

732

202

63

396

4126

59

476

168

93

3312

35

181

80

421

425

901

444

0812

05

Derm

apte

raDi

plop

oda

150

Dipl

ura

Dipt

era

316

081

390

13

3913

90

435

913

067

059

225

042

239

096

354

Embi

opte

raEp

hem

eopt

era

Gast

ropo

da5

081

370

590

200

040

480

04He

mip

tera

081

032

011

046

008

Hom

opte

ra0

810

963

390

641

454

353

171

832

350

290

620

08Hy

men

opte

ra42

11

561

029

26

525

485

26

525

065

22

746

058

45

906

779

41

742

996

67

937

986

10

904

394

90

722

0Is

opod

a1

59Is

opte

ra1

6911

11

133

059

058

008

Inse

ct la

rva

410

528

46

236

186

47

050

2223

91

159

067

176

039

071

017

335

068

029

Lepi

dopt

era

316

244

021

169

033

217

183

059

039

083

071

Man

tode

aM

ecop

tera

Neu

ropt

era

064

Odo

nata

004

Opi

lioni

dae

039

012

021

Ort

hopt

era

105

081

059

018

Prot

ura

Pseu

dosc

orpi

onid

a1

050

350

080

21Ps

coacutept

era

Scor

pion

ida

067

029

004

Siph

onop

tera

Stre

psite

raTh

richo

pter

aTh

ysan

ura

B2

842

483

543

101

362

722

051

742

571

211

541

711

071

131

341

221

111

84

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

049

056

lt00

10

850

28lt0

01

089

001

lt00

10

980

17gt0

05

100

010

gt00

50

980

21lt0

05

Th x

Disp

056

056

lt00

10

560

39lt0

01

094

030

lt00

11

000

08gt0

05

100

009

gt00

50

990

23lt0

05

Ts x

Th

095

015

gt00

50

950

18gt0

05

093

025

lt00

10

990

11gt0

05

100

002

gt00

51

000

03gt0

05

36

DIsCUssION The presence of a species in an environment may be related to specific physiological needs improved access to food availability of resources presence of refuges morphological adaptations inter and intraspecific interactions as well as historical factors (Pianka 1973 Herfindal et al 2005 Borger et al 2006 Silva amp Arauacutejo 2008) The habitat and microhabitat chosen by a species should meet their essential needs to allow viable populations (Silva amp Arauacutejo 2008) In the study area T hispidus and T semitaeniatus largely were active on rocky substrates Such sites are able to maximise the uptake of heat necessary for thermoregulation both through direct exposure and contact with heated surfaces (Rocha amp Bergallo 1990 VanSluys 1992 Meira et al 2007)

Tropidurus semitaeniatus is considered to be a saxicolous species endemic of Caatinga environments whereas T hispidus occupies a generalist habitat in open formations of various biomes (Rodrigues 1987) Despite this variation in the use of microhabitats T hispidus tends towards a saxicolous habit in places where rocks are abundant Vitt et al (1997) found that where T hispidus use rocks individuals displayed greater dorso-ventral flattening than when in habitat areas without rocks This suggests that the flattening in these individuals could be adaptive to the use of cracks in rock outcrops In the present study no differences were established in body shape between the species

The preference of these species for rocks has been recorded in other localities and environments Tropidurus hispidus uses rocks in Caatinga environments (Vitt 1981 Dias amp Lira-da-Silva 1998 Kolodiuk et al 2009) in the Amazonian rainforest (Vitt amp Carvalho 1995 Vitt et al 1996 Vitt amp Zani 1998) Amazonian savannahs (Mesquita et al 2006) and fields in Minas Gerais (VanSluys et al 2004) T semitaeniatus uses rocky substrates in the Caatinga biome (Vitt 1981 Kolodiuk et al 2009 Ribeiro amp Freire 2010) and in Agreste Sergipe (Fernandes amp Oliveira 1997 Ramos amp Denisson 1997) The use of rocks is common to others species of the semitaeniatus group (T helenae and T pinima Rodrigues 1984 Manzani amp Abe 1990 Rodrigues 2005) as well as for several

Table 5 Canonical correlation between the measurements of the head and the size of prey of T hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo ndash SE (Brazil)

species of the torquatus group (T montanus T itambere and T oreadicus Rodrigues 1987 Faria amp Araujo 2004 VanSluys et al 2004 Meira et al 2007) Both species adopted vertical positions which were in most cases lt40 cm above ground (5064 and 5178 of observations for T hispidus and T semitaeniatus respectively) Teixeira-Filho et al (1996) suggest that layers close to the ground are heated up more quickly with advantages for thermoregulation and a consequently lower risk of predation and more time for other activities such as foraging

Tropidurus individuals were active throughout the data collection period Both species are sit-and-wait predators implying a shorter time searching for prey and more energy invested in prey capture than is the case for more active foragers (Dias amp Lira-da-Silva 1998 Pianka amp Vitt 2003) Similar findings were already obtained for T hispidus (Vitt 1995 Vitt amp Zani 1998 VanSluys et al 2004) T semitaeniatus (Vitt 1995) T torquatus (Bergallo amp Rocha 1993 Teixeira-Filho et al 1996 Hatano et al 2001) T itambere (VanSluys 1992 Faria amp Araujo 2004) T montanus (VanSluys et al 2004) and T oreadicus (Faria amp Araujo 2004 Meira et al 2007) The observed bimodal patterns of activity have previously been found by VanSluys (1992) for T itambere and by Vrcibradic amp Rocha (1998) for Mabuya frenata during the wet season at high temperatures The Caatinga biome is characterised by particularly hot temperatures (Prado 2005) explaining the observed bimodal pattern for the present study species

According to Huey amp Slatkin (1976) thermoregulation in diurnal lizards involves a set of behavioural activities and options for microhabitat use Displacement between environments with a differential exposure to sun will help to achieve the optimum temperature sought (Rocha amp Bergallo 1990 Vitt amp Carvalho 1995 Hatano et al 2001) We observed a preference for sunny days and exposure to sun was distributed between categories (sun mosaic shadow) for both species with T semitaeniatus having a preference for sun and T hispidus having a preference for shadow The difference in exposure adopted by each species may reflect their physiological needs Vitt (1995) and Ribeiro amp Freire (2010) verified that T semitaeniatus

FFA Gomes et a l

Tropidurus semitaeniatus Tropidurus hispidus

Canonical coefficients Canonical coefficients

Head 1st Canonical Variable 2nd Canonical Variable 1st Canonical Variable 2nd Canonical Variable

Length 165 645 025 123

Height -217 -686 136 028

Width 151 032 -064 -160

Prey

Greater Length 038 139 129 -164

Greater Width 068 -127 -035 206

Canonical Correlation c2 p Canonical Correlation c2 p

I 095 13634 lt00001 053 14437 00251

II 055 1883 lt00001 014 0865 06488

37

presents a mean body temperature that is higher than T hispidus In the study area of the present work T hispidus may prefer shady places to avoid negative effects of high temperatures (Teixeira-Filho et al 1996)

Ecological historical and behavioural factors must be considered when evaluating the reasons why certain species consume particular types of prey (Vitt amp Zani 1998 Pianka amp Vitt 2003) and morphological limitations may further interfere with the type of food consumed (Toft 1985 Magnusson amp Silva 1993) An opportunistic pattern in food use was observed for both species in this study given the strong correlation between use and availability The use of ants is widely observed in the diet of the genus Tropidurus and has been reported for several species (T hispidus Dias amp Lira-da-Silva 1998 T torquatus group Arauacutejo 1987 T itambere VanSluys 1995 T oreadicus and T spinulosos Colli et al 1992 T torquatus Bergallo amp Rocha 1994 T hispidus T oreadicus T semitaeniatus Vitt 1993 T semitaeniatus and T hispidus Ribeiro amp Freire 2011) Ants are abundant in the Caatinga (Santos et al 1999) Insect larvae were mainly used in the rainy season probably due to their higher availability during this period

For lizards prey composition is largely related to the type of foraging used and the habitat they occupy (Vitt 1991 Toft 1985) Diet overlap is common among sympatric species that hunt by stalking since they have a preference for active prey (Zug et al 2001 Silva amp Arauacutejo 2008) In periods of higher rainfall both species became more selective since the number of invertebrates in the environment was larger Tropidurus semitaeniatus changed their diet towards insect larvae which were not the most abundant prey category T hispidus continued to consume Hymenoptera as the main item in their diet Considering the reduction in availability of Hymenoptera during the rainy season it is likely that individuals of Tropidurus species broaden the diversity of food items to meet their daily nutritional needs The seasonal change in food habits of T semitaeniatus during the rainy season might be due to avoidance of competition during this period Head morphology is reflected in the consumption of prey of different dimensions it is expected that animals with larger heads consume larger prey (Pianka 1969) However this pattern was not observed for the target species of this study Since T semitaeniatus that has a smaller width head was observed consuming relatively larger prey whereas T hispidus with larger heads prefers more elongated prey Food availability in the environment probably best explains the observed pattern Besides invertebrates large quantities of plant material (flowers leaves and seeds) were found in stomachs and T hispidus consumed more plants than T semitaeniatus Ingestion of plant material in Tropidurus and other lizards is relatively common to provide energy as well as possibly water (Rocha amp Bergallo 1992 VanSluys 1993 Dias amp Lira-da-Silva 1998) In our study area the coexistence of T hispidus and T semitaeniatus on rocky outcrops is probably facilitated by small variations in spatial arrangement the morphology of the trophic apparatus and temporary niche shifts in their diets depending on rather unpredictable rainfall patterns

ACKNOWLEDGEMENTs

We thank Mr Manuel Messias and his entire family for their support in the collection area We are grateful to CAPES for providing the research grant and SISBIO for licensing the collection the Secretaria do Meio-Ambiente e Recursos Hiacutedricos de Sergipe (SEMARH SE) for support with transport to the area and other aid at UC and the Nuacutecleo de Pesquisa em Ecologia e Conservaccedilatildeo (NPEC) and the Universidade Federal de Sergipe (UFS) for logistical support The data collection was authorised by license number 19237-1 issued by SISBIO (System of Authorization and Information on Biodiversity)

REFERENCEs

Arauacutejo AFB (1987) Comportamento alimentar dos lagartos o caso dos Tropidurus da Serra dos Carajaacutes Paraacute (Sauria Iguanidae) In Anais de Etologia 203ndash234 Encontro Anual de Etologia (1987) Ribeiratildeo Preto Jaboticabal FUNEP 5

Bergallo HG amp Rocha D (1993) Activity patterns and body temperatures of two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics in southeastern Brazil Amphibia-Reptilia 14 312ndash315

Bergallo HG amp Rocha D (1994) Spatial and trophic niche differentiation in two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics Australian Journal of Ecology 19 72ndash75

Beacuternils RS amp Costa HC (2012) Reacutepteis brasileiros lista de espeacutecies Versatildeo 20122 Available from lthttpwwwsbherpetologiaorgbrgt Sociedade Brasileira de Herpetologia Accessed 2 October 2013

Borger L Franconi N De Michele G Gantz A et al (2006) Effects of sampling regime on the mean and variance of home range size estimates Journal of Animal Ecology 75 1393ndash1405

Carvalho ALG Brito MR amp Fernandes DS (2013) Biogeography of the lizard genus Tropidurus Wied-Neuwied 1825 (Squamata Tropiduridae) distribution endemism and area relationships in South America Public Library of Science 8 1ndash14

Carvalho CM Vilar JC amp Oliveira FF (2005) Reacutepteis e anfiacutebios In Parque Nacional Serra de Itabaiana - Levantamento da Biota 39ndash61 Carvalho CM and Vilar JC (eds) Aracaju Ibama Biologia Geral e Experimental ndash UFS

Chiang JCH amp Koutavas A (2004) Tropical Flip-flop connections Nature 432 684ndash685

Colli GR Arauacutejo AFB Silveira R amp Roma F (1992) Niche partitioning and morphology of two syntopic Tropidurus (Sauria Tropiduridae) in Mato Grasso Brazil Journal of Herpetology 26 66ndash69

Cooper Jr WE (1994) Prey chemical discrimination foraging mode and phylogeny In Lizard ecology historical and experimental perspectives 95ndash116 Vitt LJ amp Pianka ER (eds) New Jersey Princeton University Press

Dias EJR amp Lira-da-Silva RM (1998) Utilizaccedilatildeo dos recursos alimentares por quatro espeacutecies de lagartos (Phyllopezus pollicaris Tropidurus hispidus Mabuya macrorhyncha e Vanzossaura rubricauda) da caatinga (Usina Hidroeleacutetrica de Xingoacute) Brazilian Journal of Ecology 2 97ndash101

Faria RG amp Arauacutejo AFB (2004) Sintopy of two Tropidurus

Interact ion of sympatr ic Tropidur idae

38

lizard species (Squamata Tropiduridae) on a rocky cerrado habitat in Central Brazil Brazilian Journal of Biology 64 775ndash786

Fernandes ACM amp Oliveira EF (1997) Diversidade na dieta e aspectos reprodutivos de duas espeacutecies simpaacutetricas e sintoacutepicas de Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 35ndash40

Freitas MA amp Silva TFS (2007) Guia ilustrado A herpetofauna das caatingas e aacutereas de altitudes do Nordeste Brasileiro Pelotas USEB (Coleccedilatildeo Manuais de Campo USEB 6) 384 pp

Frost DR Rodrigues MT Grant T amp Titus TA (2001) Phylogenetics of the lizard genus Tropidurus (Squamata Tropiduridae Tropidurinae) Direct optimization descriptive efficiency and analysis of congruence between molecular data and morphology Molecular Plylogenetics and Evolution 21 352ndash371

Hatano FH Vrcibradic D Galdino CAB Cunha-Barros M et al (2001) Thermal ecology and activity patterns of the lizard community of the restinga of Jurubatiba Macaeacute RJ Revista Brasileira de Biologia 61 287ndash294

Herfindal I Linnell JDC Odden J Birkeland Nilsen E amp Andersen R (2005) Prey density environmental productivity and home-range size in the Eurasian lynx (Lynx lynx) Journal of Zoology 265 63ndash71

Huey RB amp Pianka ER (1977) Patterns of niche overlap among broadly sympatric versus narrowly sympatric Kalahari lizards (Scincidae Mabuya) Ecology 58 119ndash128

Huey RB amp Slatkin M (1976) Cost and benefits of lizard thermoregulation The Quarterly Review of Biology 51 363ndash384

Hutchinson GE (1957) Concluding remarks Cold Spring Harbour Symposium on Quantitative Biology 22 415ndash427

Janzen DH amp Schoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season Ecology 49 96ndash110

Jolicoeur P (1963) The multivariate generalization of the allometry equation Biometrics 19 497ndash499

Kolodiuk MF Ribeiro LB amp Freire EMX (2009) The effects of seasonality on the foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) living in sympatry in the caatinga of northeastern Brazil Revista Brasileira de Zoologia 26 581ndash585

Krol MS Jaegar A Bronstert A amp Krywkow J (2001) The semiarid integrated model (SDIM) a regional integrated model assessing water availability vulnerability of ecosystems and society in NE-Brazil Physics and Chemistry of the Earth 26 529ndash533

Losos JB (1990) Ecomorphology performance capability and scaling of west Indian Anolis lizards an evolutionary analysis Ecological Monographs 60 369ndash388

Losos JB (2008) Phylogenetic niche conservatism phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species Ecology Letters 11 995ndash1007

Magnusson WE amp Silva EV (1993) Relative effects of size season and species on the diets of some Amazonian Savanna lizards Journal of Herpetology 27 380ndash385

Magnusson WE Lima PA Silva WA amp Arauacutejo MC (2003) Use of geometric forms to estimate volume of invertebrates

in ecological studies of dietary overlap Copeia 2003 13ndash19Manzani PR amp Abe AS (1990) A new species of Tapinurus

from the Caatinga of Piauiacute Northeastern Brazil (Squamata Tropiduridae) Herpetologica 46 462ndash467

MrsquoCloskey RT amp Hecnar ESJ (1994) Interspecific spatial overlap Oikos 71 65ndash74

Meira KT Faria RG Silva MDM Miranda VT amp Zahn-Silva W (2007) Histoacuteria natural de Tropidurus oreadicus em uma aacuterea de cerrado rupestre do Brasil Central Biota Neotropica 7 155ndash163

Mesquita DO Costa GC amp Colli GR (2006) Ecology of an Amazonian savanna lizard assemblage in Monte Alegre Paraacute state Brazil South American Journal of Herpetology 1 61ndash71

Milstead WW (1965) Changes in competing populations of whiptail lizards (Cnemidophorus) in southwestern Texas The American Midland Naturalist 7375ndash80

Nimer E (1972) Climatologia da Regiatildeo Nordeste do Brasil In Introduccedilatildeo agrave Climatologia Dinacircmica Revista Brasileira de Geografia 34 3ndash51

Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia Ecology 50 1012ndash 1030

Pianka ER (1973) The structure of lizard communities Annual Review of Ecology and Systematics 4 53ndash74

Pianka ER amp Vitt LJ (2003) Lizards Windows to The Evolution of Diversity Berkeley University of California Press 333 pp

Prado D (2005) As Caatingas da Ameacuterica do Sul In Ecologia e Conservaccedilatildeo da Caatinga 3ndash73 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ramos L amp Denisson S (1997) Notas sobre os habitats e microhabitats de duas espeacutecies simpaacutetricas de lagartos do gecircnero Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 29ndash34

Reis AMS Arauacutejo EL Ferraz EMN amp Moura AN (2006) Inter-annual variations in the floristic and population structure of an herbaceous community of ldquocaatingardquo vegetation in Pernambuco Brazil Revista Brasileira de Botacircnica 29 497ndash508

Ribeiro LB amp Freire EMX (2009) Tropidurus semitaeniatus (NCN) Drinking behavior Herpetological Review 40 228ndash229

Ribeiro LB amp Freire EMX (2010) Thermal ecology and thermoregulatory behaviour of Tropidurus hispidus and T semitaeniatus in a caatinga area of northeastern Brazil Herpetological Journal 20 201ndash208

Ribeiro LB amp Freire EMX (2011) Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) in a caatinga area of northeastern Brazil Iheringia Seacuterie Zoologia 101 225ndash232

Ricklefs RE Cochran D amp Pianka ER (1981) A morphological analysis of the structure of communities of lizards in desert habitats Ecology 62 1474ndash1478

Rocha CFD amp Bergallo HG (1990) Thermal biology and flight distance of Tropidurus oreadicus (Sauria Iguanidae) in an area of Amazonian Brazil Ethology Ecology amp Evolution 2 263ndash268

Rocha CFD amp Bergallo HG (1992) Tropidurus torquatus (collared lizard) diet Herpetological Review 25 69

Rodrigues MT (1984) Uma nova espeacutecie brasileira de

FFA Gomes et a l

39

Tropidurus com crista dorsal (Sauria Iguanidae) Papeacuteis Avulsos de Zoologia 35 169ndash175

Rodrigues MT (1987) Sistemaacutetica ecologia e zoogeografia dos Tropidurus do grupo torquatus ao sul do Rio Amazonas (Sauridae Iguanidae) Arquivos de Zoologia 31 105ndash230

Rodrigues MT (2005) Herpetofauna da Caatinga In Ecologia e Conservaccedilatildeo da Caatinga 181ndash236 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ruiz-Esparza J Gouveia SF Rocha PA Ribeiro AS amp Ferrari SF (2011) Birds of the Grota do Angico Natural Monument in the semi-arid caatinga scrublands of northeastern Brazil Biota Neotropica 11 1ndash8

Santos GMM Delabie JHC amp Resende JJ (1999) Caracterizaccedilatildeo da mirmecofauna (Hymenoptera-Formicidae) associada agrave vegetaccedilatildeo perifeacuterica de inselbergs (caatinga-arboacuterea-estacional-semi-deciacutedua) em Itatim ndash Bahia ndash Brasil Sitientibus 20 33ndash43

Sampaio EVSB (1995) Overview of the Brazilian Caatinga In Seasonally Dry Forests 35ndash58 Bullock HA Mooney HA amp Medina E (eds) Reino Unido Cambridge University Press

Schoener TW (1975) Presence and absence of habitat shift in some widespread lizards species Ecological Monographs 45 233ndash258

Silva VN amp Arauacutejo AFB (2008) Ecologia dos Lagartos Brasileiros 1st ed Rio de Janeiro Technical Books 271p

Simpson EH (1949) Measurement of diversity Nature 163 688

Somers KM (1986) Multivariate allometry and removal of size with principal components analysis Systematic Zoology 35 359ndash368

Teixeira-Filho P Rocha CFD amp Ribas S (1996) Ecologia termal e uso do habitat por Tropidurus torquatus (Sauria Tropiduridae) em uma aacuterea de restinga do sudeste do Brasil In Herpetologia Neotropical 255ndash267 Peacutefaur JE (ed) Actas del II Congreso Latinoamericano de Herpetologia II Volumen Universidad de Los Andes Merida Venezuela Consejo de Publicaciones

Toft CA (1985) Resource partitioning in amphibians and reptilies Copeia 1 1ndash21

VanSluys M (1992) Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae) em uma aacuterea do sudeste do Brasil Revista Brasileira de Biologia 52 181ndash185

VanSluys M (1993) Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Journal of Herpetology 27 347ndash351

VanSluys M (1995) Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Ciecircncia e Cultura 47 61ndash65

VanSluys M Rocha CFD Vrcibradic D Galdino CAB amp Fontes AF (2004) Diet activity and microhabitat use of two syntopic Tropidurus species (Lacertilia Tropiduridae) in Minas Gerais Brazil Journal of Herpetology 38 606ndash611

Vitt LJ (1981) Lizard reproduction habitat specificity and constraints on relative clutch mass The American Naturalist 117 506ndash514

Vitt LJ (1991) An introduction to the ecology of cerrado lizards Journal of Herpetology 25 79ndash90

Vitt LJ (1993) Ecology of isolated open-formation Tropidurus (Reptilia Tropiduridae) in Amazonian lowland rain forest Canadian Journal of Zoology 71 2370ndash2390

Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil Occasional Papers of the Oklahoma Museum of Natural History 1 29ndash34

Vitt LJ Zani PA amp Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia Journal of Tropical Ecology 12 81ndash101

Vitt LJ Caldwell JP Zani PA amp Titus TA (1997) The role of habitat shift in the evolution of lizard morphology evidence from tropical Tropidurus Proceedings of the National Academy of Sciences 94 3828ndash3832

Vitt LJ amp Carvalho CM (1995) Niche partitioning in a tropical wet season lizards in the Lavrado area of Northern Brazil Copeia 2 305ndash329

Vitt LJ amp Pianka ER (1994) Introduction and Acknowledgments In Lizard Ecology Historical and Experimental Perspectives 9ndash12 Vitt LJ amp Pianka ER (eds) Princeton University Press 403 pp

Vitt LJ amp Zani PA (1998) Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14 63ndash86

Vrcibradic D amp Rocha CFD (1998) Ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil Journal of Herpetology 32 229ndash237

Webb CO Ackerly DD McPeek MA amp Donoghue MJ (2002) Phylogenies and community ecology Annual Review of Ecology and Systematics 33 475ndash505

Zug GR Vitt LJ amp Caldwell JP (2001) Herpetology An Introductory Biology of Amphibians and Reptiles 2nd ed San Diego Academic Press 630 pp

Accepted 8 July 2014

Interact ion of sympatr ic Tropidur idae

34

FFA Gomes et a l

Dece

mbe

rJa

nuar

yFe

brua

ryM

arch

April

May

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

(126

)(4

51)

(407

2)(9

0)(5

05)

(141

85)

(73)

(83)

(430

8)(1

07)

(151

)(3

895)

(178

)(4

5)(7

99)

(108

)(2

67)

(826

)Ac

arin

a1

650

590

570

070

030

750

36Ar

anea

e1

590

440

612

250

200

731

371

201

183

740

631

826

133

700

75Bl

attar

ia0

440

101

120

200

480

260

100

380

370

12Ch

ilopo

da0

220

010

030

48Co

leop

tera

317

044

447

562

079

851

274

361

474

093

125

137

62

2524

44

160

20

934

8718

52

Derm

apte

ra0

08Di

plop

oda

009

138

037

763

Dipl

ura

002

Dipt

era

142

91

922

250

592

874

8247

47

187

188

447

215

77

377

7Em

biop

tera

013

Ephe

meo

pter

a0

75Ga

stro

poda

100

109

Hem

ipte

ra0

010

020

030

371

21Ho

mop

tera

007

001

063

093

037

073

Hym

enop

tera

793

716

41

908

480

90

906

986

75

397

346

99

389

784

11

800

028

11

337

577

852

44

314

865

17

284

5Is

opod

a0

22Is

opte

ra0

7981

82

002

112

634

424

70

911

870

562

220

631

120

61In

sect

larv

a0

790

223

370

016

8540

96

042

093

938

036

932

64

443

7559

26

250

91

94Le

pido

pter

a2

250

592

742

415

646

546

2510

94

056

111

10

501

851

120

85M

anto

dea

002

Mec

opte

ra0

02N

euro

pter

aO

dona

ta0

05O

pilio

nida

e0

03O

rtho

pter

a1

121

850

37Pr

otur

a0

010

02Ps

eudo

scor

pion

ida

002

411

025

024

Pscoacute

pter

a0

02Sc

orpi

onid

a0

050

020

050

13Si

phon

opte

ra0

02St

reps

itera

002

Thric

hopt

era

002

Thys

anur

a0

01 B

153

143

121

151

121

131

289

254

261

140

153

322

115

245

302

221

204

378

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

099

010

gt00

51

000

08gt0

05

044

050

lt00

10

540

54lt0

01

010

089

lt00

10

300

63lt0

01

Th x

Disp

020

082

lt00

10

990

11gt0

05

054

044

lt00

10

540

57lt0

01

094

018

gt00

50

550

61lt0

01

Ts x

Th

020

080

lt00

10

990

09gt0

05

059

030

lt00

10

990

08gt0

05

011

078

lt00

10

750

36lt0

01

Tabl

e 4

Mon

thly

dist

ributi

on o

f foo

d av

aila

bilty

(D) a

nd o

f the

sto

mac

h co

nten

ts o

f T h

ispi

dus

(Th)

and

T s

emita

enia

tus

(Ts)

in t

he C

onse

rvati

on U

nit

of t

he S

tate

M

onum

ento

Nat

ural

Gro

ta d

o An

gico

Poccedil

o Re

dond

o - S

E (B

razil

) Th

e va

lues

in p

aren

thes

es re

fer t

o th

e nu

mbe

r of i

nver

tebr

ates

per

sam

ple

35

Interact ion of sympatr ic Tropidur idae

Tabl

e 4

(Con

tinue

d)

June

July

Augu

stSe

ptem

ber

Oct

ober

Nov

embe

rTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

D

(95)

(120

)(9

33)

(59)

(156

)(8

99)

(46)

(63)

(219

)(1

50)

(170

)(1

023)

(240

)(5

64)

(242

4)(2

09)

(294

)(2

432)

Acar

ina

169

011

317

042

160

223

214

Aran

eae

421

244

493

678

445

100

52

671

762

251

251

241

533

350

342

26Bl

attar

ia0

430

640

220

490

176

83Ch

ilopo

da0

111

690

11Co

leop

tera

421

732

202

63

396

4126

59

476

168

93

3312

35

181

80

421

425

901

444

0812

05

Derm

apte

raDi

plop

oda

150

Dipl

ura

Dipt

era

316

081

390

13

3913

90

435

913

067

059

225

042

239

096

354

Embi

opte

raEp

hem

eopt

era

Gast

ropo

da5

081

370

590

200

040

480

04He

mip

tera

081

032

011

046

008

Hom

opte

ra0

810

963

390

641

454

353

171

832

350

290

620

08Hy

men

opte

ra42

11

561

029

26

525

485

26

525

065

22

746

058

45

906

779

41

742

996

67

937

986

10

904

394

90

722

0Is

opod

a1

59Is

opte

ra1

6911

11

133

059

058

008

Inse

ct la

rva

410

528

46

236

186

47

050

2223

91

159

067

176

039

071

017

335

068

029

Lepi

dopt

era

316

244

021

169

033

217

183

059

039

083

071

Man

tode

aM

ecop

tera

Neu

ropt

era

064

Odo

nata

004

Opi

lioni

dae

039

012

021

Ort

hopt

era

105

081

059

018

Prot

ura

Pseu

dosc

orpi

onid

a1

050

350

080

21Ps

coacutept

era

Scor

pion

ida

067

029

004

Siph

onop

tera

Stre

psite

raTh

richo

pter

aTh

ysan

ura

B2

842

483

543

101

362

722

051

742

571

211

541

711

071

131

341

221

111

84

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

049

056

lt00

10

850

28lt0

01

089

001

lt00

10

980

17gt0

05

100

010

gt00

50

980

21lt0

05

Th x

Disp

056

056

lt00

10

560

39lt0

01

094

030

lt00

11

000

08gt0

05

100

009

gt00

50

990

23lt0

05

Ts x

Th

095

015

gt00

50

950

18gt0

05

093

025

lt00

10

990

11gt0

05

100

002

gt00

51

000

03gt0

05

36

DIsCUssION The presence of a species in an environment may be related to specific physiological needs improved access to food availability of resources presence of refuges morphological adaptations inter and intraspecific interactions as well as historical factors (Pianka 1973 Herfindal et al 2005 Borger et al 2006 Silva amp Arauacutejo 2008) The habitat and microhabitat chosen by a species should meet their essential needs to allow viable populations (Silva amp Arauacutejo 2008) In the study area T hispidus and T semitaeniatus largely were active on rocky substrates Such sites are able to maximise the uptake of heat necessary for thermoregulation both through direct exposure and contact with heated surfaces (Rocha amp Bergallo 1990 VanSluys 1992 Meira et al 2007)

Tropidurus semitaeniatus is considered to be a saxicolous species endemic of Caatinga environments whereas T hispidus occupies a generalist habitat in open formations of various biomes (Rodrigues 1987) Despite this variation in the use of microhabitats T hispidus tends towards a saxicolous habit in places where rocks are abundant Vitt et al (1997) found that where T hispidus use rocks individuals displayed greater dorso-ventral flattening than when in habitat areas without rocks This suggests that the flattening in these individuals could be adaptive to the use of cracks in rock outcrops In the present study no differences were established in body shape between the species

The preference of these species for rocks has been recorded in other localities and environments Tropidurus hispidus uses rocks in Caatinga environments (Vitt 1981 Dias amp Lira-da-Silva 1998 Kolodiuk et al 2009) in the Amazonian rainforest (Vitt amp Carvalho 1995 Vitt et al 1996 Vitt amp Zani 1998) Amazonian savannahs (Mesquita et al 2006) and fields in Minas Gerais (VanSluys et al 2004) T semitaeniatus uses rocky substrates in the Caatinga biome (Vitt 1981 Kolodiuk et al 2009 Ribeiro amp Freire 2010) and in Agreste Sergipe (Fernandes amp Oliveira 1997 Ramos amp Denisson 1997) The use of rocks is common to others species of the semitaeniatus group (T helenae and T pinima Rodrigues 1984 Manzani amp Abe 1990 Rodrigues 2005) as well as for several

Table 5 Canonical correlation between the measurements of the head and the size of prey of T hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo ndash SE (Brazil)

species of the torquatus group (T montanus T itambere and T oreadicus Rodrigues 1987 Faria amp Araujo 2004 VanSluys et al 2004 Meira et al 2007) Both species adopted vertical positions which were in most cases lt40 cm above ground (5064 and 5178 of observations for T hispidus and T semitaeniatus respectively) Teixeira-Filho et al (1996) suggest that layers close to the ground are heated up more quickly with advantages for thermoregulation and a consequently lower risk of predation and more time for other activities such as foraging

Tropidurus individuals were active throughout the data collection period Both species are sit-and-wait predators implying a shorter time searching for prey and more energy invested in prey capture than is the case for more active foragers (Dias amp Lira-da-Silva 1998 Pianka amp Vitt 2003) Similar findings were already obtained for T hispidus (Vitt 1995 Vitt amp Zani 1998 VanSluys et al 2004) T semitaeniatus (Vitt 1995) T torquatus (Bergallo amp Rocha 1993 Teixeira-Filho et al 1996 Hatano et al 2001) T itambere (VanSluys 1992 Faria amp Araujo 2004) T montanus (VanSluys et al 2004) and T oreadicus (Faria amp Araujo 2004 Meira et al 2007) The observed bimodal patterns of activity have previously been found by VanSluys (1992) for T itambere and by Vrcibradic amp Rocha (1998) for Mabuya frenata during the wet season at high temperatures The Caatinga biome is characterised by particularly hot temperatures (Prado 2005) explaining the observed bimodal pattern for the present study species

According to Huey amp Slatkin (1976) thermoregulation in diurnal lizards involves a set of behavioural activities and options for microhabitat use Displacement between environments with a differential exposure to sun will help to achieve the optimum temperature sought (Rocha amp Bergallo 1990 Vitt amp Carvalho 1995 Hatano et al 2001) We observed a preference for sunny days and exposure to sun was distributed between categories (sun mosaic shadow) for both species with T semitaeniatus having a preference for sun and T hispidus having a preference for shadow The difference in exposure adopted by each species may reflect their physiological needs Vitt (1995) and Ribeiro amp Freire (2010) verified that T semitaeniatus

FFA Gomes et a l

Tropidurus semitaeniatus Tropidurus hispidus

Canonical coefficients Canonical coefficients

Head 1st Canonical Variable 2nd Canonical Variable 1st Canonical Variable 2nd Canonical Variable

Length 165 645 025 123

Height -217 -686 136 028

Width 151 032 -064 -160

Prey

Greater Length 038 139 129 -164

Greater Width 068 -127 -035 206

Canonical Correlation c2 p Canonical Correlation c2 p

I 095 13634 lt00001 053 14437 00251

II 055 1883 lt00001 014 0865 06488

37

presents a mean body temperature that is higher than T hispidus In the study area of the present work T hispidus may prefer shady places to avoid negative effects of high temperatures (Teixeira-Filho et al 1996)

Ecological historical and behavioural factors must be considered when evaluating the reasons why certain species consume particular types of prey (Vitt amp Zani 1998 Pianka amp Vitt 2003) and morphological limitations may further interfere with the type of food consumed (Toft 1985 Magnusson amp Silva 1993) An opportunistic pattern in food use was observed for both species in this study given the strong correlation between use and availability The use of ants is widely observed in the diet of the genus Tropidurus and has been reported for several species (T hispidus Dias amp Lira-da-Silva 1998 T torquatus group Arauacutejo 1987 T itambere VanSluys 1995 T oreadicus and T spinulosos Colli et al 1992 T torquatus Bergallo amp Rocha 1994 T hispidus T oreadicus T semitaeniatus Vitt 1993 T semitaeniatus and T hispidus Ribeiro amp Freire 2011) Ants are abundant in the Caatinga (Santos et al 1999) Insect larvae were mainly used in the rainy season probably due to their higher availability during this period

For lizards prey composition is largely related to the type of foraging used and the habitat they occupy (Vitt 1991 Toft 1985) Diet overlap is common among sympatric species that hunt by stalking since they have a preference for active prey (Zug et al 2001 Silva amp Arauacutejo 2008) In periods of higher rainfall both species became more selective since the number of invertebrates in the environment was larger Tropidurus semitaeniatus changed their diet towards insect larvae which were not the most abundant prey category T hispidus continued to consume Hymenoptera as the main item in their diet Considering the reduction in availability of Hymenoptera during the rainy season it is likely that individuals of Tropidurus species broaden the diversity of food items to meet their daily nutritional needs The seasonal change in food habits of T semitaeniatus during the rainy season might be due to avoidance of competition during this period Head morphology is reflected in the consumption of prey of different dimensions it is expected that animals with larger heads consume larger prey (Pianka 1969) However this pattern was not observed for the target species of this study Since T semitaeniatus that has a smaller width head was observed consuming relatively larger prey whereas T hispidus with larger heads prefers more elongated prey Food availability in the environment probably best explains the observed pattern Besides invertebrates large quantities of plant material (flowers leaves and seeds) were found in stomachs and T hispidus consumed more plants than T semitaeniatus Ingestion of plant material in Tropidurus and other lizards is relatively common to provide energy as well as possibly water (Rocha amp Bergallo 1992 VanSluys 1993 Dias amp Lira-da-Silva 1998) In our study area the coexistence of T hispidus and T semitaeniatus on rocky outcrops is probably facilitated by small variations in spatial arrangement the morphology of the trophic apparatus and temporary niche shifts in their diets depending on rather unpredictable rainfall patterns

ACKNOWLEDGEMENTs

We thank Mr Manuel Messias and his entire family for their support in the collection area We are grateful to CAPES for providing the research grant and SISBIO for licensing the collection the Secretaria do Meio-Ambiente e Recursos Hiacutedricos de Sergipe (SEMARH SE) for support with transport to the area and other aid at UC and the Nuacutecleo de Pesquisa em Ecologia e Conservaccedilatildeo (NPEC) and the Universidade Federal de Sergipe (UFS) for logistical support The data collection was authorised by license number 19237-1 issued by SISBIO (System of Authorization and Information on Biodiversity)

REFERENCEs

Arauacutejo AFB (1987) Comportamento alimentar dos lagartos o caso dos Tropidurus da Serra dos Carajaacutes Paraacute (Sauria Iguanidae) In Anais de Etologia 203ndash234 Encontro Anual de Etologia (1987) Ribeiratildeo Preto Jaboticabal FUNEP 5

Bergallo HG amp Rocha D (1993) Activity patterns and body temperatures of two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics in southeastern Brazil Amphibia-Reptilia 14 312ndash315

Bergallo HG amp Rocha D (1994) Spatial and trophic niche differentiation in two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics Australian Journal of Ecology 19 72ndash75

Beacuternils RS amp Costa HC (2012) Reacutepteis brasileiros lista de espeacutecies Versatildeo 20122 Available from lthttpwwwsbherpetologiaorgbrgt Sociedade Brasileira de Herpetologia Accessed 2 October 2013

Borger L Franconi N De Michele G Gantz A et al (2006) Effects of sampling regime on the mean and variance of home range size estimates Journal of Animal Ecology 75 1393ndash1405

Carvalho ALG Brito MR amp Fernandes DS (2013) Biogeography of the lizard genus Tropidurus Wied-Neuwied 1825 (Squamata Tropiduridae) distribution endemism and area relationships in South America Public Library of Science 8 1ndash14

Carvalho CM Vilar JC amp Oliveira FF (2005) Reacutepteis e anfiacutebios In Parque Nacional Serra de Itabaiana - Levantamento da Biota 39ndash61 Carvalho CM and Vilar JC (eds) Aracaju Ibama Biologia Geral e Experimental ndash UFS

Chiang JCH amp Koutavas A (2004) Tropical Flip-flop connections Nature 432 684ndash685

Colli GR Arauacutejo AFB Silveira R amp Roma F (1992) Niche partitioning and morphology of two syntopic Tropidurus (Sauria Tropiduridae) in Mato Grasso Brazil Journal of Herpetology 26 66ndash69

Cooper Jr WE (1994) Prey chemical discrimination foraging mode and phylogeny In Lizard ecology historical and experimental perspectives 95ndash116 Vitt LJ amp Pianka ER (eds) New Jersey Princeton University Press

Dias EJR amp Lira-da-Silva RM (1998) Utilizaccedilatildeo dos recursos alimentares por quatro espeacutecies de lagartos (Phyllopezus pollicaris Tropidurus hispidus Mabuya macrorhyncha e Vanzossaura rubricauda) da caatinga (Usina Hidroeleacutetrica de Xingoacute) Brazilian Journal of Ecology 2 97ndash101

Faria RG amp Arauacutejo AFB (2004) Sintopy of two Tropidurus

Interact ion of sympatr ic Tropidur idae

38

lizard species (Squamata Tropiduridae) on a rocky cerrado habitat in Central Brazil Brazilian Journal of Biology 64 775ndash786

Fernandes ACM amp Oliveira EF (1997) Diversidade na dieta e aspectos reprodutivos de duas espeacutecies simpaacutetricas e sintoacutepicas de Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 35ndash40

Freitas MA amp Silva TFS (2007) Guia ilustrado A herpetofauna das caatingas e aacutereas de altitudes do Nordeste Brasileiro Pelotas USEB (Coleccedilatildeo Manuais de Campo USEB 6) 384 pp

Frost DR Rodrigues MT Grant T amp Titus TA (2001) Phylogenetics of the lizard genus Tropidurus (Squamata Tropiduridae Tropidurinae) Direct optimization descriptive efficiency and analysis of congruence between molecular data and morphology Molecular Plylogenetics and Evolution 21 352ndash371

Hatano FH Vrcibradic D Galdino CAB Cunha-Barros M et al (2001) Thermal ecology and activity patterns of the lizard community of the restinga of Jurubatiba Macaeacute RJ Revista Brasileira de Biologia 61 287ndash294

Herfindal I Linnell JDC Odden J Birkeland Nilsen E amp Andersen R (2005) Prey density environmental productivity and home-range size in the Eurasian lynx (Lynx lynx) Journal of Zoology 265 63ndash71

Huey RB amp Pianka ER (1977) Patterns of niche overlap among broadly sympatric versus narrowly sympatric Kalahari lizards (Scincidae Mabuya) Ecology 58 119ndash128

Huey RB amp Slatkin M (1976) Cost and benefits of lizard thermoregulation The Quarterly Review of Biology 51 363ndash384

Hutchinson GE (1957) Concluding remarks Cold Spring Harbour Symposium on Quantitative Biology 22 415ndash427

Janzen DH amp Schoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season Ecology 49 96ndash110

Jolicoeur P (1963) The multivariate generalization of the allometry equation Biometrics 19 497ndash499

Kolodiuk MF Ribeiro LB amp Freire EMX (2009) The effects of seasonality on the foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) living in sympatry in the caatinga of northeastern Brazil Revista Brasileira de Zoologia 26 581ndash585

Krol MS Jaegar A Bronstert A amp Krywkow J (2001) The semiarid integrated model (SDIM) a regional integrated model assessing water availability vulnerability of ecosystems and society in NE-Brazil Physics and Chemistry of the Earth 26 529ndash533

Losos JB (1990) Ecomorphology performance capability and scaling of west Indian Anolis lizards an evolutionary analysis Ecological Monographs 60 369ndash388

Losos JB (2008) Phylogenetic niche conservatism phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species Ecology Letters 11 995ndash1007

Magnusson WE amp Silva EV (1993) Relative effects of size season and species on the diets of some Amazonian Savanna lizards Journal of Herpetology 27 380ndash385

Magnusson WE Lima PA Silva WA amp Arauacutejo MC (2003) Use of geometric forms to estimate volume of invertebrates

in ecological studies of dietary overlap Copeia 2003 13ndash19Manzani PR amp Abe AS (1990) A new species of Tapinurus

from the Caatinga of Piauiacute Northeastern Brazil (Squamata Tropiduridae) Herpetologica 46 462ndash467

MrsquoCloskey RT amp Hecnar ESJ (1994) Interspecific spatial overlap Oikos 71 65ndash74

Meira KT Faria RG Silva MDM Miranda VT amp Zahn-Silva W (2007) Histoacuteria natural de Tropidurus oreadicus em uma aacuterea de cerrado rupestre do Brasil Central Biota Neotropica 7 155ndash163

Mesquita DO Costa GC amp Colli GR (2006) Ecology of an Amazonian savanna lizard assemblage in Monte Alegre Paraacute state Brazil South American Journal of Herpetology 1 61ndash71

Milstead WW (1965) Changes in competing populations of whiptail lizards (Cnemidophorus) in southwestern Texas The American Midland Naturalist 7375ndash80

Nimer E (1972) Climatologia da Regiatildeo Nordeste do Brasil In Introduccedilatildeo agrave Climatologia Dinacircmica Revista Brasileira de Geografia 34 3ndash51

Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia Ecology 50 1012ndash 1030

Pianka ER (1973) The structure of lizard communities Annual Review of Ecology and Systematics 4 53ndash74

Pianka ER amp Vitt LJ (2003) Lizards Windows to The Evolution of Diversity Berkeley University of California Press 333 pp

Prado D (2005) As Caatingas da Ameacuterica do Sul In Ecologia e Conservaccedilatildeo da Caatinga 3ndash73 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ramos L amp Denisson S (1997) Notas sobre os habitats e microhabitats de duas espeacutecies simpaacutetricas de lagartos do gecircnero Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 29ndash34

Reis AMS Arauacutejo EL Ferraz EMN amp Moura AN (2006) Inter-annual variations in the floristic and population structure of an herbaceous community of ldquocaatingardquo vegetation in Pernambuco Brazil Revista Brasileira de Botacircnica 29 497ndash508

Ribeiro LB amp Freire EMX (2009) Tropidurus semitaeniatus (NCN) Drinking behavior Herpetological Review 40 228ndash229

Ribeiro LB amp Freire EMX (2010) Thermal ecology and thermoregulatory behaviour of Tropidurus hispidus and T semitaeniatus in a caatinga area of northeastern Brazil Herpetological Journal 20 201ndash208

Ribeiro LB amp Freire EMX (2011) Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) in a caatinga area of northeastern Brazil Iheringia Seacuterie Zoologia 101 225ndash232

Ricklefs RE Cochran D amp Pianka ER (1981) A morphological analysis of the structure of communities of lizards in desert habitats Ecology 62 1474ndash1478

Rocha CFD amp Bergallo HG (1990) Thermal biology and flight distance of Tropidurus oreadicus (Sauria Iguanidae) in an area of Amazonian Brazil Ethology Ecology amp Evolution 2 263ndash268

Rocha CFD amp Bergallo HG (1992) Tropidurus torquatus (collared lizard) diet Herpetological Review 25 69

Rodrigues MT (1984) Uma nova espeacutecie brasileira de

FFA Gomes et a l

39

Tropidurus com crista dorsal (Sauria Iguanidae) Papeacuteis Avulsos de Zoologia 35 169ndash175

Rodrigues MT (1987) Sistemaacutetica ecologia e zoogeografia dos Tropidurus do grupo torquatus ao sul do Rio Amazonas (Sauridae Iguanidae) Arquivos de Zoologia 31 105ndash230

Rodrigues MT (2005) Herpetofauna da Caatinga In Ecologia e Conservaccedilatildeo da Caatinga 181ndash236 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ruiz-Esparza J Gouveia SF Rocha PA Ribeiro AS amp Ferrari SF (2011) Birds of the Grota do Angico Natural Monument in the semi-arid caatinga scrublands of northeastern Brazil Biota Neotropica 11 1ndash8

Santos GMM Delabie JHC amp Resende JJ (1999) Caracterizaccedilatildeo da mirmecofauna (Hymenoptera-Formicidae) associada agrave vegetaccedilatildeo perifeacuterica de inselbergs (caatinga-arboacuterea-estacional-semi-deciacutedua) em Itatim ndash Bahia ndash Brasil Sitientibus 20 33ndash43

Sampaio EVSB (1995) Overview of the Brazilian Caatinga In Seasonally Dry Forests 35ndash58 Bullock HA Mooney HA amp Medina E (eds) Reino Unido Cambridge University Press

Schoener TW (1975) Presence and absence of habitat shift in some widespread lizards species Ecological Monographs 45 233ndash258

Silva VN amp Arauacutejo AFB (2008) Ecologia dos Lagartos Brasileiros 1st ed Rio de Janeiro Technical Books 271p

Simpson EH (1949) Measurement of diversity Nature 163 688

Somers KM (1986) Multivariate allometry and removal of size with principal components analysis Systematic Zoology 35 359ndash368

Teixeira-Filho P Rocha CFD amp Ribas S (1996) Ecologia termal e uso do habitat por Tropidurus torquatus (Sauria Tropiduridae) em uma aacuterea de restinga do sudeste do Brasil In Herpetologia Neotropical 255ndash267 Peacutefaur JE (ed) Actas del II Congreso Latinoamericano de Herpetologia II Volumen Universidad de Los Andes Merida Venezuela Consejo de Publicaciones

Toft CA (1985) Resource partitioning in amphibians and reptilies Copeia 1 1ndash21

VanSluys M (1992) Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae) em uma aacuterea do sudeste do Brasil Revista Brasileira de Biologia 52 181ndash185

VanSluys M (1993) Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Journal of Herpetology 27 347ndash351

VanSluys M (1995) Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Ciecircncia e Cultura 47 61ndash65

VanSluys M Rocha CFD Vrcibradic D Galdino CAB amp Fontes AF (2004) Diet activity and microhabitat use of two syntopic Tropidurus species (Lacertilia Tropiduridae) in Minas Gerais Brazil Journal of Herpetology 38 606ndash611

Vitt LJ (1981) Lizard reproduction habitat specificity and constraints on relative clutch mass The American Naturalist 117 506ndash514

Vitt LJ (1991) An introduction to the ecology of cerrado lizards Journal of Herpetology 25 79ndash90

Vitt LJ (1993) Ecology of isolated open-formation Tropidurus (Reptilia Tropiduridae) in Amazonian lowland rain forest Canadian Journal of Zoology 71 2370ndash2390

Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil Occasional Papers of the Oklahoma Museum of Natural History 1 29ndash34

Vitt LJ Zani PA amp Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia Journal of Tropical Ecology 12 81ndash101

Vitt LJ Caldwell JP Zani PA amp Titus TA (1997) The role of habitat shift in the evolution of lizard morphology evidence from tropical Tropidurus Proceedings of the National Academy of Sciences 94 3828ndash3832

Vitt LJ amp Carvalho CM (1995) Niche partitioning in a tropical wet season lizards in the Lavrado area of Northern Brazil Copeia 2 305ndash329

Vitt LJ amp Pianka ER (1994) Introduction and Acknowledgments In Lizard Ecology Historical and Experimental Perspectives 9ndash12 Vitt LJ amp Pianka ER (eds) Princeton University Press 403 pp

Vitt LJ amp Zani PA (1998) Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14 63ndash86

Vrcibradic D amp Rocha CFD (1998) Ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil Journal of Herpetology 32 229ndash237

Webb CO Ackerly DD McPeek MA amp Donoghue MJ (2002) Phylogenies and community ecology Annual Review of Ecology and Systematics 33 475ndash505

Zug GR Vitt LJ amp Caldwell JP (2001) Herpetology An Introductory Biology of Amphibians and Reptiles 2nd ed San Diego Academic Press 630 pp

Accepted 8 July 2014

Interact ion of sympatr ic Tropidur idae

35

Interact ion of sympatr ic Tropidur idae

Tabl

e 4

(Con

tinue

d)

June

July

Augu

stSe

ptem

ber

Oct

ober

Nov

embe

rTs

ThD

TsTh

DTs

ThD

TsTh

DTs

ThD

TsTh

D

(95)

(120

)(9

33)

(59)

(156

)(8

99)

(46)

(63)

(219

)(1

50)

(170

)(1

023)

(240

)(5

64)

(242

4)(2

09)

(294

)(2

432)

Acar

ina

169

011

317

042

160

223

214

Aran

eae

421

244

493

678

445

100

52

671

762

251

251

241

533

350

342

26Bl

attar

ia0

430

640

220

490

176

83Ch

ilopo

da0

111

690

11Co

leop

tera

421

732

202

63

396

4126

59

476

168

93

3312

35

181

80

421

425

901

444

0812

05

Derm

apte

raDi

plop

oda

150

Dipl

ura

Dipt

era

316

081

390

13

3913

90

435

913

067

059

225

042

239

096

354

Embi

opte

raEp

hem

eopt

era

Gast

ropo

da5

081

370

590

200

040

480

04He

mip

tera

081

032

011

046

008

Hom

opte

ra0

810

963

390

641

454

353

171

832

350

290

620

08Hy

men

opte

ra42

11

561

029

26

525

485

26

525

065

22

746

058

45

906

779

41

742

996

67

937

986

10

904

394

90

722

0Is

opod

a1

59Is

opte

ra1

6911

11

133

059

058

008

Inse

ct la

rva

410

528

46

236

186

47

050

2223

91

159

067

176

039

071

017

335

068

029

Lepi

dopt

era

316

244

021

169

033

217

183

059

039

083

071

Man

tode

aM

ecop

tera

Neu

ropt

era

064

Odo

nata

004

Opi

lioni

dae

039

012

021

Ort

hopt

era

105

081

059

018

Prot

ura

Pseu

dosc

orpi

onid

a1

050

350

080

21Ps

coacutept

era

Scor

pion

ida

067

029

004

Siph

onop

tera

Stre

psite

raTh

richo

pter

aTh

ysan

ura

B2

842

483

543

101

362

722

051

742

571

211

541

711

071

131

341

221

111

84

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

OslashDm

axp

Ts x

Disp

049

056

lt00

10

850

28lt0

01

089

001

lt00

10

980

17gt0

05

100

010

gt00

50

980

21lt0

05

Th x

Disp

056

056

lt00

10

560

39lt0

01

094

030

lt00

11

000

08gt0

05

100

009

gt00

50

990

23lt0

05

Ts x

Th

095

015

gt00

50

950

18gt0

05

093

025

lt00

10

990

11gt0

05

100

002

gt00

51

000

03gt0

05

36

DIsCUssION The presence of a species in an environment may be related to specific physiological needs improved access to food availability of resources presence of refuges morphological adaptations inter and intraspecific interactions as well as historical factors (Pianka 1973 Herfindal et al 2005 Borger et al 2006 Silva amp Arauacutejo 2008) The habitat and microhabitat chosen by a species should meet their essential needs to allow viable populations (Silva amp Arauacutejo 2008) In the study area T hispidus and T semitaeniatus largely were active on rocky substrates Such sites are able to maximise the uptake of heat necessary for thermoregulation both through direct exposure and contact with heated surfaces (Rocha amp Bergallo 1990 VanSluys 1992 Meira et al 2007)

Tropidurus semitaeniatus is considered to be a saxicolous species endemic of Caatinga environments whereas T hispidus occupies a generalist habitat in open formations of various biomes (Rodrigues 1987) Despite this variation in the use of microhabitats T hispidus tends towards a saxicolous habit in places where rocks are abundant Vitt et al (1997) found that where T hispidus use rocks individuals displayed greater dorso-ventral flattening than when in habitat areas without rocks This suggests that the flattening in these individuals could be adaptive to the use of cracks in rock outcrops In the present study no differences were established in body shape between the species

The preference of these species for rocks has been recorded in other localities and environments Tropidurus hispidus uses rocks in Caatinga environments (Vitt 1981 Dias amp Lira-da-Silva 1998 Kolodiuk et al 2009) in the Amazonian rainforest (Vitt amp Carvalho 1995 Vitt et al 1996 Vitt amp Zani 1998) Amazonian savannahs (Mesquita et al 2006) and fields in Minas Gerais (VanSluys et al 2004) T semitaeniatus uses rocky substrates in the Caatinga biome (Vitt 1981 Kolodiuk et al 2009 Ribeiro amp Freire 2010) and in Agreste Sergipe (Fernandes amp Oliveira 1997 Ramos amp Denisson 1997) The use of rocks is common to others species of the semitaeniatus group (T helenae and T pinima Rodrigues 1984 Manzani amp Abe 1990 Rodrigues 2005) as well as for several

Table 5 Canonical correlation between the measurements of the head and the size of prey of T hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo ndash SE (Brazil)

species of the torquatus group (T montanus T itambere and T oreadicus Rodrigues 1987 Faria amp Araujo 2004 VanSluys et al 2004 Meira et al 2007) Both species adopted vertical positions which were in most cases lt40 cm above ground (5064 and 5178 of observations for T hispidus and T semitaeniatus respectively) Teixeira-Filho et al (1996) suggest that layers close to the ground are heated up more quickly with advantages for thermoregulation and a consequently lower risk of predation and more time for other activities such as foraging

Tropidurus individuals were active throughout the data collection period Both species are sit-and-wait predators implying a shorter time searching for prey and more energy invested in prey capture than is the case for more active foragers (Dias amp Lira-da-Silva 1998 Pianka amp Vitt 2003) Similar findings were already obtained for T hispidus (Vitt 1995 Vitt amp Zani 1998 VanSluys et al 2004) T semitaeniatus (Vitt 1995) T torquatus (Bergallo amp Rocha 1993 Teixeira-Filho et al 1996 Hatano et al 2001) T itambere (VanSluys 1992 Faria amp Araujo 2004) T montanus (VanSluys et al 2004) and T oreadicus (Faria amp Araujo 2004 Meira et al 2007) The observed bimodal patterns of activity have previously been found by VanSluys (1992) for T itambere and by Vrcibradic amp Rocha (1998) for Mabuya frenata during the wet season at high temperatures The Caatinga biome is characterised by particularly hot temperatures (Prado 2005) explaining the observed bimodal pattern for the present study species

According to Huey amp Slatkin (1976) thermoregulation in diurnal lizards involves a set of behavioural activities and options for microhabitat use Displacement between environments with a differential exposure to sun will help to achieve the optimum temperature sought (Rocha amp Bergallo 1990 Vitt amp Carvalho 1995 Hatano et al 2001) We observed a preference for sunny days and exposure to sun was distributed between categories (sun mosaic shadow) for both species with T semitaeniatus having a preference for sun and T hispidus having a preference for shadow The difference in exposure adopted by each species may reflect their physiological needs Vitt (1995) and Ribeiro amp Freire (2010) verified that T semitaeniatus

FFA Gomes et a l

Tropidurus semitaeniatus Tropidurus hispidus

Canonical coefficients Canonical coefficients

Head 1st Canonical Variable 2nd Canonical Variable 1st Canonical Variable 2nd Canonical Variable

Length 165 645 025 123

Height -217 -686 136 028

Width 151 032 -064 -160

Prey

Greater Length 038 139 129 -164

Greater Width 068 -127 -035 206

Canonical Correlation c2 p Canonical Correlation c2 p

I 095 13634 lt00001 053 14437 00251

II 055 1883 lt00001 014 0865 06488

37

presents a mean body temperature that is higher than T hispidus In the study area of the present work T hispidus may prefer shady places to avoid negative effects of high temperatures (Teixeira-Filho et al 1996)

Ecological historical and behavioural factors must be considered when evaluating the reasons why certain species consume particular types of prey (Vitt amp Zani 1998 Pianka amp Vitt 2003) and morphological limitations may further interfere with the type of food consumed (Toft 1985 Magnusson amp Silva 1993) An opportunistic pattern in food use was observed for both species in this study given the strong correlation between use and availability The use of ants is widely observed in the diet of the genus Tropidurus and has been reported for several species (T hispidus Dias amp Lira-da-Silva 1998 T torquatus group Arauacutejo 1987 T itambere VanSluys 1995 T oreadicus and T spinulosos Colli et al 1992 T torquatus Bergallo amp Rocha 1994 T hispidus T oreadicus T semitaeniatus Vitt 1993 T semitaeniatus and T hispidus Ribeiro amp Freire 2011) Ants are abundant in the Caatinga (Santos et al 1999) Insect larvae were mainly used in the rainy season probably due to their higher availability during this period

For lizards prey composition is largely related to the type of foraging used and the habitat they occupy (Vitt 1991 Toft 1985) Diet overlap is common among sympatric species that hunt by stalking since they have a preference for active prey (Zug et al 2001 Silva amp Arauacutejo 2008) In periods of higher rainfall both species became more selective since the number of invertebrates in the environment was larger Tropidurus semitaeniatus changed their diet towards insect larvae which were not the most abundant prey category T hispidus continued to consume Hymenoptera as the main item in their diet Considering the reduction in availability of Hymenoptera during the rainy season it is likely that individuals of Tropidurus species broaden the diversity of food items to meet their daily nutritional needs The seasonal change in food habits of T semitaeniatus during the rainy season might be due to avoidance of competition during this period Head morphology is reflected in the consumption of prey of different dimensions it is expected that animals with larger heads consume larger prey (Pianka 1969) However this pattern was not observed for the target species of this study Since T semitaeniatus that has a smaller width head was observed consuming relatively larger prey whereas T hispidus with larger heads prefers more elongated prey Food availability in the environment probably best explains the observed pattern Besides invertebrates large quantities of plant material (flowers leaves and seeds) were found in stomachs and T hispidus consumed more plants than T semitaeniatus Ingestion of plant material in Tropidurus and other lizards is relatively common to provide energy as well as possibly water (Rocha amp Bergallo 1992 VanSluys 1993 Dias amp Lira-da-Silva 1998) In our study area the coexistence of T hispidus and T semitaeniatus on rocky outcrops is probably facilitated by small variations in spatial arrangement the morphology of the trophic apparatus and temporary niche shifts in their diets depending on rather unpredictable rainfall patterns

ACKNOWLEDGEMENTs

We thank Mr Manuel Messias and his entire family for their support in the collection area We are grateful to CAPES for providing the research grant and SISBIO for licensing the collection the Secretaria do Meio-Ambiente e Recursos Hiacutedricos de Sergipe (SEMARH SE) for support with transport to the area and other aid at UC and the Nuacutecleo de Pesquisa em Ecologia e Conservaccedilatildeo (NPEC) and the Universidade Federal de Sergipe (UFS) for logistical support The data collection was authorised by license number 19237-1 issued by SISBIO (System of Authorization and Information on Biodiversity)

REFERENCEs

Arauacutejo AFB (1987) Comportamento alimentar dos lagartos o caso dos Tropidurus da Serra dos Carajaacutes Paraacute (Sauria Iguanidae) In Anais de Etologia 203ndash234 Encontro Anual de Etologia (1987) Ribeiratildeo Preto Jaboticabal FUNEP 5

Bergallo HG amp Rocha D (1993) Activity patterns and body temperatures of two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics in southeastern Brazil Amphibia-Reptilia 14 312ndash315

Bergallo HG amp Rocha D (1994) Spatial and trophic niche differentiation in two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics Australian Journal of Ecology 19 72ndash75

Beacuternils RS amp Costa HC (2012) Reacutepteis brasileiros lista de espeacutecies Versatildeo 20122 Available from lthttpwwwsbherpetologiaorgbrgt Sociedade Brasileira de Herpetologia Accessed 2 October 2013

Borger L Franconi N De Michele G Gantz A et al (2006) Effects of sampling regime on the mean and variance of home range size estimates Journal of Animal Ecology 75 1393ndash1405

Carvalho ALG Brito MR amp Fernandes DS (2013) Biogeography of the lizard genus Tropidurus Wied-Neuwied 1825 (Squamata Tropiduridae) distribution endemism and area relationships in South America Public Library of Science 8 1ndash14

Carvalho CM Vilar JC amp Oliveira FF (2005) Reacutepteis e anfiacutebios In Parque Nacional Serra de Itabaiana - Levantamento da Biota 39ndash61 Carvalho CM and Vilar JC (eds) Aracaju Ibama Biologia Geral e Experimental ndash UFS

Chiang JCH amp Koutavas A (2004) Tropical Flip-flop connections Nature 432 684ndash685

Colli GR Arauacutejo AFB Silveira R amp Roma F (1992) Niche partitioning and morphology of two syntopic Tropidurus (Sauria Tropiduridae) in Mato Grasso Brazil Journal of Herpetology 26 66ndash69

Cooper Jr WE (1994) Prey chemical discrimination foraging mode and phylogeny In Lizard ecology historical and experimental perspectives 95ndash116 Vitt LJ amp Pianka ER (eds) New Jersey Princeton University Press

Dias EJR amp Lira-da-Silva RM (1998) Utilizaccedilatildeo dos recursos alimentares por quatro espeacutecies de lagartos (Phyllopezus pollicaris Tropidurus hispidus Mabuya macrorhyncha e Vanzossaura rubricauda) da caatinga (Usina Hidroeleacutetrica de Xingoacute) Brazilian Journal of Ecology 2 97ndash101

Faria RG amp Arauacutejo AFB (2004) Sintopy of two Tropidurus

Interact ion of sympatr ic Tropidur idae

38

lizard species (Squamata Tropiduridae) on a rocky cerrado habitat in Central Brazil Brazilian Journal of Biology 64 775ndash786

Fernandes ACM amp Oliveira EF (1997) Diversidade na dieta e aspectos reprodutivos de duas espeacutecies simpaacutetricas e sintoacutepicas de Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 35ndash40

Freitas MA amp Silva TFS (2007) Guia ilustrado A herpetofauna das caatingas e aacutereas de altitudes do Nordeste Brasileiro Pelotas USEB (Coleccedilatildeo Manuais de Campo USEB 6) 384 pp

Frost DR Rodrigues MT Grant T amp Titus TA (2001) Phylogenetics of the lizard genus Tropidurus (Squamata Tropiduridae Tropidurinae) Direct optimization descriptive efficiency and analysis of congruence between molecular data and morphology Molecular Plylogenetics and Evolution 21 352ndash371

Hatano FH Vrcibradic D Galdino CAB Cunha-Barros M et al (2001) Thermal ecology and activity patterns of the lizard community of the restinga of Jurubatiba Macaeacute RJ Revista Brasileira de Biologia 61 287ndash294

Herfindal I Linnell JDC Odden J Birkeland Nilsen E amp Andersen R (2005) Prey density environmental productivity and home-range size in the Eurasian lynx (Lynx lynx) Journal of Zoology 265 63ndash71

Huey RB amp Pianka ER (1977) Patterns of niche overlap among broadly sympatric versus narrowly sympatric Kalahari lizards (Scincidae Mabuya) Ecology 58 119ndash128

Huey RB amp Slatkin M (1976) Cost and benefits of lizard thermoregulation The Quarterly Review of Biology 51 363ndash384

Hutchinson GE (1957) Concluding remarks Cold Spring Harbour Symposium on Quantitative Biology 22 415ndash427

Janzen DH amp Schoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season Ecology 49 96ndash110

Jolicoeur P (1963) The multivariate generalization of the allometry equation Biometrics 19 497ndash499

Kolodiuk MF Ribeiro LB amp Freire EMX (2009) The effects of seasonality on the foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) living in sympatry in the caatinga of northeastern Brazil Revista Brasileira de Zoologia 26 581ndash585

Krol MS Jaegar A Bronstert A amp Krywkow J (2001) The semiarid integrated model (SDIM) a regional integrated model assessing water availability vulnerability of ecosystems and society in NE-Brazil Physics and Chemistry of the Earth 26 529ndash533

Losos JB (1990) Ecomorphology performance capability and scaling of west Indian Anolis lizards an evolutionary analysis Ecological Monographs 60 369ndash388

Losos JB (2008) Phylogenetic niche conservatism phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species Ecology Letters 11 995ndash1007

Magnusson WE amp Silva EV (1993) Relative effects of size season and species on the diets of some Amazonian Savanna lizards Journal of Herpetology 27 380ndash385

Magnusson WE Lima PA Silva WA amp Arauacutejo MC (2003) Use of geometric forms to estimate volume of invertebrates

in ecological studies of dietary overlap Copeia 2003 13ndash19Manzani PR amp Abe AS (1990) A new species of Tapinurus

from the Caatinga of Piauiacute Northeastern Brazil (Squamata Tropiduridae) Herpetologica 46 462ndash467

MrsquoCloskey RT amp Hecnar ESJ (1994) Interspecific spatial overlap Oikos 71 65ndash74

Meira KT Faria RG Silva MDM Miranda VT amp Zahn-Silva W (2007) Histoacuteria natural de Tropidurus oreadicus em uma aacuterea de cerrado rupestre do Brasil Central Biota Neotropica 7 155ndash163

Mesquita DO Costa GC amp Colli GR (2006) Ecology of an Amazonian savanna lizard assemblage in Monte Alegre Paraacute state Brazil South American Journal of Herpetology 1 61ndash71

Milstead WW (1965) Changes in competing populations of whiptail lizards (Cnemidophorus) in southwestern Texas The American Midland Naturalist 7375ndash80

Nimer E (1972) Climatologia da Regiatildeo Nordeste do Brasil In Introduccedilatildeo agrave Climatologia Dinacircmica Revista Brasileira de Geografia 34 3ndash51

Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia Ecology 50 1012ndash 1030

Pianka ER (1973) The structure of lizard communities Annual Review of Ecology and Systematics 4 53ndash74

Pianka ER amp Vitt LJ (2003) Lizards Windows to The Evolution of Diversity Berkeley University of California Press 333 pp

Prado D (2005) As Caatingas da Ameacuterica do Sul In Ecologia e Conservaccedilatildeo da Caatinga 3ndash73 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ramos L amp Denisson S (1997) Notas sobre os habitats e microhabitats de duas espeacutecies simpaacutetricas de lagartos do gecircnero Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 29ndash34

Reis AMS Arauacutejo EL Ferraz EMN amp Moura AN (2006) Inter-annual variations in the floristic and population structure of an herbaceous community of ldquocaatingardquo vegetation in Pernambuco Brazil Revista Brasileira de Botacircnica 29 497ndash508

Ribeiro LB amp Freire EMX (2009) Tropidurus semitaeniatus (NCN) Drinking behavior Herpetological Review 40 228ndash229

Ribeiro LB amp Freire EMX (2010) Thermal ecology and thermoregulatory behaviour of Tropidurus hispidus and T semitaeniatus in a caatinga area of northeastern Brazil Herpetological Journal 20 201ndash208

Ribeiro LB amp Freire EMX (2011) Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) in a caatinga area of northeastern Brazil Iheringia Seacuterie Zoologia 101 225ndash232

Ricklefs RE Cochran D amp Pianka ER (1981) A morphological analysis of the structure of communities of lizards in desert habitats Ecology 62 1474ndash1478

Rocha CFD amp Bergallo HG (1990) Thermal biology and flight distance of Tropidurus oreadicus (Sauria Iguanidae) in an area of Amazonian Brazil Ethology Ecology amp Evolution 2 263ndash268

Rocha CFD amp Bergallo HG (1992) Tropidurus torquatus (collared lizard) diet Herpetological Review 25 69

Rodrigues MT (1984) Uma nova espeacutecie brasileira de

FFA Gomes et a l

39

Tropidurus com crista dorsal (Sauria Iguanidae) Papeacuteis Avulsos de Zoologia 35 169ndash175

Rodrigues MT (1987) Sistemaacutetica ecologia e zoogeografia dos Tropidurus do grupo torquatus ao sul do Rio Amazonas (Sauridae Iguanidae) Arquivos de Zoologia 31 105ndash230

Rodrigues MT (2005) Herpetofauna da Caatinga In Ecologia e Conservaccedilatildeo da Caatinga 181ndash236 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ruiz-Esparza J Gouveia SF Rocha PA Ribeiro AS amp Ferrari SF (2011) Birds of the Grota do Angico Natural Monument in the semi-arid caatinga scrublands of northeastern Brazil Biota Neotropica 11 1ndash8

Santos GMM Delabie JHC amp Resende JJ (1999) Caracterizaccedilatildeo da mirmecofauna (Hymenoptera-Formicidae) associada agrave vegetaccedilatildeo perifeacuterica de inselbergs (caatinga-arboacuterea-estacional-semi-deciacutedua) em Itatim ndash Bahia ndash Brasil Sitientibus 20 33ndash43

Sampaio EVSB (1995) Overview of the Brazilian Caatinga In Seasonally Dry Forests 35ndash58 Bullock HA Mooney HA amp Medina E (eds) Reino Unido Cambridge University Press

Schoener TW (1975) Presence and absence of habitat shift in some widespread lizards species Ecological Monographs 45 233ndash258

Silva VN amp Arauacutejo AFB (2008) Ecologia dos Lagartos Brasileiros 1st ed Rio de Janeiro Technical Books 271p

Simpson EH (1949) Measurement of diversity Nature 163 688

Somers KM (1986) Multivariate allometry and removal of size with principal components analysis Systematic Zoology 35 359ndash368

Teixeira-Filho P Rocha CFD amp Ribas S (1996) Ecologia termal e uso do habitat por Tropidurus torquatus (Sauria Tropiduridae) em uma aacuterea de restinga do sudeste do Brasil In Herpetologia Neotropical 255ndash267 Peacutefaur JE (ed) Actas del II Congreso Latinoamericano de Herpetologia II Volumen Universidad de Los Andes Merida Venezuela Consejo de Publicaciones

Toft CA (1985) Resource partitioning in amphibians and reptilies Copeia 1 1ndash21

VanSluys M (1992) Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae) em uma aacuterea do sudeste do Brasil Revista Brasileira de Biologia 52 181ndash185

VanSluys M (1993) Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Journal of Herpetology 27 347ndash351

VanSluys M (1995) Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Ciecircncia e Cultura 47 61ndash65

VanSluys M Rocha CFD Vrcibradic D Galdino CAB amp Fontes AF (2004) Diet activity and microhabitat use of two syntopic Tropidurus species (Lacertilia Tropiduridae) in Minas Gerais Brazil Journal of Herpetology 38 606ndash611

Vitt LJ (1981) Lizard reproduction habitat specificity and constraints on relative clutch mass The American Naturalist 117 506ndash514

Vitt LJ (1991) An introduction to the ecology of cerrado lizards Journal of Herpetology 25 79ndash90

Vitt LJ (1993) Ecology of isolated open-formation Tropidurus (Reptilia Tropiduridae) in Amazonian lowland rain forest Canadian Journal of Zoology 71 2370ndash2390

Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil Occasional Papers of the Oklahoma Museum of Natural History 1 29ndash34

Vitt LJ Zani PA amp Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia Journal of Tropical Ecology 12 81ndash101

Vitt LJ Caldwell JP Zani PA amp Titus TA (1997) The role of habitat shift in the evolution of lizard morphology evidence from tropical Tropidurus Proceedings of the National Academy of Sciences 94 3828ndash3832

Vitt LJ amp Carvalho CM (1995) Niche partitioning in a tropical wet season lizards in the Lavrado area of Northern Brazil Copeia 2 305ndash329

Vitt LJ amp Pianka ER (1994) Introduction and Acknowledgments In Lizard Ecology Historical and Experimental Perspectives 9ndash12 Vitt LJ amp Pianka ER (eds) Princeton University Press 403 pp

Vitt LJ amp Zani PA (1998) Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14 63ndash86

Vrcibradic D amp Rocha CFD (1998) Ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil Journal of Herpetology 32 229ndash237

Webb CO Ackerly DD McPeek MA amp Donoghue MJ (2002) Phylogenies and community ecology Annual Review of Ecology and Systematics 33 475ndash505

Zug GR Vitt LJ amp Caldwell JP (2001) Herpetology An Introductory Biology of Amphibians and Reptiles 2nd ed San Diego Academic Press 630 pp

Accepted 8 July 2014

Interact ion of sympatr ic Tropidur idae

36

DIsCUssION The presence of a species in an environment may be related to specific physiological needs improved access to food availability of resources presence of refuges morphological adaptations inter and intraspecific interactions as well as historical factors (Pianka 1973 Herfindal et al 2005 Borger et al 2006 Silva amp Arauacutejo 2008) The habitat and microhabitat chosen by a species should meet their essential needs to allow viable populations (Silva amp Arauacutejo 2008) In the study area T hispidus and T semitaeniatus largely were active on rocky substrates Such sites are able to maximise the uptake of heat necessary for thermoregulation both through direct exposure and contact with heated surfaces (Rocha amp Bergallo 1990 VanSluys 1992 Meira et al 2007)

Tropidurus semitaeniatus is considered to be a saxicolous species endemic of Caatinga environments whereas T hispidus occupies a generalist habitat in open formations of various biomes (Rodrigues 1987) Despite this variation in the use of microhabitats T hispidus tends towards a saxicolous habit in places where rocks are abundant Vitt et al (1997) found that where T hispidus use rocks individuals displayed greater dorso-ventral flattening than when in habitat areas without rocks This suggests that the flattening in these individuals could be adaptive to the use of cracks in rock outcrops In the present study no differences were established in body shape between the species

The preference of these species for rocks has been recorded in other localities and environments Tropidurus hispidus uses rocks in Caatinga environments (Vitt 1981 Dias amp Lira-da-Silva 1998 Kolodiuk et al 2009) in the Amazonian rainforest (Vitt amp Carvalho 1995 Vitt et al 1996 Vitt amp Zani 1998) Amazonian savannahs (Mesquita et al 2006) and fields in Minas Gerais (VanSluys et al 2004) T semitaeniatus uses rocky substrates in the Caatinga biome (Vitt 1981 Kolodiuk et al 2009 Ribeiro amp Freire 2010) and in Agreste Sergipe (Fernandes amp Oliveira 1997 Ramos amp Denisson 1997) The use of rocks is common to others species of the semitaeniatus group (T helenae and T pinima Rodrigues 1984 Manzani amp Abe 1990 Rodrigues 2005) as well as for several

Table 5 Canonical correlation between the measurements of the head and the size of prey of T hispidus and T semitaeniatus in the Conservation Unit of the State Monumento Natural Grota do Angico Poccedilo Redondo ndash SE (Brazil)

species of the torquatus group (T montanus T itambere and T oreadicus Rodrigues 1987 Faria amp Araujo 2004 VanSluys et al 2004 Meira et al 2007) Both species adopted vertical positions which were in most cases lt40 cm above ground (5064 and 5178 of observations for T hispidus and T semitaeniatus respectively) Teixeira-Filho et al (1996) suggest that layers close to the ground are heated up more quickly with advantages for thermoregulation and a consequently lower risk of predation and more time for other activities such as foraging

Tropidurus individuals were active throughout the data collection period Both species are sit-and-wait predators implying a shorter time searching for prey and more energy invested in prey capture than is the case for more active foragers (Dias amp Lira-da-Silva 1998 Pianka amp Vitt 2003) Similar findings were already obtained for T hispidus (Vitt 1995 Vitt amp Zani 1998 VanSluys et al 2004) T semitaeniatus (Vitt 1995) T torquatus (Bergallo amp Rocha 1993 Teixeira-Filho et al 1996 Hatano et al 2001) T itambere (VanSluys 1992 Faria amp Araujo 2004) T montanus (VanSluys et al 2004) and T oreadicus (Faria amp Araujo 2004 Meira et al 2007) The observed bimodal patterns of activity have previously been found by VanSluys (1992) for T itambere and by Vrcibradic amp Rocha (1998) for Mabuya frenata during the wet season at high temperatures The Caatinga biome is characterised by particularly hot temperatures (Prado 2005) explaining the observed bimodal pattern for the present study species

According to Huey amp Slatkin (1976) thermoregulation in diurnal lizards involves a set of behavioural activities and options for microhabitat use Displacement between environments with a differential exposure to sun will help to achieve the optimum temperature sought (Rocha amp Bergallo 1990 Vitt amp Carvalho 1995 Hatano et al 2001) We observed a preference for sunny days and exposure to sun was distributed between categories (sun mosaic shadow) for both species with T semitaeniatus having a preference for sun and T hispidus having a preference for shadow The difference in exposure adopted by each species may reflect their physiological needs Vitt (1995) and Ribeiro amp Freire (2010) verified that T semitaeniatus

FFA Gomes et a l

Tropidurus semitaeniatus Tropidurus hispidus

Canonical coefficients Canonical coefficients

Head 1st Canonical Variable 2nd Canonical Variable 1st Canonical Variable 2nd Canonical Variable

Length 165 645 025 123

Height -217 -686 136 028

Width 151 032 -064 -160

Prey

Greater Length 038 139 129 -164

Greater Width 068 -127 -035 206

Canonical Correlation c2 p Canonical Correlation c2 p

I 095 13634 lt00001 053 14437 00251

II 055 1883 lt00001 014 0865 06488

37

presents a mean body temperature that is higher than T hispidus In the study area of the present work T hispidus may prefer shady places to avoid negative effects of high temperatures (Teixeira-Filho et al 1996)

Ecological historical and behavioural factors must be considered when evaluating the reasons why certain species consume particular types of prey (Vitt amp Zani 1998 Pianka amp Vitt 2003) and morphological limitations may further interfere with the type of food consumed (Toft 1985 Magnusson amp Silva 1993) An opportunistic pattern in food use was observed for both species in this study given the strong correlation between use and availability The use of ants is widely observed in the diet of the genus Tropidurus and has been reported for several species (T hispidus Dias amp Lira-da-Silva 1998 T torquatus group Arauacutejo 1987 T itambere VanSluys 1995 T oreadicus and T spinulosos Colli et al 1992 T torquatus Bergallo amp Rocha 1994 T hispidus T oreadicus T semitaeniatus Vitt 1993 T semitaeniatus and T hispidus Ribeiro amp Freire 2011) Ants are abundant in the Caatinga (Santos et al 1999) Insect larvae were mainly used in the rainy season probably due to their higher availability during this period

For lizards prey composition is largely related to the type of foraging used and the habitat they occupy (Vitt 1991 Toft 1985) Diet overlap is common among sympatric species that hunt by stalking since they have a preference for active prey (Zug et al 2001 Silva amp Arauacutejo 2008) In periods of higher rainfall both species became more selective since the number of invertebrates in the environment was larger Tropidurus semitaeniatus changed their diet towards insect larvae which were not the most abundant prey category T hispidus continued to consume Hymenoptera as the main item in their diet Considering the reduction in availability of Hymenoptera during the rainy season it is likely that individuals of Tropidurus species broaden the diversity of food items to meet their daily nutritional needs The seasonal change in food habits of T semitaeniatus during the rainy season might be due to avoidance of competition during this period Head morphology is reflected in the consumption of prey of different dimensions it is expected that animals with larger heads consume larger prey (Pianka 1969) However this pattern was not observed for the target species of this study Since T semitaeniatus that has a smaller width head was observed consuming relatively larger prey whereas T hispidus with larger heads prefers more elongated prey Food availability in the environment probably best explains the observed pattern Besides invertebrates large quantities of plant material (flowers leaves and seeds) were found in stomachs and T hispidus consumed more plants than T semitaeniatus Ingestion of plant material in Tropidurus and other lizards is relatively common to provide energy as well as possibly water (Rocha amp Bergallo 1992 VanSluys 1993 Dias amp Lira-da-Silva 1998) In our study area the coexistence of T hispidus and T semitaeniatus on rocky outcrops is probably facilitated by small variations in spatial arrangement the morphology of the trophic apparatus and temporary niche shifts in their diets depending on rather unpredictable rainfall patterns

ACKNOWLEDGEMENTs

We thank Mr Manuel Messias and his entire family for their support in the collection area We are grateful to CAPES for providing the research grant and SISBIO for licensing the collection the Secretaria do Meio-Ambiente e Recursos Hiacutedricos de Sergipe (SEMARH SE) for support with transport to the area and other aid at UC and the Nuacutecleo de Pesquisa em Ecologia e Conservaccedilatildeo (NPEC) and the Universidade Federal de Sergipe (UFS) for logistical support The data collection was authorised by license number 19237-1 issued by SISBIO (System of Authorization and Information on Biodiversity)

REFERENCEs

Arauacutejo AFB (1987) Comportamento alimentar dos lagartos o caso dos Tropidurus da Serra dos Carajaacutes Paraacute (Sauria Iguanidae) In Anais de Etologia 203ndash234 Encontro Anual de Etologia (1987) Ribeiratildeo Preto Jaboticabal FUNEP 5

Bergallo HG amp Rocha D (1993) Activity patterns and body temperatures of two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics in southeastern Brazil Amphibia-Reptilia 14 312ndash315

Bergallo HG amp Rocha D (1994) Spatial and trophic niche differentiation in two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics Australian Journal of Ecology 19 72ndash75

Beacuternils RS amp Costa HC (2012) Reacutepteis brasileiros lista de espeacutecies Versatildeo 20122 Available from lthttpwwwsbherpetologiaorgbrgt Sociedade Brasileira de Herpetologia Accessed 2 October 2013

Borger L Franconi N De Michele G Gantz A et al (2006) Effects of sampling regime on the mean and variance of home range size estimates Journal of Animal Ecology 75 1393ndash1405

Carvalho ALG Brito MR amp Fernandes DS (2013) Biogeography of the lizard genus Tropidurus Wied-Neuwied 1825 (Squamata Tropiduridae) distribution endemism and area relationships in South America Public Library of Science 8 1ndash14

Carvalho CM Vilar JC amp Oliveira FF (2005) Reacutepteis e anfiacutebios In Parque Nacional Serra de Itabaiana - Levantamento da Biota 39ndash61 Carvalho CM and Vilar JC (eds) Aracaju Ibama Biologia Geral e Experimental ndash UFS

Chiang JCH amp Koutavas A (2004) Tropical Flip-flop connections Nature 432 684ndash685

Colli GR Arauacutejo AFB Silveira R amp Roma F (1992) Niche partitioning and morphology of two syntopic Tropidurus (Sauria Tropiduridae) in Mato Grasso Brazil Journal of Herpetology 26 66ndash69

Cooper Jr WE (1994) Prey chemical discrimination foraging mode and phylogeny In Lizard ecology historical and experimental perspectives 95ndash116 Vitt LJ amp Pianka ER (eds) New Jersey Princeton University Press

Dias EJR amp Lira-da-Silva RM (1998) Utilizaccedilatildeo dos recursos alimentares por quatro espeacutecies de lagartos (Phyllopezus pollicaris Tropidurus hispidus Mabuya macrorhyncha e Vanzossaura rubricauda) da caatinga (Usina Hidroeleacutetrica de Xingoacute) Brazilian Journal of Ecology 2 97ndash101

Faria RG amp Arauacutejo AFB (2004) Sintopy of two Tropidurus

Interact ion of sympatr ic Tropidur idae

38

lizard species (Squamata Tropiduridae) on a rocky cerrado habitat in Central Brazil Brazilian Journal of Biology 64 775ndash786

Fernandes ACM amp Oliveira EF (1997) Diversidade na dieta e aspectos reprodutivos de duas espeacutecies simpaacutetricas e sintoacutepicas de Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 35ndash40

Freitas MA amp Silva TFS (2007) Guia ilustrado A herpetofauna das caatingas e aacutereas de altitudes do Nordeste Brasileiro Pelotas USEB (Coleccedilatildeo Manuais de Campo USEB 6) 384 pp

Frost DR Rodrigues MT Grant T amp Titus TA (2001) Phylogenetics of the lizard genus Tropidurus (Squamata Tropiduridae Tropidurinae) Direct optimization descriptive efficiency and analysis of congruence between molecular data and morphology Molecular Plylogenetics and Evolution 21 352ndash371

Hatano FH Vrcibradic D Galdino CAB Cunha-Barros M et al (2001) Thermal ecology and activity patterns of the lizard community of the restinga of Jurubatiba Macaeacute RJ Revista Brasileira de Biologia 61 287ndash294

Herfindal I Linnell JDC Odden J Birkeland Nilsen E amp Andersen R (2005) Prey density environmental productivity and home-range size in the Eurasian lynx (Lynx lynx) Journal of Zoology 265 63ndash71

Huey RB amp Pianka ER (1977) Patterns of niche overlap among broadly sympatric versus narrowly sympatric Kalahari lizards (Scincidae Mabuya) Ecology 58 119ndash128

Huey RB amp Slatkin M (1976) Cost and benefits of lizard thermoregulation The Quarterly Review of Biology 51 363ndash384

Hutchinson GE (1957) Concluding remarks Cold Spring Harbour Symposium on Quantitative Biology 22 415ndash427

Janzen DH amp Schoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season Ecology 49 96ndash110

Jolicoeur P (1963) The multivariate generalization of the allometry equation Biometrics 19 497ndash499

Kolodiuk MF Ribeiro LB amp Freire EMX (2009) The effects of seasonality on the foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) living in sympatry in the caatinga of northeastern Brazil Revista Brasileira de Zoologia 26 581ndash585

Krol MS Jaegar A Bronstert A amp Krywkow J (2001) The semiarid integrated model (SDIM) a regional integrated model assessing water availability vulnerability of ecosystems and society in NE-Brazil Physics and Chemistry of the Earth 26 529ndash533

Losos JB (1990) Ecomorphology performance capability and scaling of west Indian Anolis lizards an evolutionary analysis Ecological Monographs 60 369ndash388

Losos JB (2008) Phylogenetic niche conservatism phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species Ecology Letters 11 995ndash1007

Magnusson WE amp Silva EV (1993) Relative effects of size season and species on the diets of some Amazonian Savanna lizards Journal of Herpetology 27 380ndash385

Magnusson WE Lima PA Silva WA amp Arauacutejo MC (2003) Use of geometric forms to estimate volume of invertebrates

in ecological studies of dietary overlap Copeia 2003 13ndash19Manzani PR amp Abe AS (1990) A new species of Tapinurus

from the Caatinga of Piauiacute Northeastern Brazil (Squamata Tropiduridae) Herpetologica 46 462ndash467

MrsquoCloskey RT amp Hecnar ESJ (1994) Interspecific spatial overlap Oikos 71 65ndash74

Meira KT Faria RG Silva MDM Miranda VT amp Zahn-Silva W (2007) Histoacuteria natural de Tropidurus oreadicus em uma aacuterea de cerrado rupestre do Brasil Central Biota Neotropica 7 155ndash163

Mesquita DO Costa GC amp Colli GR (2006) Ecology of an Amazonian savanna lizard assemblage in Monte Alegre Paraacute state Brazil South American Journal of Herpetology 1 61ndash71

Milstead WW (1965) Changes in competing populations of whiptail lizards (Cnemidophorus) in southwestern Texas The American Midland Naturalist 7375ndash80

Nimer E (1972) Climatologia da Regiatildeo Nordeste do Brasil In Introduccedilatildeo agrave Climatologia Dinacircmica Revista Brasileira de Geografia 34 3ndash51

Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia Ecology 50 1012ndash 1030

Pianka ER (1973) The structure of lizard communities Annual Review of Ecology and Systematics 4 53ndash74

Pianka ER amp Vitt LJ (2003) Lizards Windows to The Evolution of Diversity Berkeley University of California Press 333 pp

Prado D (2005) As Caatingas da Ameacuterica do Sul In Ecologia e Conservaccedilatildeo da Caatinga 3ndash73 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ramos L amp Denisson S (1997) Notas sobre os habitats e microhabitats de duas espeacutecies simpaacutetricas de lagartos do gecircnero Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 29ndash34

Reis AMS Arauacutejo EL Ferraz EMN amp Moura AN (2006) Inter-annual variations in the floristic and population structure of an herbaceous community of ldquocaatingardquo vegetation in Pernambuco Brazil Revista Brasileira de Botacircnica 29 497ndash508

Ribeiro LB amp Freire EMX (2009) Tropidurus semitaeniatus (NCN) Drinking behavior Herpetological Review 40 228ndash229

Ribeiro LB amp Freire EMX (2010) Thermal ecology and thermoregulatory behaviour of Tropidurus hispidus and T semitaeniatus in a caatinga area of northeastern Brazil Herpetological Journal 20 201ndash208

Ribeiro LB amp Freire EMX (2011) Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) in a caatinga area of northeastern Brazil Iheringia Seacuterie Zoologia 101 225ndash232

Ricklefs RE Cochran D amp Pianka ER (1981) A morphological analysis of the structure of communities of lizards in desert habitats Ecology 62 1474ndash1478

Rocha CFD amp Bergallo HG (1990) Thermal biology and flight distance of Tropidurus oreadicus (Sauria Iguanidae) in an area of Amazonian Brazil Ethology Ecology amp Evolution 2 263ndash268

Rocha CFD amp Bergallo HG (1992) Tropidurus torquatus (collared lizard) diet Herpetological Review 25 69

Rodrigues MT (1984) Uma nova espeacutecie brasileira de

FFA Gomes et a l

39

Tropidurus com crista dorsal (Sauria Iguanidae) Papeacuteis Avulsos de Zoologia 35 169ndash175

Rodrigues MT (1987) Sistemaacutetica ecologia e zoogeografia dos Tropidurus do grupo torquatus ao sul do Rio Amazonas (Sauridae Iguanidae) Arquivos de Zoologia 31 105ndash230

Rodrigues MT (2005) Herpetofauna da Caatinga In Ecologia e Conservaccedilatildeo da Caatinga 181ndash236 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ruiz-Esparza J Gouveia SF Rocha PA Ribeiro AS amp Ferrari SF (2011) Birds of the Grota do Angico Natural Monument in the semi-arid caatinga scrublands of northeastern Brazil Biota Neotropica 11 1ndash8

Santos GMM Delabie JHC amp Resende JJ (1999) Caracterizaccedilatildeo da mirmecofauna (Hymenoptera-Formicidae) associada agrave vegetaccedilatildeo perifeacuterica de inselbergs (caatinga-arboacuterea-estacional-semi-deciacutedua) em Itatim ndash Bahia ndash Brasil Sitientibus 20 33ndash43

Sampaio EVSB (1995) Overview of the Brazilian Caatinga In Seasonally Dry Forests 35ndash58 Bullock HA Mooney HA amp Medina E (eds) Reino Unido Cambridge University Press

Schoener TW (1975) Presence and absence of habitat shift in some widespread lizards species Ecological Monographs 45 233ndash258

Silva VN amp Arauacutejo AFB (2008) Ecologia dos Lagartos Brasileiros 1st ed Rio de Janeiro Technical Books 271p

Simpson EH (1949) Measurement of diversity Nature 163 688

Somers KM (1986) Multivariate allometry and removal of size with principal components analysis Systematic Zoology 35 359ndash368

Teixeira-Filho P Rocha CFD amp Ribas S (1996) Ecologia termal e uso do habitat por Tropidurus torquatus (Sauria Tropiduridae) em uma aacuterea de restinga do sudeste do Brasil In Herpetologia Neotropical 255ndash267 Peacutefaur JE (ed) Actas del II Congreso Latinoamericano de Herpetologia II Volumen Universidad de Los Andes Merida Venezuela Consejo de Publicaciones

Toft CA (1985) Resource partitioning in amphibians and reptilies Copeia 1 1ndash21

VanSluys M (1992) Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae) em uma aacuterea do sudeste do Brasil Revista Brasileira de Biologia 52 181ndash185

VanSluys M (1993) Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Journal of Herpetology 27 347ndash351

VanSluys M (1995) Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Ciecircncia e Cultura 47 61ndash65

VanSluys M Rocha CFD Vrcibradic D Galdino CAB amp Fontes AF (2004) Diet activity and microhabitat use of two syntopic Tropidurus species (Lacertilia Tropiduridae) in Minas Gerais Brazil Journal of Herpetology 38 606ndash611

Vitt LJ (1981) Lizard reproduction habitat specificity and constraints on relative clutch mass The American Naturalist 117 506ndash514

Vitt LJ (1991) An introduction to the ecology of cerrado lizards Journal of Herpetology 25 79ndash90

Vitt LJ (1993) Ecology of isolated open-formation Tropidurus (Reptilia Tropiduridae) in Amazonian lowland rain forest Canadian Journal of Zoology 71 2370ndash2390

Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil Occasional Papers of the Oklahoma Museum of Natural History 1 29ndash34

Vitt LJ Zani PA amp Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia Journal of Tropical Ecology 12 81ndash101

Vitt LJ Caldwell JP Zani PA amp Titus TA (1997) The role of habitat shift in the evolution of lizard morphology evidence from tropical Tropidurus Proceedings of the National Academy of Sciences 94 3828ndash3832

Vitt LJ amp Carvalho CM (1995) Niche partitioning in a tropical wet season lizards in the Lavrado area of Northern Brazil Copeia 2 305ndash329

Vitt LJ amp Pianka ER (1994) Introduction and Acknowledgments In Lizard Ecology Historical and Experimental Perspectives 9ndash12 Vitt LJ amp Pianka ER (eds) Princeton University Press 403 pp

Vitt LJ amp Zani PA (1998) Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14 63ndash86

Vrcibradic D amp Rocha CFD (1998) Ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil Journal of Herpetology 32 229ndash237

Webb CO Ackerly DD McPeek MA amp Donoghue MJ (2002) Phylogenies and community ecology Annual Review of Ecology and Systematics 33 475ndash505

Zug GR Vitt LJ amp Caldwell JP (2001) Herpetology An Introductory Biology of Amphibians and Reptiles 2nd ed San Diego Academic Press 630 pp

Accepted 8 July 2014

Interact ion of sympatr ic Tropidur idae

37

presents a mean body temperature that is higher than T hispidus In the study area of the present work T hispidus may prefer shady places to avoid negative effects of high temperatures (Teixeira-Filho et al 1996)

Ecological historical and behavioural factors must be considered when evaluating the reasons why certain species consume particular types of prey (Vitt amp Zani 1998 Pianka amp Vitt 2003) and morphological limitations may further interfere with the type of food consumed (Toft 1985 Magnusson amp Silva 1993) An opportunistic pattern in food use was observed for both species in this study given the strong correlation between use and availability The use of ants is widely observed in the diet of the genus Tropidurus and has been reported for several species (T hispidus Dias amp Lira-da-Silva 1998 T torquatus group Arauacutejo 1987 T itambere VanSluys 1995 T oreadicus and T spinulosos Colli et al 1992 T torquatus Bergallo amp Rocha 1994 T hispidus T oreadicus T semitaeniatus Vitt 1993 T semitaeniatus and T hispidus Ribeiro amp Freire 2011) Ants are abundant in the Caatinga (Santos et al 1999) Insect larvae were mainly used in the rainy season probably due to their higher availability during this period

For lizards prey composition is largely related to the type of foraging used and the habitat they occupy (Vitt 1991 Toft 1985) Diet overlap is common among sympatric species that hunt by stalking since they have a preference for active prey (Zug et al 2001 Silva amp Arauacutejo 2008) In periods of higher rainfall both species became more selective since the number of invertebrates in the environment was larger Tropidurus semitaeniatus changed their diet towards insect larvae which were not the most abundant prey category T hispidus continued to consume Hymenoptera as the main item in their diet Considering the reduction in availability of Hymenoptera during the rainy season it is likely that individuals of Tropidurus species broaden the diversity of food items to meet their daily nutritional needs The seasonal change in food habits of T semitaeniatus during the rainy season might be due to avoidance of competition during this period Head morphology is reflected in the consumption of prey of different dimensions it is expected that animals with larger heads consume larger prey (Pianka 1969) However this pattern was not observed for the target species of this study Since T semitaeniatus that has a smaller width head was observed consuming relatively larger prey whereas T hispidus with larger heads prefers more elongated prey Food availability in the environment probably best explains the observed pattern Besides invertebrates large quantities of plant material (flowers leaves and seeds) were found in stomachs and T hispidus consumed more plants than T semitaeniatus Ingestion of plant material in Tropidurus and other lizards is relatively common to provide energy as well as possibly water (Rocha amp Bergallo 1992 VanSluys 1993 Dias amp Lira-da-Silva 1998) In our study area the coexistence of T hispidus and T semitaeniatus on rocky outcrops is probably facilitated by small variations in spatial arrangement the morphology of the trophic apparatus and temporary niche shifts in their diets depending on rather unpredictable rainfall patterns

ACKNOWLEDGEMENTs

We thank Mr Manuel Messias and his entire family for their support in the collection area We are grateful to CAPES for providing the research grant and SISBIO for licensing the collection the Secretaria do Meio-Ambiente e Recursos Hiacutedricos de Sergipe (SEMARH SE) for support with transport to the area and other aid at UC and the Nuacutecleo de Pesquisa em Ecologia e Conservaccedilatildeo (NPEC) and the Universidade Federal de Sergipe (UFS) for logistical support The data collection was authorised by license number 19237-1 issued by SISBIO (System of Authorization and Information on Biodiversity)

REFERENCEs

Arauacutejo AFB (1987) Comportamento alimentar dos lagartos o caso dos Tropidurus da Serra dos Carajaacutes Paraacute (Sauria Iguanidae) In Anais de Etologia 203ndash234 Encontro Anual de Etologia (1987) Ribeiratildeo Preto Jaboticabal FUNEP 5

Bergallo HG amp Rocha D (1993) Activity patterns and body temperatures of two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics in southeastern Brazil Amphibia-Reptilia 14 312ndash315

Bergallo HG amp Rocha D (1994) Spatial and trophic niche differentiation in two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics Australian Journal of Ecology 19 72ndash75

Beacuternils RS amp Costa HC (2012) Reacutepteis brasileiros lista de espeacutecies Versatildeo 20122 Available from lthttpwwwsbherpetologiaorgbrgt Sociedade Brasileira de Herpetologia Accessed 2 October 2013

Borger L Franconi N De Michele G Gantz A et al (2006) Effects of sampling regime on the mean and variance of home range size estimates Journal of Animal Ecology 75 1393ndash1405

Carvalho ALG Brito MR amp Fernandes DS (2013) Biogeography of the lizard genus Tropidurus Wied-Neuwied 1825 (Squamata Tropiduridae) distribution endemism and area relationships in South America Public Library of Science 8 1ndash14

Carvalho CM Vilar JC amp Oliveira FF (2005) Reacutepteis e anfiacutebios In Parque Nacional Serra de Itabaiana - Levantamento da Biota 39ndash61 Carvalho CM and Vilar JC (eds) Aracaju Ibama Biologia Geral e Experimental ndash UFS

Chiang JCH amp Koutavas A (2004) Tropical Flip-flop connections Nature 432 684ndash685

Colli GR Arauacutejo AFB Silveira R amp Roma F (1992) Niche partitioning and morphology of two syntopic Tropidurus (Sauria Tropiduridae) in Mato Grasso Brazil Journal of Herpetology 26 66ndash69

Cooper Jr WE (1994) Prey chemical discrimination foraging mode and phylogeny In Lizard ecology historical and experimental perspectives 95ndash116 Vitt LJ amp Pianka ER (eds) New Jersey Princeton University Press

Dias EJR amp Lira-da-Silva RM (1998) Utilizaccedilatildeo dos recursos alimentares por quatro espeacutecies de lagartos (Phyllopezus pollicaris Tropidurus hispidus Mabuya macrorhyncha e Vanzossaura rubricauda) da caatinga (Usina Hidroeleacutetrica de Xingoacute) Brazilian Journal of Ecology 2 97ndash101

Faria RG amp Arauacutejo AFB (2004) Sintopy of two Tropidurus

Interact ion of sympatr ic Tropidur idae

38

lizard species (Squamata Tropiduridae) on a rocky cerrado habitat in Central Brazil Brazilian Journal of Biology 64 775ndash786

Fernandes ACM amp Oliveira EF (1997) Diversidade na dieta e aspectos reprodutivos de duas espeacutecies simpaacutetricas e sintoacutepicas de Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 35ndash40

Freitas MA amp Silva TFS (2007) Guia ilustrado A herpetofauna das caatingas e aacutereas de altitudes do Nordeste Brasileiro Pelotas USEB (Coleccedilatildeo Manuais de Campo USEB 6) 384 pp

Frost DR Rodrigues MT Grant T amp Titus TA (2001) Phylogenetics of the lizard genus Tropidurus (Squamata Tropiduridae Tropidurinae) Direct optimization descriptive efficiency and analysis of congruence between molecular data and morphology Molecular Plylogenetics and Evolution 21 352ndash371

Hatano FH Vrcibradic D Galdino CAB Cunha-Barros M et al (2001) Thermal ecology and activity patterns of the lizard community of the restinga of Jurubatiba Macaeacute RJ Revista Brasileira de Biologia 61 287ndash294

Herfindal I Linnell JDC Odden J Birkeland Nilsen E amp Andersen R (2005) Prey density environmental productivity and home-range size in the Eurasian lynx (Lynx lynx) Journal of Zoology 265 63ndash71

Huey RB amp Pianka ER (1977) Patterns of niche overlap among broadly sympatric versus narrowly sympatric Kalahari lizards (Scincidae Mabuya) Ecology 58 119ndash128

Huey RB amp Slatkin M (1976) Cost and benefits of lizard thermoregulation The Quarterly Review of Biology 51 363ndash384

Hutchinson GE (1957) Concluding remarks Cold Spring Harbour Symposium on Quantitative Biology 22 415ndash427

Janzen DH amp Schoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season Ecology 49 96ndash110

Jolicoeur P (1963) The multivariate generalization of the allometry equation Biometrics 19 497ndash499

Kolodiuk MF Ribeiro LB amp Freire EMX (2009) The effects of seasonality on the foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) living in sympatry in the caatinga of northeastern Brazil Revista Brasileira de Zoologia 26 581ndash585

Krol MS Jaegar A Bronstert A amp Krywkow J (2001) The semiarid integrated model (SDIM) a regional integrated model assessing water availability vulnerability of ecosystems and society in NE-Brazil Physics and Chemistry of the Earth 26 529ndash533

Losos JB (1990) Ecomorphology performance capability and scaling of west Indian Anolis lizards an evolutionary analysis Ecological Monographs 60 369ndash388

Losos JB (2008) Phylogenetic niche conservatism phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species Ecology Letters 11 995ndash1007

Magnusson WE amp Silva EV (1993) Relative effects of size season and species on the diets of some Amazonian Savanna lizards Journal of Herpetology 27 380ndash385

Magnusson WE Lima PA Silva WA amp Arauacutejo MC (2003) Use of geometric forms to estimate volume of invertebrates

in ecological studies of dietary overlap Copeia 2003 13ndash19Manzani PR amp Abe AS (1990) A new species of Tapinurus

from the Caatinga of Piauiacute Northeastern Brazil (Squamata Tropiduridae) Herpetologica 46 462ndash467

MrsquoCloskey RT amp Hecnar ESJ (1994) Interspecific spatial overlap Oikos 71 65ndash74

Meira KT Faria RG Silva MDM Miranda VT amp Zahn-Silva W (2007) Histoacuteria natural de Tropidurus oreadicus em uma aacuterea de cerrado rupestre do Brasil Central Biota Neotropica 7 155ndash163

Mesquita DO Costa GC amp Colli GR (2006) Ecology of an Amazonian savanna lizard assemblage in Monte Alegre Paraacute state Brazil South American Journal of Herpetology 1 61ndash71

Milstead WW (1965) Changes in competing populations of whiptail lizards (Cnemidophorus) in southwestern Texas The American Midland Naturalist 7375ndash80

Nimer E (1972) Climatologia da Regiatildeo Nordeste do Brasil In Introduccedilatildeo agrave Climatologia Dinacircmica Revista Brasileira de Geografia 34 3ndash51

Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia Ecology 50 1012ndash 1030

Pianka ER (1973) The structure of lizard communities Annual Review of Ecology and Systematics 4 53ndash74

Pianka ER amp Vitt LJ (2003) Lizards Windows to The Evolution of Diversity Berkeley University of California Press 333 pp

Prado D (2005) As Caatingas da Ameacuterica do Sul In Ecologia e Conservaccedilatildeo da Caatinga 3ndash73 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ramos L amp Denisson S (1997) Notas sobre os habitats e microhabitats de duas espeacutecies simpaacutetricas de lagartos do gecircnero Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 29ndash34

Reis AMS Arauacutejo EL Ferraz EMN amp Moura AN (2006) Inter-annual variations in the floristic and population structure of an herbaceous community of ldquocaatingardquo vegetation in Pernambuco Brazil Revista Brasileira de Botacircnica 29 497ndash508

Ribeiro LB amp Freire EMX (2009) Tropidurus semitaeniatus (NCN) Drinking behavior Herpetological Review 40 228ndash229

Ribeiro LB amp Freire EMX (2010) Thermal ecology and thermoregulatory behaviour of Tropidurus hispidus and T semitaeniatus in a caatinga area of northeastern Brazil Herpetological Journal 20 201ndash208

Ribeiro LB amp Freire EMX (2011) Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) in a caatinga area of northeastern Brazil Iheringia Seacuterie Zoologia 101 225ndash232

Ricklefs RE Cochran D amp Pianka ER (1981) A morphological analysis of the structure of communities of lizards in desert habitats Ecology 62 1474ndash1478

Rocha CFD amp Bergallo HG (1990) Thermal biology and flight distance of Tropidurus oreadicus (Sauria Iguanidae) in an area of Amazonian Brazil Ethology Ecology amp Evolution 2 263ndash268

Rocha CFD amp Bergallo HG (1992) Tropidurus torquatus (collared lizard) diet Herpetological Review 25 69

Rodrigues MT (1984) Uma nova espeacutecie brasileira de

FFA Gomes et a l

39

Tropidurus com crista dorsal (Sauria Iguanidae) Papeacuteis Avulsos de Zoologia 35 169ndash175

Rodrigues MT (1987) Sistemaacutetica ecologia e zoogeografia dos Tropidurus do grupo torquatus ao sul do Rio Amazonas (Sauridae Iguanidae) Arquivos de Zoologia 31 105ndash230

Rodrigues MT (2005) Herpetofauna da Caatinga In Ecologia e Conservaccedilatildeo da Caatinga 181ndash236 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ruiz-Esparza J Gouveia SF Rocha PA Ribeiro AS amp Ferrari SF (2011) Birds of the Grota do Angico Natural Monument in the semi-arid caatinga scrublands of northeastern Brazil Biota Neotropica 11 1ndash8

Santos GMM Delabie JHC amp Resende JJ (1999) Caracterizaccedilatildeo da mirmecofauna (Hymenoptera-Formicidae) associada agrave vegetaccedilatildeo perifeacuterica de inselbergs (caatinga-arboacuterea-estacional-semi-deciacutedua) em Itatim ndash Bahia ndash Brasil Sitientibus 20 33ndash43

Sampaio EVSB (1995) Overview of the Brazilian Caatinga In Seasonally Dry Forests 35ndash58 Bullock HA Mooney HA amp Medina E (eds) Reino Unido Cambridge University Press

Schoener TW (1975) Presence and absence of habitat shift in some widespread lizards species Ecological Monographs 45 233ndash258

Silva VN amp Arauacutejo AFB (2008) Ecologia dos Lagartos Brasileiros 1st ed Rio de Janeiro Technical Books 271p

Simpson EH (1949) Measurement of diversity Nature 163 688

Somers KM (1986) Multivariate allometry and removal of size with principal components analysis Systematic Zoology 35 359ndash368

Teixeira-Filho P Rocha CFD amp Ribas S (1996) Ecologia termal e uso do habitat por Tropidurus torquatus (Sauria Tropiduridae) em uma aacuterea de restinga do sudeste do Brasil In Herpetologia Neotropical 255ndash267 Peacutefaur JE (ed) Actas del II Congreso Latinoamericano de Herpetologia II Volumen Universidad de Los Andes Merida Venezuela Consejo de Publicaciones

Toft CA (1985) Resource partitioning in amphibians and reptilies Copeia 1 1ndash21

VanSluys M (1992) Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae) em uma aacuterea do sudeste do Brasil Revista Brasileira de Biologia 52 181ndash185

VanSluys M (1993) Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Journal of Herpetology 27 347ndash351

VanSluys M (1995) Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Ciecircncia e Cultura 47 61ndash65

VanSluys M Rocha CFD Vrcibradic D Galdino CAB amp Fontes AF (2004) Diet activity and microhabitat use of two syntopic Tropidurus species (Lacertilia Tropiduridae) in Minas Gerais Brazil Journal of Herpetology 38 606ndash611

Vitt LJ (1981) Lizard reproduction habitat specificity and constraints on relative clutch mass The American Naturalist 117 506ndash514

Vitt LJ (1991) An introduction to the ecology of cerrado lizards Journal of Herpetology 25 79ndash90

Vitt LJ (1993) Ecology of isolated open-formation Tropidurus (Reptilia Tropiduridae) in Amazonian lowland rain forest Canadian Journal of Zoology 71 2370ndash2390

Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil Occasional Papers of the Oklahoma Museum of Natural History 1 29ndash34

Vitt LJ Zani PA amp Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia Journal of Tropical Ecology 12 81ndash101

Vitt LJ Caldwell JP Zani PA amp Titus TA (1997) The role of habitat shift in the evolution of lizard morphology evidence from tropical Tropidurus Proceedings of the National Academy of Sciences 94 3828ndash3832

Vitt LJ amp Carvalho CM (1995) Niche partitioning in a tropical wet season lizards in the Lavrado area of Northern Brazil Copeia 2 305ndash329

Vitt LJ amp Pianka ER (1994) Introduction and Acknowledgments In Lizard Ecology Historical and Experimental Perspectives 9ndash12 Vitt LJ amp Pianka ER (eds) Princeton University Press 403 pp

Vitt LJ amp Zani PA (1998) Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14 63ndash86

Vrcibradic D amp Rocha CFD (1998) Ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil Journal of Herpetology 32 229ndash237

Webb CO Ackerly DD McPeek MA amp Donoghue MJ (2002) Phylogenies and community ecology Annual Review of Ecology and Systematics 33 475ndash505

Zug GR Vitt LJ amp Caldwell JP (2001) Herpetology An Introductory Biology of Amphibians and Reptiles 2nd ed San Diego Academic Press 630 pp

Accepted 8 July 2014

Interact ion of sympatr ic Tropidur idae

38

lizard species (Squamata Tropiduridae) on a rocky cerrado habitat in Central Brazil Brazilian Journal of Biology 64 775ndash786

Fernandes ACM amp Oliveira EF (1997) Diversidade na dieta e aspectos reprodutivos de duas espeacutecies simpaacutetricas e sintoacutepicas de Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 35ndash40

Freitas MA amp Silva TFS (2007) Guia ilustrado A herpetofauna das caatingas e aacutereas de altitudes do Nordeste Brasileiro Pelotas USEB (Coleccedilatildeo Manuais de Campo USEB 6) 384 pp

Frost DR Rodrigues MT Grant T amp Titus TA (2001) Phylogenetics of the lizard genus Tropidurus (Squamata Tropiduridae Tropidurinae) Direct optimization descriptive efficiency and analysis of congruence between molecular data and morphology Molecular Plylogenetics and Evolution 21 352ndash371

Hatano FH Vrcibradic D Galdino CAB Cunha-Barros M et al (2001) Thermal ecology and activity patterns of the lizard community of the restinga of Jurubatiba Macaeacute RJ Revista Brasileira de Biologia 61 287ndash294

Herfindal I Linnell JDC Odden J Birkeland Nilsen E amp Andersen R (2005) Prey density environmental productivity and home-range size in the Eurasian lynx (Lynx lynx) Journal of Zoology 265 63ndash71

Huey RB amp Pianka ER (1977) Patterns of niche overlap among broadly sympatric versus narrowly sympatric Kalahari lizards (Scincidae Mabuya) Ecology 58 119ndash128

Huey RB amp Slatkin M (1976) Cost and benefits of lizard thermoregulation The Quarterly Review of Biology 51 363ndash384

Hutchinson GE (1957) Concluding remarks Cold Spring Harbour Symposium on Quantitative Biology 22 415ndash427

Janzen DH amp Schoener TW (1968) Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season Ecology 49 96ndash110

Jolicoeur P (1963) The multivariate generalization of the allometry equation Biometrics 19 497ndash499

Kolodiuk MF Ribeiro LB amp Freire EMX (2009) The effects of seasonality on the foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) living in sympatry in the caatinga of northeastern Brazil Revista Brasileira de Zoologia 26 581ndash585

Krol MS Jaegar A Bronstert A amp Krywkow J (2001) The semiarid integrated model (SDIM) a regional integrated model assessing water availability vulnerability of ecosystems and society in NE-Brazil Physics and Chemistry of the Earth 26 529ndash533

Losos JB (1990) Ecomorphology performance capability and scaling of west Indian Anolis lizards an evolutionary analysis Ecological Monographs 60 369ndash388

Losos JB (2008) Phylogenetic niche conservatism phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species Ecology Letters 11 995ndash1007

Magnusson WE amp Silva EV (1993) Relative effects of size season and species on the diets of some Amazonian Savanna lizards Journal of Herpetology 27 380ndash385

Magnusson WE Lima PA Silva WA amp Arauacutejo MC (2003) Use of geometric forms to estimate volume of invertebrates

in ecological studies of dietary overlap Copeia 2003 13ndash19Manzani PR amp Abe AS (1990) A new species of Tapinurus

from the Caatinga of Piauiacute Northeastern Brazil (Squamata Tropiduridae) Herpetologica 46 462ndash467

MrsquoCloskey RT amp Hecnar ESJ (1994) Interspecific spatial overlap Oikos 71 65ndash74

Meira KT Faria RG Silva MDM Miranda VT amp Zahn-Silva W (2007) Histoacuteria natural de Tropidurus oreadicus em uma aacuterea de cerrado rupestre do Brasil Central Biota Neotropica 7 155ndash163

Mesquita DO Costa GC amp Colli GR (2006) Ecology of an Amazonian savanna lizard assemblage in Monte Alegre Paraacute state Brazil South American Journal of Herpetology 1 61ndash71

Milstead WW (1965) Changes in competing populations of whiptail lizards (Cnemidophorus) in southwestern Texas The American Midland Naturalist 7375ndash80

Nimer E (1972) Climatologia da Regiatildeo Nordeste do Brasil In Introduccedilatildeo agrave Climatologia Dinacircmica Revista Brasileira de Geografia 34 3ndash51

Pianka ER (1969) Sympatry of desert lizards (Ctenotus) in Western Australia Ecology 50 1012ndash 1030

Pianka ER (1973) The structure of lizard communities Annual Review of Ecology and Systematics 4 53ndash74

Pianka ER amp Vitt LJ (2003) Lizards Windows to The Evolution of Diversity Berkeley University of California Press 333 pp

Prado D (2005) As Caatingas da Ameacuterica do Sul In Ecologia e Conservaccedilatildeo da Caatinga 3ndash73 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ramos L amp Denisson S (1997) Notas sobre os habitats e microhabitats de duas espeacutecies simpaacutetricas de lagartos do gecircnero Tropidurus da Serra de Itabaiana Sergipe (Sauria Tropiduridae) Publicaccedilotildees Avulsas do Centro Acadecircmico Livre de Biologia 1 29ndash34

Reis AMS Arauacutejo EL Ferraz EMN amp Moura AN (2006) Inter-annual variations in the floristic and population structure of an herbaceous community of ldquocaatingardquo vegetation in Pernambuco Brazil Revista Brasileira de Botacircnica 29 497ndash508

Ribeiro LB amp Freire EMX (2009) Tropidurus semitaeniatus (NCN) Drinking behavior Herpetological Review 40 228ndash229

Ribeiro LB amp Freire EMX (2010) Thermal ecology and thermoregulatory behaviour of Tropidurus hispidus and T semitaeniatus in a caatinga area of northeastern Brazil Herpetological Journal 20 201ndash208

Ribeiro LB amp Freire EMX (2011) Trophic ecology and foraging behavior of Tropidurus hispidus and Tropidurus semitaeniatus (Squamata Tropiduridae) in a caatinga area of northeastern Brazil Iheringia Seacuterie Zoologia 101 225ndash232

Ricklefs RE Cochran D amp Pianka ER (1981) A morphological analysis of the structure of communities of lizards in desert habitats Ecology 62 1474ndash1478

Rocha CFD amp Bergallo HG (1990) Thermal biology and flight distance of Tropidurus oreadicus (Sauria Iguanidae) in an area of Amazonian Brazil Ethology Ecology amp Evolution 2 263ndash268

Rocha CFD amp Bergallo HG (1992) Tropidurus torquatus (collared lizard) diet Herpetological Review 25 69

Rodrigues MT (1984) Uma nova espeacutecie brasileira de

FFA Gomes et a l

39

Tropidurus com crista dorsal (Sauria Iguanidae) Papeacuteis Avulsos de Zoologia 35 169ndash175

Rodrigues MT (1987) Sistemaacutetica ecologia e zoogeografia dos Tropidurus do grupo torquatus ao sul do Rio Amazonas (Sauridae Iguanidae) Arquivos de Zoologia 31 105ndash230

Rodrigues MT (2005) Herpetofauna da Caatinga In Ecologia e Conservaccedilatildeo da Caatinga 181ndash236 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ruiz-Esparza J Gouveia SF Rocha PA Ribeiro AS amp Ferrari SF (2011) Birds of the Grota do Angico Natural Monument in the semi-arid caatinga scrublands of northeastern Brazil Biota Neotropica 11 1ndash8

Santos GMM Delabie JHC amp Resende JJ (1999) Caracterizaccedilatildeo da mirmecofauna (Hymenoptera-Formicidae) associada agrave vegetaccedilatildeo perifeacuterica de inselbergs (caatinga-arboacuterea-estacional-semi-deciacutedua) em Itatim ndash Bahia ndash Brasil Sitientibus 20 33ndash43

Sampaio EVSB (1995) Overview of the Brazilian Caatinga In Seasonally Dry Forests 35ndash58 Bullock HA Mooney HA amp Medina E (eds) Reino Unido Cambridge University Press

Schoener TW (1975) Presence and absence of habitat shift in some widespread lizards species Ecological Monographs 45 233ndash258

Silva VN amp Arauacutejo AFB (2008) Ecologia dos Lagartos Brasileiros 1st ed Rio de Janeiro Technical Books 271p

Simpson EH (1949) Measurement of diversity Nature 163 688

Somers KM (1986) Multivariate allometry and removal of size with principal components analysis Systematic Zoology 35 359ndash368

Teixeira-Filho P Rocha CFD amp Ribas S (1996) Ecologia termal e uso do habitat por Tropidurus torquatus (Sauria Tropiduridae) em uma aacuterea de restinga do sudeste do Brasil In Herpetologia Neotropical 255ndash267 Peacutefaur JE (ed) Actas del II Congreso Latinoamericano de Herpetologia II Volumen Universidad de Los Andes Merida Venezuela Consejo de Publicaciones

Toft CA (1985) Resource partitioning in amphibians and reptilies Copeia 1 1ndash21

VanSluys M (1992) Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae) em uma aacuterea do sudeste do Brasil Revista Brasileira de Biologia 52 181ndash185

VanSluys M (1993) Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Journal of Herpetology 27 347ndash351

VanSluys M (1995) Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Ciecircncia e Cultura 47 61ndash65

VanSluys M Rocha CFD Vrcibradic D Galdino CAB amp Fontes AF (2004) Diet activity and microhabitat use of two syntopic Tropidurus species (Lacertilia Tropiduridae) in Minas Gerais Brazil Journal of Herpetology 38 606ndash611

Vitt LJ (1981) Lizard reproduction habitat specificity and constraints on relative clutch mass The American Naturalist 117 506ndash514

Vitt LJ (1991) An introduction to the ecology of cerrado lizards Journal of Herpetology 25 79ndash90

Vitt LJ (1993) Ecology of isolated open-formation Tropidurus (Reptilia Tropiduridae) in Amazonian lowland rain forest Canadian Journal of Zoology 71 2370ndash2390

Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil Occasional Papers of the Oklahoma Museum of Natural History 1 29ndash34

Vitt LJ Zani PA amp Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia Journal of Tropical Ecology 12 81ndash101

Vitt LJ Caldwell JP Zani PA amp Titus TA (1997) The role of habitat shift in the evolution of lizard morphology evidence from tropical Tropidurus Proceedings of the National Academy of Sciences 94 3828ndash3832

Vitt LJ amp Carvalho CM (1995) Niche partitioning in a tropical wet season lizards in the Lavrado area of Northern Brazil Copeia 2 305ndash329

Vitt LJ amp Pianka ER (1994) Introduction and Acknowledgments In Lizard Ecology Historical and Experimental Perspectives 9ndash12 Vitt LJ amp Pianka ER (eds) Princeton University Press 403 pp

Vitt LJ amp Zani PA (1998) Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14 63ndash86

Vrcibradic D amp Rocha CFD (1998) Ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil Journal of Herpetology 32 229ndash237

Webb CO Ackerly DD McPeek MA amp Donoghue MJ (2002) Phylogenies and community ecology Annual Review of Ecology and Systematics 33 475ndash505

Zug GR Vitt LJ amp Caldwell JP (2001) Herpetology An Introductory Biology of Amphibians and Reptiles 2nd ed San Diego Academic Press 630 pp

Accepted 8 July 2014

Interact ion of sympatr ic Tropidur idae

39

Tropidurus com crista dorsal (Sauria Iguanidae) Papeacuteis Avulsos de Zoologia 35 169ndash175

Rodrigues MT (1987) Sistemaacutetica ecologia e zoogeografia dos Tropidurus do grupo torquatus ao sul do Rio Amazonas (Sauridae Iguanidae) Arquivos de Zoologia 31 105ndash230

Rodrigues MT (2005) Herpetofauna da Caatinga In Ecologia e Conservaccedilatildeo da Caatinga 181ndash236 Leal IR Tabareli M amp Silva JMC (eds) Recife Editora da UFPE

Ruiz-Esparza J Gouveia SF Rocha PA Ribeiro AS amp Ferrari SF (2011) Birds of the Grota do Angico Natural Monument in the semi-arid caatinga scrublands of northeastern Brazil Biota Neotropica 11 1ndash8

Santos GMM Delabie JHC amp Resende JJ (1999) Caracterizaccedilatildeo da mirmecofauna (Hymenoptera-Formicidae) associada agrave vegetaccedilatildeo perifeacuterica de inselbergs (caatinga-arboacuterea-estacional-semi-deciacutedua) em Itatim ndash Bahia ndash Brasil Sitientibus 20 33ndash43

Sampaio EVSB (1995) Overview of the Brazilian Caatinga In Seasonally Dry Forests 35ndash58 Bullock HA Mooney HA amp Medina E (eds) Reino Unido Cambridge University Press

Schoener TW (1975) Presence and absence of habitat shift in some widespread lizards species Ecological Monographs 45 233ndash258

Silva VN amp Arauacutejo AFB (2008) Ecologia dos Lagartos Brasileiros 1st ed Rio de Janeiro Technical Books 271p

Simpson EH (1949) Measurement of diversity Nature 163 688

Somers KM (1986) Multivariate allometry and removal of size with principal components analysis Systematic Zoology 35 359ndash368

Teixeira-Filho P Rocha CFD amp Ribas S (1996) Ecologia termal e uso do habitat por Tropidurus torquatus (Sauria Tropiduridae) em uma aacuterea de restinga do sudeste do Brasil In Herpetologia Neotropical 255ndash267 Peacutefaur JE (ed) Actas del II Congreso Latinoamericano de Herpetologia II Volumen Universidad de Los Andes Merida Venezuela Consejo de Publicaciones

Toft CA (1985) Resource partitioning in amphibians and reptilies Copeia 1 1ndash21

VanSluys M (1992) Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae) em uma aacuterea do sudeste do Brasil Revista Brasileira de Biologia 52 181ndash185

VanSluys M (1993) Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Journal of Herpetology 27 347ndash351

VanSluys M (1995) Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil Ciecircncia e Cultura 47 61ndash65

VanSluys M Rocha CFD Vrcibradic D Galdino CAB amp Fontes AF (2004) Diet activity and microhabitat use of two syntopic Tropidurus species (Lacertilia Tropiduridae) in Minas Gerais Brazil Journal of Herpetology 38 606ndash611

Vitt LJ (1981) Lizard reproduction habitat specificity and constraints on relative clutch mass The American Naturalist 117 506ndash514

Vitt LJ (1991) An introduction to the ecology of cerrado lizards Journal of Herpetology 25 79ndash90

Vitt LJ (1993) Ecology of isolated open-formation Tropidurus (Reptilia Tropiduridae) in Amazonian lowland rain forest Canadian Journal of Zoology 71 2370ndash2390

Vitt LJ (1995) The ecology of tropical lizards in the caatinga of northeast Brazil Occasional Papers of the Oklahoma Museum of Natural History 1 29ndash34

Vitt LJ Zani PA amp Caldwell JP (1996) Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia Journal of Tropical Ecology 12 81ndash101

Vitt LJ Caldwell JP Zani PA amp Titus TA (1997) The role of habitat shift in the evolution of lizard morphology evidence from tropical Tropidurus Proceedings of the National Academy of Sciences 94 3828ndash3832

Vitt LJ amp Carvalho CM (1995) Niche partitioning in a tropical wet season lizards in the Lavrado area of Northern Brazil Copeia 2 305ndash329

Vitt LJ amp Pianka ER (1994) Introduction and Acknowledgments In Lizard Ecology Historical and Experimental Perspectives 9ndash12 Vitt LJ amp Pianka ER (eds) Princeton University Press 403 pp

Vitt LJ amp Zani PA (1998) Ecological relationships among sympatric lizards in a transitional forest in the northern Amazon of Brazil Journal of Tropical Ecology 14 63ndash86

Vrcibradic D amp Rocha CFD (1998) Ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil Journal of Herpetology 32 229ndash237

Webb CO Ackerly DD McPeek MA amp Donoghue MJ (2002) Phylogenies and community ecology Annual Review of Ecology and Systematics 33 475ndash505

Zug GR Vitt LJ amp Caldwell JP (2001) Herpetology An Introductory Biology of Amphibians and Reptiles 2nd ed San Diego Academic Press 630 pp

Accepted 8 July 2014

Interact ion of sympatr ic Tropidur idae