outline - stanford university · 2005. 5. 7. · 1 tanford university 1 ee311/ saraswat/ cu...

19
1 EE311/ Saraswat/ Cu Interconnect 1 tanford University Outline Interconnect scaling issues Polycides, silicides and metal gates Aluminum technology Copper technology EE311/ Saraswat/ Cu Interconnect 2 tanford University Wire Half Pitch vs Technology Node Narrow line effects Ref: J. Gambino, IEDM, 2003 ITRS 2002

Upload: others

Post on 08-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

1

EE311/ Saraswat/ Cu Interconnect1 tanford University

Outline

•Interconnect scaling issues

•Polycides, silicides and metal gates

•Aluminum technology

•Copper technology

EE311/ Saraswat/ Cu Interconnect2 tanford University

Wire Half Pitch vs Technology Node

Narrow line effects

Ref: J. Gambino, IEDM, 2003

ITRS 2002

Page 2: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

2

EE311/ Saraswat/ Cu Interconnect3 tanford University

1

1

A1

CS1

1

A1/S

1

SCS1

0.5 0.5

1

1

A1

CS1

1

0.5

CS1

0.5 0.5

A1/S2

Interconnect Scaling Scenarios• Scale Metal Pitch with Constant Height

- R, Cs and J increase by scaling factor

- Higher aspect ratio for gapfill / metal etch

- Need for lower resistivity metal, Low-k

• Scale Metal Pitch and Height

- R and J increase by square of scaling factor

- Sidewall capacitance unchanged

- Aspect ratio for gapfill / metal etch unchanged

- Need for very low resistivity metal with significantly improved EM performance

EE311/ Saraswat/ Cu Interconnect4 tanford University

Low ρ (Resistivity)Metal

AgCuAuAlW

Bulk Resistivity [µΩ•cm]1.631.672.352.675.65

Why Copper?

Cu is the second best conducting element

Reduced RC delay

2

3

4

5

6789

10

20

30

40

0.1 0.2 0.3 0.4 0.5 0.6

De

aly

Tim

e (

ps

ec

)

Feature Size (µm)

50

Cu+Low-k(2.0) Interconnect Delay

Gate Delay

Al+SiO2

Interconnect Delay

Cu+Low-k(2.0) Total Delay

Al+SiO2

Total Delay

Calculations assume longest interconnect in the chip controls delay

RC =!

tM

"L2#

ILD

tILD

Page 3: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

3

EE311/ Saraswat/ Cu Interconnect5 tanford University

Ref: S. Luce, (IBM), IEEE IITC 1998

highelectromigration

resistance

Al Cu

Melting Point 660 ºC 1083 ºC

Ea for Lattice Diffusion 1.4 eV 2.2 eV

Ea for Grain BoundaryDiffusion

0.4 – 0.8 eV 0.7 – 1.2 eV

Cu Has Excellent Reliability

Stress Time (hours)

Per

cent

ile

J = 2.5x106 A/cm2

T = 295°C

CuT50= 147.7 Hrs

Al(Cu)T50= 1.31 Hrs

> 110X

EE311/ Saraswat/ Cu Interconnect6 tanford University

Why Cu and Low-k Dielectrics?

Better electromigration resistance, reduced resistivity and dielectricconstant results in reduction in number of metal layers as more wirescan by placed in lower levels of metal layers.

global

semiglobal

local

Ref: M. Bohr, IEDM 1995.0

2

4

6

8

10

12

14

Num

ber

of M

eta

l Layers

Technology Generation (µm)

0.09 0.13 0.18 0.25 0.35

Cu/Low-k

Al/Low-kCu/SiO

2

Al/SiO2

RC =!

tM

"L2#

ILD

tILD

Page 4: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

4

EE311/ Saraswat/ Cu Interconnect7 tanford University

Cu atoms ionize, penetrate into the dielectric, andthen accumulate in the dielectric as Cu+ space charge.

Problem: Copper Diffusion in Dielectric Films

EE311/ Saraswat/ Cu Interconnect8 tanford University

Copper Diffusion in Dielectric FilmsBias temperature stressing is employed to characterize behavior

• Both field and temperature affect barrier lifetime• Neutral Cu atoms and Cu ions contribute to Cu transport through dielectrics

Ref: A. Loke et al., Symp. VLSI Tech. 1998

Silicon nitride and oxynitride films are better barriers

Page 5: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

5

EE311/ Saraswat/ Cu Interconnect9 tanford University

• Fast diffusion of Cu into Si and SiO2• Poor oxidation/corrosion resistance• Poor adhesion to SiO2

Diffusion barrier /adhesion promotor Passivation

• Difficulty of applying conventional dry-etching technique

Damascene Process

Typical Damascene Process

Dielectrics

Barrier Layer

Cu

Solutions to Problems in CopperMetallization

EE311/ Saraswat/ Cu Interconnect10 tanford University

Barriers/Linears

Dielectric

Barrier/Linear

Metal

Via

Space for wire

Page 6: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

6

EE311/ Saraswat/ Cu Interconnect11 tanford University

Materials for Barriers / Liners• Transition metals (Pd, Cr, Ti, Co, Ni, Pt) generally poor barriers, due to high reactivities to

Cu <450˚C. Exception: Ta, Mo, W ... more thermally stable, but fail due to Cu diffusionthrough grain boundaries (polycrystalline films)

• Transition metal alloys: e.g., TiW. Can be deposited as amorphous films (stable up to500˚C)

• Transition metal - compounds: Extensively used, e.g., TiN, TaN, WN.

• Amorphous ternary alloys: Very stable due to high crystallization temperatures (i.e.,Ta36S14,N50, Ti34Si23N43)

• Currently PVD (sputtering/evaporation is used primarily to deposit the barrier/liner, however,step coverage is a problem. ALD is being developed for barrier/liner application.PVDALD

EE311/ Saraswat/ Cu Interconnect12 tanford University

Interconnect Fabrication Options

Metal

Etch

Positive

Pattern

Dielectric

Deposition

Dielectric

Planarization

by CMP

Negative

Pattern

Dielectric

Etch

Metal

Deposition

Metal CMP

Dielectric

Deposition

Metal

Dielectric

Photoresist

Etch Stop(Dielectric)

Subtractive Etch(Conventional Approach) Damascene

Page 7: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

7

EE311/ Saraswat/ Cu Interconnect13 tanford University

Cu Damascene Flow Options

Oxide

Copper

Conductive Barrier

Dielectric Etch Stop/Barrier

Single Damascene Dual Damascene

Barrier

& Cu

Dep

Cu Via

CMP

Nitride

+ Oxide

Dep

Lead

Pattern

& Etch

+

Barrier

& Cu

Dep

Via

Pattern

& Etch

Cu Lead

CMPLead

Via

Via &

Lead

Pattern

& Etch

Barrier

& Cu

Dep

Cu CMPLead

Via

Cu Damascene Flow Options

EE311/ Saraswat/ Cu Interconnect14 tanford University

Various deposition methods for Cu metallization has been attempted :

Physical vapor deposition (PVD) : Evaporation, Sputtering• conventional metal deposition technique: widely used for Al interconnects

• produce Cu films with strong (111) texture and smooth surface, in general

• poor step coverage: not tolerable for filling high-aspect ratio features

Deposition methods of Cu films: PVD

Deposited film

Page 8: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

8

EE311/ Saraswat/ Cu Interconnect15 tanford University

Deposition methods: CVD

EE311/ Saraswat/ Cu Interconnect16 tanford University

Various deposition methods for Cu metallization has been attempted : Physical vapor deposition (PVD) : Evaporation, Sputtering

• conventional metal deposition technique: widely used for Al interconnects• produce Cu films with strong (111) texture and smooth surface, in general• poor step coverage: not tolerable for filling high-aspect ratio features

Chemical vapor deposition (CVD)• conformal deposition with excellent step coverage in high-aspect ratio holes and vias• costly in processing and maintenance• generally produce Cu films with fine grain size, weak (111) texture and rough surface

Electrochemical deposition (EVD) Good step coverage and filling capability comparable to CVD process (0.25 µm) Compatible with low-K dielectrics Generally produce strong (111) texture of Cu film Produce much larger sized grain structure than any other deposition methods through self-annealing process

Why Cu Electroplating?:

Page 9: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

9

EE311/ Saraswat/ Cu Interconnect17 tanford University

Deposition methods: Electroplating

Dissociation : CuSO4 → Cu2+ + SO42- (solution)

Oxidation: Cu → Cu2++ 2e- (anode)Reduction : Cu2+ + 2e- → Cu (cathode, i.e., wafer)

Copper electroplating Chemistry :

Plating Bath : standard sulfuric acidcopper sulfate bath (H2SO4, CuSO4solution)

Additives to improve the film quality

EE311/ Saraswat/ Cu Interconnect18 tanford University

non-conformal"bottom-up filling"

("superfilling")

void

Trench Filling PVD vs. Electroplating of Cu

PVD Electroplating

Page 10: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

10

EE311/ Saraswat/ Cu Interconnect19 tanford University

Additives for Copper ECDDEFINITION

• Mixture of organic molecules and chloride ion which are adsorbed at thecopper surface during plating to:

-- enhance thickness distribution and feature fill

-- control copper grain structure and thus ductility, hardness, stress,and surface smoothness

COMPONENTS

• Most commercial mixtures use 3 or more organic components andchloride ion which adsorb at the cathode during plating.

Brighteners (Accelerators) Levelers Carriers Chloride Suppressors

EE311/ Saraswat/ Cu Interconnect20 tanford University

Wafers immersed in platingbath. Additives not yetadsorbed on Cu seed.

Additives adsorbed on Cuseed. No current flow.

Conformal plating begins.Accelerators accumulate atbottom of via, displacing lessstrongly absorbed additives.

Accumulation of acceleratordue to reduced surface area innarrow features, causes rapidgrowth at bottom of via.

t = 2 sec

t = 10 sec t = 20 sec

t = 0 sec= Accelerators= Suppressors

c = Chloride ionsL = Levelers

Mechanisms of Superconformal Cu plating

Ref: J. Reid et al., Solid St. Tech., 43, 86 (2000)D. Josell et al., J. Electrochem. Soc., 148, C767 (2001)

Page 11: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

11

EE311/ Saraswat/ Cu Interconnect21 tanford University

Brighteners (Accelerators)

• Adsorbs on copper metal during plating, participates in charge transfer reaction.Determines Cu growth characteristics with major impact on metallurgy

Levelers• Reduce growth rate of copper at protrusions and edges to yield a smooth final

deposit surface.

• Effectively increases polarization resistance at high growth areas by inhibitinggrowth to a degree proportional to mass transfer to localized sites

Carriers• Carriers adsorbed during copper plating to form a relatively thick monolayer film

at the cathode (wafer). Moderately polarizes Cu deposition by forming a barrierto diffusion of Cu2+ ions to the surface.

Chloride• Adsorbs at both cathode and anode.

• Accumulates in anode film and increases anode dissolution kinetics.

• Modifies adsorption properties of carrier to influence thickness distribution.

Role of Additives

EE311/ Saraswat/ Cu Interconnect22 tanford University

Effect of of the seed layer on theproperties of the final Cu

Seed Layer Texture

Seed Layer Surface Roughness

Plated Film TexturePlated Film Texture

Plated Film Grain Size

• Strong (111) texture • Smooth surface

• Strong (111) texture• Large grain size

Seed Layer Electroplated Film

(Thin, PVD seed preferred)

• Electroplating needs a seed layer of Cu as it does not occur at a dielectric surface.• Properties of the final Cu layer critically depend upon the characteristics of the seed layer.• The deposition of the seed layer can be done by PVD, CVD or ALD.• Currently PVD is preferred, CVD and ALD being investigated

Page 12: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

12

EE311/ Saraswat/ Cu Interconnect23 tanford University

Seed only 5 seconds 10 seconds 15 seconds 25 seconds

Plated Copper Fill Evolution

Ref: Jonathan Reid, IITC, 1999

EE311/ Saraswat/ Cu Interconnect24 tanford University

Trench Filling Capability of CuElectroplating

0.13µ trenches 0.18µ vias 029µ vias

Ref: Jonathan Reid, IITC, 1999

Page 13: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

13

EE311/ Saraswat/ Cu Interconnect25 tanford University

Grain Size Distribution Lognormal grain size distribution

electro- plating

0

0.02

0.04

0.06

0.08

0.1

0.01 0.1 1 10

annealedS = 2.682µmσ = 0.435

as-depositedS = 0.863µmσ = 0.716

electroless plating

0

0.02

0.04

0.06

0.08

0.1

0.01 0.1 1 10D (µm)

S = 0.150µmσ = 0.318

as-deposited

CVD

0

0.02

0.04

0.06

0.08

0.1

0.01 0.1 1 10D (µm)

as-deposited

annealed

S = 0.161µmσ = 0.372

S = 0.294µmσ = 0.344

(a)

(b)

(c)

D (µm)

Ref: H. Lee, PhD Thesis,Stanford Univ., 2002

Electroplated Cu givesbigger grain size

EE311/ Saraswat/ Cu Interconnect26 tanford University

Electroplated Cu has higher resistance to electromigrationbecause of its grain structure

Electromigration: CVD vs. Electroplating

CVD Cu

Electroplated Cu

104

105

106

107

1.8 1.9 2.0 2.1 2.2 2.3

Tim

e-t

o-F

ail

ure

(s

ec

)

1/T (10-3

/K)

213 °C238263

Electroplated CuE

a = 0.89 eV

CVD CuE

a = 0.82 eV

grain size

=1.4 µm

=0.3 µm

Ref: Ryu, et al., IEEE IRPS 1997.

Page 14: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

14

EE311/ Saraswat/ Cu Interconnect27 tanford University

• Empirical relationship (for Al & Al alloys)

Film Microstructure vs. EM Time-to-Failure

MTF !eµ

"2 log[

I(111)

I(200)

]3

103

104

105

106

107

1.8 1.9 2.0 2.1 2.2 2.3

Tim

e-t

o-F

ailure

(sec)

1/T (10-3

/K)

(111) CVD Cu

Ea = 0.86 eV

(200) CVD Cu

Ea = 0.81 eV

213238263 188°C

• EM dependence on the microstructure of Cu films

S. Vaidya et al., Thin Solid Films, Vol. 75, 253, 1981

Ref: Ryu, Loke, Nogami and Wong, IEEE IRPS 1997.

EE311/ Saraswat/ Cu Interconnect28 tanford University

Self-annealing at Room Temperaturet = 2 hrs

t = 60 days 1 µm

1 µm

Grains are initially small in all films but recrystallizationincreases their size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

gra

in s

ize

m)

DC plating current density (mA/cm2)

2 hrs

1 day

10 days

60 days

Ref: H. Lee, PhD Thesis, Stanford Univ., 2002

Page 15: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

15

EE311/ Saraswat/ Cu Interconnect29 tanford University

e

e

Surface scattering

Bulk scattering

Effect of Electron Scattering

•Reduced mobility as dimensions decrease

Grain boundary scattering

Surface scattering

•Reduced mobility as chip temperature increases

Increased phonon scattering

Thin Film Cu Resistivity

GrainGrain boundary

EE311/ Saraswat/ Cu Interconnect30 tanford University

W. Steinhögl et al., Phys. Rev. B66 (2002)

Cu Resistivity: Effect of Line Width Scaling

Page 16: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

16

EE311/ Saraswat/ Cu Interconnect31 tanford University

W. Steinhögl et al., Phys. Rev. B66 (2002)

Resistivity increases as grain size decreases due to increase in densityof grain boundaries which act as carrier scattering sites

Resistivity increases as main conductor size decreases due toincreased surface scattering

Cu Resistivity: Effect of Line Width ScalingModel

EE311/ Saraswat/ Cu Interconnect32 tanford University

Thin Film Cu Resistivity

Effect of Cu diffusion Barrier

• Barriers have higher resistivity

• Barriers can’t be scaled below a minimum thickness

• Consumes larger area as dimensions decrease

Resistivity of the composite wire is increased

Resistivity of metal wires could be much higher than bulk value

FutureCuBarrier

Page 17: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

17

EE311/ Saraswat/ Cu Interconnect33 tanford University

Cu Resistivity: Theoretical Background

Barrier Effect

Electron Surface Scattering Effect

w

h!

!b

o bA

AR w

=

"

1

12

*

• Important parameter: Ab to Aint ratio • ρb increase with Abto Aint ratio• Future: ratio may increase

AR=h/wAint=AR*w2

Cu

P: Fraction of electrons scattered elastically from the interfacek= d/ λmfpλmfp: Bulk mean free path for electronsd: Smallest dimension of the interconnect

Elastic scattering No Change in Mobility

Diffuse scattering Lower Mobility

P=0

P=1

• Reduced electron mobility• Operational temperature• Copper/barrier interface quality• Dimensions decrease in tiers: local, semiglobal, global

Barrier

Kapur, McVittie & Saraswat, IEEE Trans. Electron Dev. April 2002

!

"s"o

=1

1#3(1# P)$mfp

2d

1

X3#1

X5

% &

' ( 1# e#kX

1# Pe#kXdX

1

)

*

EE311/ Saraswat/ Cu Interconnect34 tanford University

Cu Resistivity: Effect of Barrier

IPVDC PVD ALDEffect of Barrier Technology

Cu barrier

• Barriers can’t be scaled and have high resistivity• Surface electron scattering increases resistivity• Real chips operate at higher temperatures

Technology node (µm)

Al P=0P=0.5P=1

Cu, P=0.5

0.18 0.15 0.12 0.1 0.07 0.05 0.035

PVDC-PVD

I-PVD

ALD: 10nm

ALD: 3nmALD: 1nm

No BarrierEffe

ctiv

e re

sist

ivity

(µ o

hm-c

m)

Year

Kapur and Saraswat, IEEE TED, April 2002

Effect of Scaling

Cubarrier

Global100°C

e

Al

Page 18: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

18

EE311/ Saraswat/ Cu Interconnect35 tanford University

Semi-global & Local Interconnects

Kapur, McVittie & Saraswat, IEEE Trans. Electron Dev . April 2002

Temp.=100 0C

Technology node (µm)

Al P=0P=0.5P=1

Cu, P=0.5

0.18 0.15 0.12 0.1 0.07 0.05 0.035

PVD C-PVD

ALD: 10nm

ALD: 3nmALD: 1nm

No Barrier

Local

Year

Effe

ctiv

e re

sist

ivity

(µ o

hm-c

m)

Local Temp.=100 0C

With ALD least resistivity rise Al resistivity rises slower than Cu. Cross over with Cu resistivity possible

– no 4 sided barrier– smaller λmfp => smaller k Al Cu

Technology node (µm)

Al P=0P=0.5P=1

Cu, P=0.5

0.18 0.15 0.12 0.1 0.07 0.05 0.035

PVDC-PVD

I-PVDALD: 10nm

ALD: 3nmALD: 1nm

No Barrier

Semiglobal Temp.=100 0C

EE311/ Saraswat/ Cu Interconnect36 tanford University

• Higher temperature ⇒ lower mobility ⇒ higher resistivity• Realistic Values at 35 nm node: P=0.5, temp=100 0C

- local ~ 5 µΩ-cm- semi-global ~ 4.2 µΩ-cm- global ~ 3.2 µΩ-cm

Cu Resistivity: Effect of Chip Temperature

2000 2004 2008 2012Year

0.18 0.12 0.07 0.05Technology Node (µm)

0.0353.6

3.2

2.4

1.6Effe

ctive

resis

tivity

( micr

oohm

-cm

)

2

2.8

T=100 0C

T=27 0C

GlobalKapur, McVittie & Saraswat IEEE Trans. Electron Dev . April 2002

Page 19: Outline - Stanford University · 2005. 5. 7. · 1 tanford University 1 EE311/ Saraswat/ Cu Interconnect Outline •Interconnect scaling issues •Polycides, silicides and metal gates

19

EE311/ Saraswat/ Cu Interconnect37 tanford University

Summary

•Interconnect scaling issues

•Thermal issues

•Electromigration

•Aluminum technology

•Copper technology