oxygen deprivation and flooding hort 301 – plant physiology december 8, 2008 taiz and zeiger –...

46
Oxygen Deprivation and Flooding HORT 301 – Plant Physiology December 8, 2008 Taiz and Zeiger – Chapter 11 (p. 256-262), Chapter 26 (p. 698-705); Buchanan et al., Chapter 22 and Bailey- Serres and Voesenek (2008) Annu Rev Plant Biol 59:313- 339 No or low O 2 - insufficient O 2 availability causes reduced respiration and inadequate ATP production for optimal growth and development, reduced yield Anoxia - no O 2 Hypoxia - low O 2 , below atmospheric O 2 levels (~21%), diffusion of O 2 into actively growing cells from the atmosphere is insufficient, respiration decreases Anaerobic growth - organism growing without O 2 Hypoxia and anoxia - associated with water logging or flooding of soils impacting roots

Post on 19-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Oxygen Deprivation and FloodingHORT 301 – Plant Physiology

December 8, 2008 Taiz and Zeiger – Chapter 11 (p. 256-262), Chapter 26 (p. 698-705);

Buchanan et al., Chapter 22 and Bailey-Serres and Voesenek (2008) Annu Rev Plant Biol 59:313-339

No or low O2 - insufficient O2 availability causes reduced respiration and inadequate ATP production for optimal growth and development, reduced yield Anoxia - no O2

 Hypoxia - low O2, below atmospheric O2 levels (~21%), diffusion of O2 into actively growing cells from the atmosphere is insufficient, respiration decreases  Anaerobic growth - organism growing without O2

 Hypoxia and anoxia - associated with water logging or flooding of soils impacting roots 

Plants require a free exchange of O2 and CO2; like animals they can easily be suffocated if gas exchange is impeded.

O2 is required for respiration (ATP generation)

CO2 must diffuse away (toxic)

Courtesy of Bob Joly

O2 diffusion in air is four orders of magnitude greater than in water

Flooding reduces gas exchange that results in reduced O2 and

increased CO2 and ethylene

Buchanan et al. (2000) (Biochemistry & Molecular Biology of Plants 

Hypoxia and anoxia deleterious effects on plants

Without O2, the tricarboxylic acid (TCA)/citric acid cycle and oxidative

phosphorylation cannot function as O2 is required for electron transport

(terminal electron acceptor), low O2 reduces TCA cycle activity

Consequently, NADH cannot be oxidized and NAD+ becomes limiting leading to a cessation of glycolysis

Flooding of the Midwest (1993) resulted in a 33% reduction in maize yield

Buchanan et al. (2000) (Biochemistry & Molecular Biology of Plants 

Cells begin fermentative metabolism that oxidizes NADH to NAD+ to generate reducing power for glycolysis, pyruvate to lactate or ethanol, rather than respiration

Two (2) molecules of ATP are produced per hexose molecule through fermentation compared to 30 to 32 ATP produced through glycolysis, TCA cycle and oxidative phosphorylation 

Production of lactate in fermentative metabolism causes a decrease in cytosolic pH, which negatively regulates lactate dehydrogenase facilitating ethanol production

Critical oxygen pressure (COP) - O2 level that causes a reduction in respiration is about 20% by volume (concentration in air), which is nearly the normal ambient level The key is for sufficient O2 to reach the actively growing cells in tissues and organ (internal) to support respiration A very low partial pressure of O2 (<1%) in the mitochondrion is sufficient to maintain oxidative phosphorylation, critical enzymes have a low Km for O2

 

  

Anaerobic micro-organisms - reduce nitrate (NO3-) to nitrite (NO2

-) or to nitrous oxide (N2O) and molecular nitrogen (N2), Fe3+ to Fe2+, and sulfate (SO4

2-) to hydrogen sulfide (H2S) all of which are toxic to plants Reduced physiological root function that inhibits shoot growth - e.g. nutrient and water uptake, plants may exhibit wilting, ABA production may induce stomatal closure as a response

Reduced intracellular pH causes cell death

 

  

Buchanan et al. (2000) (Biochemistry & Molecular Biology of Plants 

Ethylene is induced by low O2 - production of ethylene leads to epinasty

 ACC (1-aminocyclopropane-1-carboxylic acid) is produced in roots, transported to shoots in the xylem stream, converted to ethylene causing downward growth of leaves

Summary of hypoxia and anoxia effects on plants:

Low oxygen reduces TCA cycle activity

NADH oxidation (to NAD+) is limited

ATP production per hexose is reduced from 30/32 to 2 (fermentation cycle to convert NADH to NAD+)

Reduced intracellular pH leading to cell death

Anaerobic microbes in the soil reduce ions to toxic forms

Ethylene production results in epinasty

Adaptive responses to hypoxia and anoxia

Low O2 escape syndrome (LOES) – avoidance strategies that mitigate hypoxia:

Completion of life cycle between flood periods, seeds are dormant during flooding

Bailey-Serres & Voesenek (2008) Annu Rev Plant Biol

Increased elongation of stems, petioles and leaves – leaves grow sufficiently to make air contact

Thinner leaf blades (cell wall and cuticle thickness) and orientation of chloroplasts to leaf surface – facilitate O2 diffusion into the leaf

Buchanan et al. (2000) (Biochemistry & Molecular Biology of Plants

Production of aerenchyma - intracellular spaces formed by programmed cell death (PCD) of cortical cells or separation of cortical cells without cell death In some species aerenchyma formation is constitutive (rice) and in others it is induced (maize)

Maize

Buchanan et al. (2000) (Biochemistry & Molecular Biology of Plants 

Low O2 induces ethylene production that leads to aerenchyma formation via PCD, induction of ACC

Anoxia results in less production of ethylene and aerenchyma than hypoxia because ACC oxidase is inhibited (lack of O2)

Signal pathway - low O2 → ethylene → Ca2+, G-proteins, inositol phospholipids, protein kinases & phosphatases → cell wall degrading enzymes (e.g. cellulases, xyloglucan hydrolases, etc.) → PCD → aerenchyma

Buchanan et al. (2000) (Biochemistry & Molecular Biology of Plants 

Adventitious root and lenticel formation - submerged portions of the shoots

Buchanan et al. (2000) (Biochemistry & Molecular Biology of Plants 

Deepwater rice is well adapted for growth and development on land where flooding occurs

Rapid shoot intermodal elongation to access O2 during flooding

Development of adventitious roots post-flood

Lowland Rice Deepwater Rice

Tolerant Intolerant

Strategy Quiescence LOES LOES

Sub1 haplotype

SUB1A-1, SUB1B, SUB1C

SUB1B, SUB1C or SUB1A-2, SUB1B,

SUSB1C

SUB1B, SUB1C or SUB1A-2, SUB1B,

SUB1C

Carbohydrate consumption

Limited by SUB1A-1

High High

Fermentation capacity

High Moderate  N.D.

GA response Inhibited by SUB1A-1

Promoted by SUB1C

HighBailey-Serres & Voesenek (2008) Annu Rev Plant Biol

Responses of different rice varieties to flooding:

Intolerant lowland rice - gibberellic acid (GA) induces internodal and leaf elongation (LOES) and carbohydrate consumption through regulation of SUB1C expression

SUB1C is an ethylene-response element (ERF) domain interacting transcription factor (ethylene signaling)

Stimulates internodal and leaf elongation and rapid depletion of carbohydrate reserves that results in death with prolonged flooding

Low O2 → GA → SUB1C → carbohydrate consumption/shoot and leaf elongation

Lowland Rice Deepwater Rice

Tolerant Intolerant

Strategy Quiescence LOES LOES

Sub1 haplotype

SUB1A-1, SUB1B, SUB1C

SUB1B, SUB1C or SUB1A-2, SUB1B,

SUSB1C

SUB1B, SUB1C or SUB1A-2, SUB1B,

SUB1C

Carbohydrate consumption

Limited by SUB1A-1

High High

Fermentation capacity

High Moderate  N.D.

GA response Inhibited by SUB1A-1

Promoted by SUB1C

HighBailey-Serres & Voesenek (2008) Annu Rev Plant Biol

Low O2 → ethylene induces SUB1A expression, SUB1A is an ERF domain transcription factor, suppresses the GAresponse (reduced leaf/internode elongation)

Reduced respiration is an adequate strategy if period of hypoxia and anoxia is short, i.e. flooding is intermittent and temporary

Tolerant lowland rice - low O2 causes a quiescent state, respiration is down-regulated and fermentation begins SUB1A regulates the quiescent strategy by reducing growth (represses SUB1C expression) and respiration 

Lowland Rice Deepwater Rice

Tolerant Intolerant

Strategy Quiescence LOES LOES

Sub1 haplotype

SUB1A-1, SUB1B, SUB1C

SUB1B, SUB1C or SUB1A-2, SUB1B,

SUSB1C

SUB1B, SUB1C or SUB1A-2,

SUB1B, SUB1C

Carbohydrate consumption

Limited by SUB1A-1

High High

Fermentation capacity

High Moderate  N.D.

GA response Inhibited by SUB1A-1

Promoted by SUB1C

HighBailey-Serres & Voesenek (2008) Annu Rev Plant Biol

Deepwater rice - LOES, ethylene → GA → internodal and leaf elongation

Low O2 sensing - hypothetical but the paradigm is:

low O2 sensor (receptor) → reactive oxygen species → Ca2+ transients → induction of fermentation enzymes (pyruvate decarboxylates and alcohol & lactate dehydrogenase), ROS scavenging enzymes, hemoglobin-like proteins etc.

Low oxygen results in a 70% reduction in protein synthesis (reduces metabolism) and activation of carbohydrate mobilizing enzymes

Buchanan et al. (2000) (Biochemistry & Molecular Biology of Plants 

Fermentation combined with reduced growth is adaptive - production of lactate lowers cytosolic pH, which inhibits lactate dehydrogenase leading to more production of ethanol (relatively nontoxic to the plants)

Reduction in cytosolic pH is toxic, which is more acute when growth is rapid

Buchanan et al. (2000) (Biochemistry & Molecular Biology of Plants 

Blue arrows identify reactions that are induced by low O2, including those that are involved in carbohydrate mobilization

Bailey-Serres & Voesenek (2008) Annu Rev Plant Biol

Ethylene - low O2 induces ethylene biosynthetic genes and is the initial

signal leading to shoot and leaf elongation

Ethylene down-regulates ABA levels by reducing NCED expression

Ethylene promotes GA function because ABA activates gibberellin oxidase (GA degrading enzyme) gene expression, i.e. ABA reduces GA levels

GA activates genes that regulate , cell cycle and cell expansion and shoot and leaf elongation and starch breakdown

Low O2 regulates gene expression at the transcriptional and post-transcriptional levels, some transcripts are more efficiently translated

Hypoxia acclimates plants to tolerate anoxia

Bailey-Serres & Voesenek (2008) Annu Rev Plant Biol

Figure 2Rice responds via different strategies to submergence. Flood-tolerant rice varieties invoke a quiescence strategy that is governed by the polygenic Submergence1 (Sub1) locus that encodes two or three ethylene-responsive factor proteins (41, 159). SUB1A is induced by ethylene under submergence and negatively regulates SUB1C mRNA levels. Flood-intolerant varieties avoid submergence via the low oxygen escape syndrome (LOES). To this end SUB1C expression is promoted by gibberellic acid (GA) and is associated with rapid depletion of carbohydrate reserves and enhanced elongation of leaves andinternodes. The LOES is unsuccessful when flooding is ephemeral and deep. Deepwater rice varieties survive flooding via a LOES, as long as the rise in depth is sufficiently gradual to allow aerial tissue to escape submergence (61). N.D., not determined.

Lowland Rice Deepwater Rice

Tolerant Intolerant

Strategy Quiescence LOES LOES

Sub1 haplotype SUB1A-1, SUB1B, SUB1C SUB1B, SUB1C or SUB1A-2, SUB1B, SUSB1C

SUB1B, SUB1C or SUB1A-2, SUB1B, SUB1C

Carbohydrate consumption

Limited by SUB1A-1 High High

Fermentation capacity High Moderate  N.D.

GA response Inhibited by SUB1A-1 Promoted by SUB1C High

Figure 1Various species display the low-oxygen escape syndrome (LOES) when submerged. The syndromeincludes enhanced elongation of internodes and petioles, the formation of aerenchyma in these organs (airspaces indicated by arrows labeled a), and increased gas exchange with the water layer through reducedleaf thickness and chloroplasts that lie directed toward the epidermis (indicated by arrows labeled b).Photographs are courtesy of Ronald Pierik, Liesje Mommer, MiekeWolters-Arts, and Ankie Ammerlaan.

Figure 3Metabolic acclimations under O2 deprivation. Plants have multiple routes of sucrose catabolism, ATP production, and NAD+ and NAD(P)+ regeneration. Blue arrows indicate reactions that are promoted during the stress. Metabolites indicated in bold font are major or minor end products of metabolism under hypoxia. Abbreviations are as follows: 2-OGDH, 2-oxyglutarate dehydrogenase; ADH, alcohol dehydrogenase; AlaAT, alanine aminotransferase; ALDH, acetaldehyde dehydrogenase; AspAT, aspartate aminotransferase; CoASH, coenzyme A; CS, citrate synthase; FK, fructokinase; GABA-T, GABA transaminase; GDC, glutamate decarboxylase; GDH, glutamate dehydrogenase; GHBDH, γ-aminobutyrase dehydrogenase; GOGAT, NADPH-dependent glutamine: 2-oxoglutarate aminotransferase; GS, glutamine synthase; HXK, hexokinase; ICDH, isocitrate dehydrogenase; LDH, lactate dehydrogenase; MDH, malate dehydrogenase; NDP kinase, nucleoside diphosphate kinase; NiR,nitrite reductase; NR, nitrate reductase; PCK, phosphenolpyruvate carboxylase kinase; PDC, pyruvate decarboxylase; PDH, pyruvate dehydrogenase; PEPC, phosphenolpyruvate carboxylase; PFK, ATP-dependent phosphofructokinase; PFP, PPi-dependent phosphofructokinase; PGI, phosphoglucoisomerase; PGM, phosphoglucomutase; PK, pyruvate kinase; PPDK, pyruvate Pi dikinase; SDH, succinate dehydrogenase; SSADH, succinate semialdehyde dehydrogenase; Starch Pase, starchphosphorylase; SUS, sucrose synthase; UGPPase, UDP-glucose pyrophosphorylase.

Figure 4Schematic model of the plant processes, hormones, and genes involved in submergence-induced shoot elongation (blue signifies upregulated genes and red signifies downregulated genes). Gene abbreviations are as follows: CYC2Os, cyclin; CDC2Os, cyclin-dependent kinase; OsACO and RpACO, ACC oxidase; OsACS and RpACS, ACC synthase; OsDD, differentially displayed (61); OsAMY, amylase (41); OsEXP, RdEXP, and RpEXP, expansins; OsGRF, growth-regulating factor (22); OsRPA, replication protein A1;OsSBF, sodium/bile acid symporter family (108); OsSUB1, submergence1; OsTMK, transmembrane protein kinase (133); OsUSP, universal stress protein (117); RpERS1, ethylene receptor (155); RpNCED, 9-cis-epoxycarotenoid dioxygenase; RpGA3ox, gibberellin 3-oxidase (8); OsXTR, xyloglucan endotransglucosylase-related (27); OsABA8ox, ABA 8-hydroxylase (110). Os indicates Oryza sativa, Rd indicates Regnellidium diphyllum, and Rp indicates Rumex palustris.

Buchanan et al. (2000) (Biochemistry & Molecular Biology of Plants 

Buchanan et al. (2000) (Biochemistry & Molecular Biology of Plants 

Courtesy of Bob Joly

Why do flooded plants wilt?

O2 deprivation rapidly increases resistance to water flow through roots

higher resistance related to • toxic effect of high CO2

• ethylene produced by roots

transpirational demand exceeds supply wilting

Courtesy of Bob Joly

Injury progresses in stages:

1. Wilting is first visible symptom (especially if high transpiration.If soil drains in ~ 24 h recovery with little injury

2. If flooding persists (several days) other symptoms:

• 24 to 48 h epinasty (an ethylene response)(soybean, tomato, peas)

• high ABA stomatal closure

• senescence and leaf abscission

Courtesy of Bob Joly

Summary of hypoxia and anoxia effects on plants through time