organically linked iron oxide nanoparticle supercrystals ... · supercrystals with exceptional...

21
Axel Dreyer 1 , Artur Feld 2 , Andreas Kornowski 2 , Ezgi D. Yilmaz 1 , Heshmat Noei 3 , Andreas Meyer 2 , Tobias Krekeler 4 , Chengge Jiao 5 , Andreas Stierle 3,6 , Volker Abetz 2,7 , Horst Weller 2,8,9 and Gerold A. Schneider 1* 1 Institute of Advanced Ceramics, Hamburg University of Technology, Denickestrasse 15, D21073 Hamburg, Germany 2 Institute of Physical Chemistry, Hamburg University, Grindelallee 117, D20146 Hamburg, Germany 3 DESY NanoLab, Deutsches Elektronensynchrotron DESY, Notkestrasse 85, D22607 Hamburg, Germany 4 Electron Microscopy Unit, Hamburg University of Technology, Eißendorfer Str. 42, D21073 Hamburg 5 FEI Company, Achtseweg Noord 5, 5651 GG, Eindhoven, the Netherlands 6 Physics Department, Hamburg University, Jungiusstrasse 11, D20355 Hamburg, Germany 7 Institute of Polymer Research, HelmholtzZentrum Geesthacht, MaxPlanckStrasse 1, 21502 Geesthacht, Germany 8 Center for Applied Nanotechnology, Grindelallee 117, D20146 Hamburg 9 Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia * email: [email protected] 1. Particle synthesis Magnetite nanocrystals were synthesized in accordance to Yu et al. 1 , briefly, a mixture of 12.40 g FeO(OH) (0.139 mol), 294.0 g oleic acid (1.04 mol) and 500 g 1octadecene was heated under nitrogen at 320 °C for 2 hours. After synthesis the particles were precipitated by adding acetone, centrifuged and stored in toluene. Several batches were synthesized, which differ slightly in size. From a size histogram of 800 particles of the here exemplarily shown TEM images a mean diameter of 15.4±0.8 nm was determined. SAED patterns (Figure 2, see also SI chap. 3) are in accord to magnetite reference. To obtain the bulk solid material the particles were precipitated with acetone and redispersed in tetrahydrofuran by ultrasonication and subsequently poured into a sealed die resulting in sedimentation and selfassembly. Figure SI 1 | TEM images of the primary oleic acid stabilized iron oxide nanoparticles, which were used for the experiments. Organically linked iron oxide nanoparticle supercrystals with exceptional isotropic mechanical properties SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT4553 NATURE MATERIALS | www.nature.com/naturematerials 1

Upload: ngoquynh

Post on 03-Apr-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

 

1    

Supplementary  Information  (SI)    Organically   linked   iron   oxide   nanoparticle   supercrystals   with   exceptional  isotropic  mechanical  properties    Axel   Dreyer1,   Artur   Feld2,   Andreas   Kornowski2,   Ezgi   D.   Yilmaz1,   Heshmat   Noei3,   Andreas  Meyer2,  Tobias  Krekeler4,  Chengge  Jiao5,  Andreas  Stierle3,6,  Volker  Abetz2,7,  Horst  Weller2,8,9  and  Gerold  A.  Schneider1*    1Institute   of   Advanced   Ceramics,   Hamburg   University   of   Technology,   Denickestrasse   15,   D-­‐21073   Hamburg,  Germany  2Institute  of  Physical  Chemistry,  Hamburg  University,  Grindelallee  117,  D-­‐20146  Hamburg,  Germany  3DESY  NanoLab,  Deutsches  Elektronensynchrotron  DESY,  Notkestrasse  85,  D-­‐22607  Hamburg,  Germany  4Electron  Microscopy  Unit,  Hamburg  University  of  Technology,  Eißendorfer  Str.  42,  D-­‐21073  Hamburg  5FEI  Company,  Achtseweg  Noord  5,  5651  GG,  Eindhoven,  the  Netherlands  6Physics  Department,  Hamburg  University,  Jungiusstrasse  11,  D-­‐20355  Hamburg,  Germany  7Institute   of   Polymer   Research,   Helmholtz-­‐Zentrum   Geesthacht,   Max-­‐Planck-­‐Strasse   1,   21502   Geesthacht,  Germany  8Center  for  Applied  Nanotechnology,  Grindelallee  117,  D-­‐20146  Hamburg  9Department  of  Chemistry,  Faculty  of  Science,  King  Abdulaziz  University,  Jeddah,  Saudi  Arabia    *e-­‐mail:  [email protected]        1.  Particle  synthesis    Magnetite   nanocrystals  were   synthesized   in   accordance   to   Yu   et   al.1,   briefly,   a  mixture   of   12.40  g  FeO(OH)   (0.139   mol),   294.0  g   oleic   acid   (1.04   mol)   and   500  g   1-­‐octadecene   was   heated   under  nitrogen   at   320  °C   for   2   hours.   After   synthesis   the   particles  were   precipitated   by   adding   acetone,  centrifuged   and   stored   in   toluene.   Several   batches   were   synthesized,   which   differ   slightly   in   size.  From  a  size  histogram  of  800  particles  of  the  here  exemplarily  shown  TEM  images  a  mean  diameter  of   15.4±0.8  nm   was   determined.   SAED   patterns   (Figure   2,   see   also   SI   chap.   3)   are   in   accord   to  magnetite  reference.  To  obtain  the  bulk  solid  material  the  particles  were  precipitated  with  acetone  and   redispersed   in   tetrahydrofuran   by   ultrasonication   and   subsequently   poured   into   a   sealed   die  resulting  in  sedimentation  and  self-­‐assembly.    

 Figure  SI  1  |  TEM  images  of  the  primary  oleic  acid  stabilized  iron  oxide  nanoparticles,  which  were  used  for  the  experiments.    

Organically linked iron oxide nanoparticle supercrystals with exceptional isotropic mechanical properties

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NMAT4553

NATURE MATERIALS | www.nature.com/naturematerials 1

 

2    

 2.  SAXS  Measurements    Small   angle  X-­‐ray   scattering   (SAXS)  measurements  were  performed  with   the  powdered   samples   to  determine   the   arrangement   of   the   iron   oxide   nanoparticles   in   the   composite.   An   Incoatec™   X-­‐ray  source   IµS   with   Quazar   Montel   optics   and   a   focal   spot   diameter   at   sample   of   700  µm   with   a  wavelength   of   0.154  nm   was   used.   The   distance   between   sample   and   detector   was   1.6  m   (CCD-­‐Detector  Rayonix™  SX165).   The  uniform  pestled   sample  powders  were  applied   in  a   thin   layer  onto  scotch  tape  and  measured  in  transmission  geometry.  The  measurement  time  per  sample  was  600  s.  The  analysis  was  performed  with  the  software  Scatter2,3.  The   lattice  type  of   the  arrangement   is   fcc  for   all   temperatures.   The   nearest   neighbor   distance   (nnd)   becomes   smaller   with   increasing  temperature.   Assuming   a   spherical   form   factor   for   the   particles,   the   particles   may   have   partially  contact  above  350  °C,  as  the  nnd  becomes  smaller  than  the  measured  diameter  (16.0  nm)  of  the  iron  oxide  core.  If  the  particles  get  faceted  with  increasing  temperature,  it  is  possible  that  there  is  still  a  thin   organic   layer   between   them.   Above   350  °C,   the   particles   starts   to   sinter   and   the   nnd   is  significantly   smaller   than   the   particle   diameter.   Also,   the   polydispersity   of   the   particles   increases  from  4.5  %  at  150  °C  to  10  %  at  450  °C  and  in  the  meantime  the  quality  of  order  of  the  arrangement  decreases,   as   one   can   observe   by   broadening   and   the   missing   higher   orders   of   the   crystalline  reflections.  

Additionally,  SAXS  of  the  initial  particle  solution  was  made,  to  determine  the  particle  form  factor  and  diameter  in  solution.  The  strong  and  clearly  oscillating  spherical  form  factor  allowed  us  to  calculating  the  average  diameter  of  the  iron  oxide  particles  with  oleic  acid  shell  very  precisely  to  16.2  nm  with  a  standard  deviation  of  6  %.    

 Figure  SI  2  |  SAXS  of  iron  oxide/oleic  acid  in  solution  (left)  and  as  nanocomposite  at  different  temperatures  (right).    

   

Figure  SI  3  |  Structural  SAXS  results  of  iron  oxide/oleic  acid  nanocomposite  at  different  temperatures.  

 

3    

 To   determine   the   orientation   of   iron   oxide/oleic   acid   supercrystals   in   the   nanocomposite   small  angle  X-­‐ray  scattering  (SAXS)  measurements  were  performed  with  pestled  samples  and  the  bulk  material.   These   grazing   incidence   SAXS   (GISAXS)   measurements   give   information   about   the  orientation  distribution  of  the  iron  oxide/oleic  acid  supercrystals  within  the  millimeter-­‐sized  bulk  samples.  A   typical   semi-­‐circular  GISAXS  halfring-­‐pattern   for  our   samples   is   shown   in   Figure   SI   4  and   reveals   a   uniform   and   isotropic   spherical   form   factor   scattering.   The   fcc-­‐superlattice  reflections   are   statistically   distributed   in   the   azimuthal   direction,   indicative   of   a   random  orientation   of   supercrystals.   The   few   bright   spots   within   the   diffuse   ring-­‐like   pattern   are  generated   by   significantly   larger   supercrystals   than   the   average   supercrystal   size.   The   GISAXS  reflections   have   the   same   broadening   as   the   ones   from   the   pestled   sample   and   the   calculated  crystalline  domain  sizes  have  diameters  of  about  100  nm.  Statistically,  this  means  that  there  exist  a  lot  of  approx.  100  nm  sized  supercrystalline  domains  inside  the  supercrystals.  

Figure  SI  4  | GISAXS  detector  pattern  of  iron  oxide/oleic  acid  sample  annealed  at  250°C.  The  solid  workpiece  was  measured  under  grazing  incidence  with  an  angle  of  incidence  of  0.2°.  The  x-­‐y-­‐scale  of  the  pattern  is  q  (nm-­‐1).  The  scattering  horizon  at  qy=0.15nm

-­‐1   is   clearly   visible.   Arising   reflections   below   the   horizon  were   generated   at   the   edges   of   the   relatively   rough  sample,  which  leads  to  additional  SAXS  scattering.  

 3.  SEM,  TEM  and  SAED  Measurements    TEM  and  HRTEM  measurements  were  carried  out  on  a  JEOL  JEM  1011  at  100kV  and  on  a  JEOL  JEM  2200  FS  at  200kV  equipped  with  two  CEOS  Cs  correctors  (CETCOR,  CESCOR)  and  a  Gatan  4K  UltraScan  1000  camera.  To  investigate  the  nanoparticles  a  drop  of  the  diluted  colloidal  solution  was  deposited  on  a  carbon  coated  400  mesh  TEM  grid.  The  excess  of  solvent  was  removed  with  a  filter  paper  and  the  grid  was  air  dried.  The  compressed  and  heated  samples  were  crushed   into   fine  powder  with  a  mortar   and   pestle.   The   powder   was   suspended   in   toluene   and   one   drop   of   this   suspension   was  deposited  on  the  carbon  coated  TEM  grid.  The  excess  of  solvent  was  removed  with  a  filter  paper  and  the  grid  was  dried  under  air.  SEM  investigations  were  carried  out  on  a  LEO  1550  SEM  at  20kV.  The  

 

4    

same  powder  as   for   the  TEM  measurements  was   fixed  on  adhesives  carbon  pads  on  standard  SEM  specimen  holder.    

 Figure  SI  5  |  SAED  measurements  of  the  pressed  nanocomposites  at  different  temperatures  heated  samples.  TEM  images  of  the   selected   area   (left)   and   the   corresponding   rotation   profiles   (right)   of   the   electron   diffraction   (inset).   The   crystal  structures  magnetite  is  labeled  with  blue  bars  in  the  lower  rotation  profile.    The   electron   diffraction   patterns   clearly   indicate   that   over   the  whole   treatment   process   no   phase  transition  of  the  inner  crystal  structure  of  the  individual  nanoparticles  occur  (Figure  SI  5).  In  addition  no  preferred  crystallographic  orientation  of  the  nanoparticles  to  each  other  is  observable.  Comparing  the  appearance  and  the  intensity  distribution  of  the  diffraction  rings  at  different  temperatures  gives  no   indications   for   a   change   of   the   arrangement   or   for   significant   bulk   aggregation   of   the  nanoparticles.   These   findings   are   also   supported   by   SEM   and   TEM   investigation   of   the   crushed  samples   (Figure  SI  6).  The  slight  narrowing  of   the  diffraction  rings  with   increasing   temperature   is  a  result   of   temperature-­‐induced  enhancement  of   the   crystallinity  of   the   iron  oxide  nanoparticles.  At  temperatures   above   350°C   a   partially   increased   crystalline   domain   size   arises   by   attaching   of  well  faceted  adjacent  nanoparticles  which  are  aligned  in  the  same  crystallographic  direction.        

 

5    

   Figure  SI  6  |  SEM  images  of  the  compressed  and  at  different  temperatures  heated  samples  (left),  TEM  (middle)  and  HRTEM  images  (right)  of  the  same  samples.  All  images  (SEM  and  TEM  as  well)  show  clearly  the  appearance  of  individual  nanoparticles  at  all  stages  of  the  sample  treatments.  

 

6    

 

4.  Determination  of  the  mass  fraction  of  oleic  acid    The  mass  fraction  of  oleic  acid  was  determined  by  thermogravimetry  and  He-­‐pycnometry.      4.1  He-­‐pycnometry      Our  nanocomposite  consists  of  the  mineral  magnetite  (Fe3O4)  with  density  ρFO  =  5.24  g·∙cm-­‐³  and  the  organic  oleic  acid  (OA:  C18H34O2)  with  density  ρOA  =  0.89  g·∙cm-­‐³  and  the  solvent  where  we  assume  the  same  density  as  for  the  oleic  acid  ρSol  =  0.89  g·∙cm-­‐³.  Both  densities  are  denoted  as  ρOR.  The  densities  of  the  magnetite  and  oleic  acid  were  determined  at  25  °C4.  The  mass  fraction  wOR  of  adsorbed  oleic  acid  molecules  on  the  surface  of  the  magnetite  is  defined  as:    

)25()25()25(CmCmCw

NC

OROR °

°=°               (1)  

 where  mOR(25°C)   is   the  mass  of   the  oleic   acid   in   the  per  nanocomposite   (NC)  with  mNC(25  °C).   The  mass  fraction  wOR  can  be  calculated  as  follows:  As   there   is   open   porosity   between   the   fcc   ordered   spherical   magnetite   particles   He-­‐gas   enters  completely   inside   the   nanocomposite.   Hence   the   He-­‐pycnometry   measures   the   density   of   the  magnetite   particles   together   with   their   organic   film,   ρNC.   As   a   consequence   the   adsorbed   organic  mass   fraction  wOR   can  be  calculated   from  the  measured  ρPY  by  He-­‐pycnometric  density   (Accu  Pyc   II  1340,  Micromeritics)  as:      

     wOR (25°C) =ρOR (ρPY − ρFO )ρPY (ρOR − ρFO )

              (2)  

 For  the  pycnometric  measurements  the  nanocomposite  was  ground  in  a  mortar  to  fine  powder  and  ~0.35  g  were  weighed  in  a  1cm3  measuring  cell.  After  100  purification  cycles  the  75  measuring  cycles  gave   von   ρNC=3.567±0.016  g·∙cm-­‐³.   With   (2)   the   mass   fraction   of   oleic   acid   at   25  °C   is  wOR(25  °C)=0.096±0.001.      4.2  Thermogravimteric  analysis  (TGA)    The  nanocomposite   consists  of   thermally   stable  magnetite   (Fe3O4,  mp:   >1500  °C)   and   volatile  oleic  acid  (OA:  C18H34O2,  bp:  360  °C)  and  the  volatile  solvent.  The  measured  TGA-­‐values  are  all  normalized  to  the  original  weight:    

)25()25(0 CmCmmm OASolNP °+°+=             (3)    where  mNP  is  the  mass  of  the  magnetite  nanoparticles,  mSol  the  mass  of  the  solvent  and  mOA  the  mass  of  the  oleic  acid  all  at  room  temperature.  As  the  mass  of  the  magnetite  particles  stays  constant  up  to  400°C  we  do  not  take  the  temperature  dependence  for  magnetite  into  account.  FTIR-­‐spectroscopy  at  the  desorbed  gases  detects  the  blowout  of  solvent  residues  between  50  °C  and  150  °C.  Therefore  we  relate  the  mass  loss  up  to  150°C  only  to  the  solvent  and  hence  at  150°C  the  measured  weight  fraction  wm  is:    

0

)150(m

Cmw Solm

°Δ=                 (4)  

 

7    

 We  want  to  determine  the  weight  fraction  of  the  oleic  acid  wOA  :    

)()()(Tmm

TmTwOANP

OAOA +

=               (5)  

 As  we  identify      

)25()150( CmCm Sol °=°Δ               (6)    together  with  (4)  and  (1)  we  get:    

))25(1(0 Cwmm ORNP °−=               (7)    Also  there  is  no  oleic  acid  desorption  up  to  150°C  and  therefore:    

)25()150( CmCm OAOA °=°               (8)    Together  with  (1,3,4,6)  we  get:    

))150()25(()25( 0 CwCwmCm mOROA °−°=°           (9)    which  gives  together  with  (1,5,7):    

087.09896.00856.0

)150(1)150()25()150(

==

°−

°−°=°

CwCwCwCw

m

mOROA

            (10)  

 (values  are  taken  from  Table  SI  1)    For  temperatures  between  150°C  and  400°C  FTIR  detects  the  desorption  of  oleic  acid,  hence  in  this  temperature  range:    

00

)()25()()(m

TmCmmTmTw OAOAOA

m−°

=           (11)  

 Introducing  (11)  together  with  (7)  into  (5)  gives:    

)(9896.0)(0856.0

)()150(1)()150()25()(

TwTw

TwCwTwCwCwTw

m

m

mm

mmOROA

−−

=

−°−−°−°

=

          (12)  

 (values  are  taken  from  Table  SI  1)    

 

8    

5.  Surface  density  of  oleic  acid  on  the  particle  surface    TEM   investigations   of   718   spherical  magnetite   particles   gave   a   diameter   d=17.6±1.6  nm   for   these  investigations.   This   differs   from   the   nanoparticle   size   in   chap.   1   but   we   assume   that   calculated  surface   density   is   not   much   influenced   by   a   slightly   different   particle   diameter   but   otherwise  identical  processing.  The   specific   surface   A   -­‐   the   surface   area   per   mass   of   a   particle   -­‐   of   the   magnetite   nanoparticles  coated  with  oleic  acid  is  defined  as:    

NC

P

mAA =                 (13)  

 The  surface  area  of  a  spherical  particle  with  diameter  d  is:    

2dAP π=                 (14)    and  the  mass  of  the  nanocomposite  particle  consisting  of  the  iron  oxide  with  adsorbed  oleic  acid  is      

NCNCdm ρπ6

3

=                 (15)  

 Hence  we  get:    

dA

NCρ6

=                 (16)  

 For  our  nanoparticles  this  results  in  A=95.7±9.2  m²·∙g-­‐1.      The  surface  density  of  oleic  acid  particles  on  the  surface  of  the  spherical  iron  oxide  is  defined  as:    

2dNOA

OA πρ =                 (17)  

 where   NOA   is   the   absolute   number   of   oleic   acid   molecules   in   a   monolayer   on   the   iron   oxide  nanoparticle   surface.   Here   we   assume   that   only   a   monolayer   of   oleic   acid   is   present,   which   is  confirmed  by  the  final  result.  The  mass  of  the  monolayer  of  oleic  acid  particles  is:    

A

OAOAOA NMNm =               (18)  

 with  the  molar  mass  of  of  oleic  acid  MOA  and  the  Avogadro  number  NA.  Together  with  (13,4,17,18)  we  finally  get  for  the  surface  density  of  oleic  acid  molecules:    

AMNTw

AmMNTm

dTNT

OA

AOA

NC

OA

AOA

OAOA )(

)()()( 2 =

⎟⎟⎠

⎞⎜⎜⎝

==π

ρ         (19)  

 Here  we  explicitely   introduced   the   temperature  T   dependence.  With   the  molar  mass  of  oleic   acid,  MOA=282  g/mol,  and  the  Avogadro  number,  6.022  1023  mol-­‐1,  we  get:  

 

9    

 

22

2313.22

7.95282

110 6

nmgm

molg

molAM

N

oA

A =×

=

            (20)

 

 Table  SI  1  |  Measured  temperature  T  dependent  fractional  mass  reduction  wm  of  the  iron  oxide/oleic  acid  nanocomposite  measured  by  TGA.  From  this  data,   the  oleic  acid  mass   fraction  wOA  and  surface  density  ρOA  were  calculated  according   to  equations  (10),  (12)  and  (19).    

T  /  °C   wm=  (∆m(T)/m)                          /  %   WOA  /  %     ρOA  /  nm-­‐²  

150   1.040   8.7   1.91  200   1.615   7.1   1.58  250   2.427   6.4   1.43  300   3.388   5.4   1.20  350   5.259   3.5   0.78  400   7.266   1.4   0.31  

   6.  Energy  of  carboxylate  bond  to  metal  ions    As  far  as  we  know,  accurate  values  for  the  binding  energy  of  carboxylic  acid  to  iron  oxide  have  yet  to  be  reported  in  the  literature.  To  this  end,  we  analyzed  our  thermograms  (Figure  3a)  by  a  combination  of   the   Habenschaden-­‐Küppers   method5   and   the   Redhead   method6   to   obtain   an   estimate   for   the  bond   energy.   We   determine   the   kinetic   pre-­‐exponential   factor   of   the   desorption   process   with  2.5·∙108  s-­‐1   by   the   Habenschaden-­‐Küppers   method5   and   use   this   value   for   the   Redhead-­‐analysis6.  Hereby,  we  obtain  activation  energies  of  1.0  eV  and  1.3  eV   for   the  desorption  peaks  at  230  °C  and  350  °C.  These  estimates  fall  into  the  range  of  known  binding  energies  of  formic  acid  on  TiO2(101)  and  ZnO(10-­‐10)  of  0.92  eV  7  and  1.38  eV  to  1.86  eV  8,  respectively.  Hence  the  binding  energy  of  a  covalent  C-­‐C  bond  (3.6  eV)   is  much  stronger  than  the  carboxylate  bond  of  the  oleic  acid  COOH-­‐group  to  the  iron  oxide  surface.  As  a  consequence  the  molecular  chain  between  two  iron  oxide  nanoparticles  will  break  at  the  carboxylate  bond.      7.  Infrared  Spectroscopy  (IR)    7.1  Attenuated  total  reflection  (ATR)  -­‐  Infrared  spectroscopy  (IR)    A   high   coverage   and   interpenetration   of   the   organic   molecules   on   particle   surfaces   leads   to   a  limitation  of  the  conformational  freedom  of  their  alkyl  chains.  The  IR  spectroscopy  gives  information  about   this   decrease9,10.   It   is   well   known   from   literature,   that   the   symmetric   and   asymmetric   CH-­‐stretching  vibrations   shifts   to   smaller  wave  numbers   for   immobile  alkyl   systems   from  2855  cm-­‐1   to  2850  cm-­‐1   for   the   symmetric   vibration   and   from   2924  cm-­‐1   to   2920  cm-­‐1   for   the   asymmetric  vibration11.   Figure   SI   7   shows   the   IR   spectra   of   iron   oxide/oleic   acid   particles   solved   in   carbon  tetrachloride  and  dried.  As  reference,  oleic  acid  was  also  measured  in  carbon  tetrachloride  solution  and  pure.  All  samples  were  investigated  as  a  film  on  a  diamond  ATR  crystal  Brucker  Platinum  Alpha.    

 

10    

 Figure  SI  7  |  ATR-­‐FTIR  measurement  of  oleic  acid  (OA)  in  carbon  tetrachloride  (CCl4)  solution  and  pure  as  a  liquid  as  well  as  magnetite  particles  coated  with  oleic  acid  (Fe3O4@OA)  in  CCl4  solution  and  dried  as  a  solid.  The  shift  of  the  symmetric  and  asymmetric  CH-­‐stretching  vibrations  to  smaller  wave  numbers  indicates  a  limitation  of  the  conformational  freedom  of  the  alkyl  chains.    The  highest  conformational  flexibility  has  the  free  oleic  acid  molecules  in  solution.  An  adsorption  to  a  iron  oxide  particle  surface  limits  their  flexibility,  which  is  now  comparable  with  that  in  pure  oleic  acid.  By  removal  of  the  solvent  and  the  consequential  particle  aggregation  reduces  additionally  the  alkyl  flexibility.   The   resulting   immense   shift   and   loss   of   conformational   freedom,   respectively,   is  comparable  with  that  can  be  observed  at  the  oleic  acid  crystallization12.  This  indicates  in  our  point  of  view,  a  dense  oleic  acid  layer  around  the  particles  and  a  significant  interpenetration  of  these  organic  layers.      7.2  Ultra-­‐high  vacuum  (UHV)  -­‐  Infrared  reflection  absorption  spectroscopy  (IRRAS)    The  UHV-­‐IRRAS  studies  were  performed  at  an  UHV-­‐system  equipped  IR  spectrometer  Bruker  Vertex  80v.   The   IR-­‐spectrometer   is   coupled   to   the   UHV-­‐chamber   via   differentially   pumped   KBr-­‐windows.  Each  IR  spectrum  was  accumulated  of  1024  scans  with  a  resolution  of  2  cm-­‐1  and  was  taken  at  grazing  incidence  (80°)  at  a  base  pressure  of  9·∙10-­‐10  mbar.  The   oleic   acid   functionalized   Fe3O4-­‐particles   were   stabilized   on   the   Si   wafer   for   UHV-­‐IRRAS  spectroscopy  studies.  A  pure  silicon  wafer  was  used  as  reference  sample.  The  IRRAS  spectrum  of  the  sample  (Figure  SI  8  and  Fig.  3b)  shows  two  dominant  bands  at  1377  and  1603  cm-­‐1,  characteristic  for  symmetric  (ʋs)  and  asymmetric  (ʋas)  carboxylate  (OCO)  stretching  modes,  indicating  that  oleic  acid  is  dissociated  and  chemisorbed  to  iron  oxide  via  its  oxygen  atoms13–16.  This  is  further  approved  by  the  lack   of   IR   bands   at   higher   than   3000   cm-­‐1   and   at   about   1700   cm-­‐1,   corresponding   to   the   carbonyl  (C=O)  and  hydroxyl   (OH)  bands,   respectively,  originating   from   -­‐COOH   in  a   free  oleic  acid  molecule.  Additionally,   the   symmetric  and  asymmetric  CH-­‐stretching  vibrations  of   the  oleic  acid  adsorbed  on  the   iron   oxide   surfaces   are   centered   at   2850  cm-­‐1   and   2920  cm-­‐1   with   a   red   shift   to   lower  wavenumbers   compared   to   the   free   oleic   acid  molecules,   as   it   is   expected   for   the   immobile   alkyl  systems11.    

 

11    

2950 2900 2850 2800

νas(C-H)

νs(C-H)2920

2850

In

tens

ity

Wavenumber (cm-1)  

1700 1600 1500 1400

νas(OCO)

νs(OCO)

Inte

nsity

Wavenumber (cm-1)

16031377

 

Figure  SI  8  |  UHV-­‐IRRAS  spectra  acquired  for  the  iron  oxide/oleic  acid.  

   8.  X-­‐ray  photoelectron  spectroscopy  (XPS)  -­‐  Measurements    XPS   measurements   were   carried   out   in   an   ultrahigh   vacuum   (UHV)   setup   equipped   with   a   high-­‐resolution  Specs  PHOIBOS  150  2D-­‐DLD  Elevated  Pressure  Energy  Analyzer  equipped  with  differential  pumping   system.   A  monochromatic   Al   Kα   X-­‐ray   source   (1486.6  eV;   anode   operating   at   15kV)  was  used  as  incident  radiation.  The  base  pressure  in  the  measurement  chamber  was  around  2·∙10-­‐10  mbar.  XP   spectra  were   recorded   in   the   fixed   transmission  mode.   The   pass   energy   of   20   eV  was   chosen,  resulting   in   an   overall   energy   resolution   better   than   0.4   eV.   The   binding   energies  were   calibrated  based  on  the  graphite  C  1s  peak  at  284.8  eV.  The  CASA  XPS  program  with  a  Gaussian-­‐Lorentzian  mix  function  and  Shirley  background  subtraction  was  employed  to  deconvolute  the  XP  spectra.  The  peak  positions   were   reproducible   along   with   the   fixed   Lorentz   to   Gaussian   ratio   and   full   width   at   half  maximum.  

The  XPS  measurements  on  the  overview  in  Figure  SI  9a  show  the  Fe  2p,  O  1s  and  C  1s  regions  of  the  nanocomposite  consisting  of  iron  oxide  coated  with  oleic  acid.  The  resolved  XPS  are  shown  in  Figure  3c  and  interpreted  in  the  paper.  To  exclude  graphitisation  of  oleic  acid  at  elevated  temperatures,  the  XP  spectrum  of  pure  graphite  has  been  measured.  C  1s  peak  of  graphite  shows  an  asymmetry  peak  centered  at   284.4  eV,  while   the  C  1s  peaks  of   iron  oxide/oleic   acid   are   symmetrical   and  appear   at  higher   binding   energies.   Based   on   this   observation,   we   exclude   a   significant   fraction   of   oleic   acid  graphitisation  up  to  350  °C  in  iron  oxide  /  oleic  acid  samples  (Figure  SI  9b).  Figure  SI  9c  demonstrates  reduction  of  iron  after  annealing  the  oleic  acid  on  iron  oxide  to  higher  than  400  °C.16,17          a)                                b)              c)  

1200 1000 800 600 400 200 0

Fe2s F1sO 2s

Fe 3p

Fe2p

In

tens

ity

973 K

623 K

573 K

Binding Energy (eV)

O 1s

O KLL

C 1s

!735 730 725 720 715 710 705

Fe 2p1/2Fe 2p3/2

Fe0

Binding Energy (eV)

Fe 2p973 K

Inte

nsity

707.2 eV

288 286 284 282

Inte

nsity

oleic acid on Fe3O4

Binding Energy (eV)

graphite

 Figure  SI  9  |  Overview  of  the  XPS  spectrum  of  iron  oxide  coated  with  oleic  acid  at  different  temperatures  (a).  Pure  graphene  at  room  temperature  (b)  and  expanded  C1s  for  oleic  acid  on  iron  oxide  (c).      

 

12    

 

 9.  Structural  integrity  of  the  samples  after  thermal  treatment      Thermal  treatment  of  the  macroscopic  samples  leads  to  millimeter  sized  cracks  (Figure  SI  10)  and  a  corresponding  very   large  reduction   in  macroscopic  strength   to  14  MPa.  This  may  be  caused  by   the  emergence   of   thermal   stresses   or   the   diffusion   of   organic   material   out   of   the   sample.   Crack  development  will  be  investigated  further  in  the  future.      

 Figure  SI  10  |  7x3x2  mm3  bending  bar  cut  out  of  the  pressed  pellet  before  and  after  thermal  treatment.  The  bending  bar  was  heated  up  to  300  °C  with  1  K/min  in  a  nitrogen  atmosphere  in  a  muffle  furnace.    Fortunately,  the  thermal  treatment  of  smaller  nanocomposite  pieces  (3x3x2  mm³)  proceeds  without  a  macroscopic  crack  formation,  making  only  smaller-­‐sized  samples  suitable  for  analysis  (Figure  SI  11).      

 Figure  SI  11  |  3x3x2  mm3  piece  of  a  nanocomposite  after  thermal  treatment.  The  nanocomposite  was  heated  up  to  300°C  with  1  K/min  in  nitrogen  atmosphere  in  the  TGA.  In  this  material  micro-­‐cantilever  bars  were  cut  by  FIB.      10.  Focused  ion  beam  (FIB)  sample  preparation  

Micro-­‐cantilevers  and  micro-­‐pillars  were  prepared  fully  automatically  using  a  FEI  Helios  Nanolab  660  system  using  gallium  ions  at  30  kV.  An  automation  recipe  was  created  using  iFast  software.  The  rough  milling  currents  used  range  from  47-­‐9  nA,  which  was  followed  by  a  fine  milling  steps  with  the  current  of   430  pA.   The   final   geometry   of   the   representative   specimens   are   shown   in   Figure   SI   12   and   the  dimensions  of  all  the  tested  specimens  are  given  in  the  Table  SI  2  and  Table  SI  3.      

before  thermal  treatment   after  thermal  treatment  

 

13    

 Figure  SI  12  |   In   (a)  a  representative  of  micro-­‐cantilevers   fabricated   in  this  study   is  demonstrated.   l*  denotes  the   loaded  cantilever  length  measured  as  the  distance  between  the  cantilever  base  and  the  indenter  loading  point  marked  with  the  red  arrow.  w  and  h  are  the  width  and  height  of  the  cantilever,  respectively.  A  representative  micro-­‐pillar  is  shown  in  (b).  d1,  d2  and  h  denote  the  top  diameter,  the  bottom  diameter  and  the  height  of  the  pillars.    

   11.  Mechanical  characterization  

11.1  Micro-­‐cantilever  bending  

The  micro-­‐cantilever  beam  bending  tests  were  performed  in  an  Agilent  Nano  Indenter  G200  system  equipped   with   a   Berkovich   tip.   Continuous   stiffness   measurement   (CSM)   option   was   selected   to  conduct  the  bending  experiment  with  a  constant  strain  target  of  0.05  s-­‐1.  CSM  allows  the  continuous  recording   of   the   contact   stiffness   S   as   a   function   of   depth   together   with   the   load   applied   to   the  sample  F  and  tip  displacement  δ.  Stress–strain  (σ-­‐ε)  curves  calculated  using  the  following  equations:    

σ microbend =12Fl*

wh2                 (21)  

 

ε =δh(l*)2

                  (22)  

 where  l*  is  the  loaded  length  of  the  cantilever,  w  is  the  width  and  h  is  the  height  of  the  cantilevers18.  A   typical   force–displacement   and   contact   stiffness–displacement   curve   obtained   from   the   micro-­‐cantilever  bending  tests  are  illustrated  in  Figure  SI  13a  and  13b.  The  measured  displacement  includes  both  the  indentation  displacement  and  deflection  of  the  cantilever.  During  the  indentation  of  the  tip  into   the   specimen   the   contact   stiffness   increases   steadily   up   to   the   displacement   point,   where  deflection   of   the   cantilever   starts.   For   the   evaluation   of   the   elastic   modulus   E,   the   stiffness   is  estimated   by   averaging   the   contact   stiffness   values   between   the   start   of   the   deflection   and   the  fracture  point  as  shown  in  Figure  SI  13b,  and  inserted  into  the  equation  given  below:    

E = 12S(l*)2

wh3                   (23)  

 The  resultant  stress–strain  curves  of  the  micro-­‐cantilever  tested  are  plotted  up  to  the  fracture  point  and  shown  in  Figure  SI  13c  with  a  representative  post-­‐failure  micrograph  illustrated  in  Figure  SI  13d.  The  mechanical  properties  such  as  fracture  strength  and  elastic  modulus  are  listed  in  Table  SI  2.      

 

14    

 Figure  SI  13  |  A  representative  force–displacement  response  obtained  in  micro-­‐cantilever  bending  tests  is  given  in  (a).  The  fracture  point  associated  with   the   sudden   load  drop  and  overshoot   in   the  displacement,   is   indicated  by  a   red  cross.  The  corresponding   contact   stiffness–displacement   curve   is   shown   in   (b).   The   initial   increase   in   the   contact   stiffness   is   an  indication  of  the  penetration  of  the  indenter  tip  into  the  specimen,  which  reaches  a  plateau  corresponding  to  the  start  of  the  deflection  of  the  cantilever.  The  stress–strain  curves  of  all  the  specimens  assessed  under  micro-­‐cantilever  bending  (c),  and  a  representative  post-­‐failure  micrograph  (d)  showing  the  fracture  mode  are  demonstrated.  The  fracture  mode  of  the  specimens  did  not  show  a  temperature  dependence.        Table  SI  2  |  The  dimensions  and  mechanical  properties  of  the  micro-­‐cantilevers  

Specimens   Width  w  (µm)  

Height  h  (µm)  

Length  l*  (µm  

Bending  strength  σ  (MPa)  

Elastic  modulus  E  (GPa)  

Annealing  temperature:  250  °C  

1   10.7   13.2   29   203   35  

2   10.7   13.2   30   83   19  

3   7.0   9.7   30   213   16  

4   7.0   9.3   30   326   15  

5   7.0   9.3   30   233   15  

mean  ±  s.d.     212  ±  87   20  ±  9  

Annealing  temperature:  300  °C  

1   11.5   14.8   30   213   22  

2   9.4   12.1   30   427   81  

3   9.8   12.7   30   239   38  

4   11.1   13.0   30   159   31  

mean  ±  s.d.     260  ±  117   43  ±  26  

Annealing  temperature:  350  °C  

 

15    

1   7.5   7.9   28   508   102  

2   7.2   8.6   28   630   114  

3   9.4   12.1   30   246   50  

4   9.4   12.1   30   457   61  

mean  ±  s.d     460  ±  160   82  ±  31  

The   estimated  measurement   errors   for  w  and  h   is   0.1µm,  whereas   for   l*   it   is   1µm.   This   leads   to   a   5  %  error   in   bending  strength  and  11  %  error  in  elastic  modulus  using  Gaussian  error  propagation.        11.2  Micro-­‐pillar  compression  

The   micro-­‐pillar   compression   tests   were   performed   in   an   Agilent   Nano   Indenter   G200   system  equipped  with  a  flat-­‐ended  punch.  The  diameter  of  the  punch  was  10  µm.  The  nanoindenter  punch  was  positioned  at  the  micro-­‐pillar`s  top  surfaces  using  the  optical  microscope  of  the  system  and  the  specimens  were   loaded   in  CSM-­‐mode  with  a  constant  strain  target  of  0.05  s-­‐1  until   fracture.  Stress-­‐strain  curves  are  evaluated  from  the  load-­‐displacement  data  with  the    formulae:    

σ =4Fπd1

2                   (24)  

 

ε =δh                     (25)  

 However,   the   measured   contact   stiffness   reflects   the   combined   effect   of   the   compression   of   the  micro-­‐pillar   and   the   indentation   of   the   micro-­‐pillar   into   the   underlying   bulk   material.   Applying  Sneddon`s  solution  for  a  perfectly  rigid  cylindrical  punch  pressed  into  an  elastic  half-­‐space,  the  latter  should   be   corrected   in   the   elastic   modulus   calculation19.   The   formula   to   calculate   the   corrected  elastic  modulus  for  a  slightly  tapered  micro-­‐pillar  is  adopted  from20:    

E = 4Shπd1d2

+(1−ν 2 )S

d2                 (26)  

 where   ν   is   the   Possion`s   ratio   (0.25).   S   is   as   the  maximum   contact   stiffness   value   reached   in   the  micro-­‐compression   test.   A   typical   force-­‐displacement   and   contact   stiffness–displacement   curve  obtained  from  the  micro-­‐pillar  compression  tests  are  shown  in  Figure  SI  14a  and  14b.  The  resultant  stress–strain  curves  of  the  micro-­‐pillars  specimens  are  plotted  up  to  the  fracture  point  and  shown  in  Figure   SI   14c   with   a   representative   post-­‐failure   micrograph   illustrated   in   Figure   SI   14d.   The  mechanical  properties  such  as  fracture  strength  and  elastic  modulus  are  listed  in  Table  SI  3.      

 

16    

 Figure  SI  14  |  A  representative  force–displacement  response  obtained  in  micro-­‐pillar  compression  tests  is  shown  in  (a).  The  fracture  point  associated  with  a  large  displacement  burst  is  indicated  by  a  red  cross.  The  corresponding  contact  stiffness–displacement  curve  is  shown  in  (b).  The  initial  low  stiffness  values  are  a  result  of  the  imperfect  contact  between  the  punch  and  pillar   surface,  which  eventually   reach  a  plateau  at  a  displacement  of  approx.  100  nm.   (c)   illustrates   the  stress–strain  curves  of  all  specimens  assessed  under  micro-­‐pillar  compression  and  a  representative  post-­‐failure  micrograph  showing  the  fracture  mode  is  given  in  (d).        Table  SI  3  |  The  dimensions  and  mechanical  properties  of  the  micro-­‐pillars  

Specimens   Top  diameter  d1  [µm]  

Bottom  diameter  d2  [µm]  

Height  h  [µm]  

Fracture  strength  σ  [MPa]  

Elastic  modulus  E  [GPa]  

Annealing  temperature:  250  °C  1   2.82   3.14   6.44   634   47  2   2.82   3.24   7.56   376   44  3   2.82   3.14   6.44   303   31  mean  ±  s.d.     438  ±  174   41  ±  9  Annealing  temperature:  300  °C  1   2.84   3.09   7.47   515   47  2   2.84   3.16   7.47   708   47  3   2.84   3.16   7.20   1016   62  mean  ±  s.d.     746  ±  253   52  ±  9  Annealing  temperature:  350  °C  1   2.77   3.57   5.50   610   55  2   2.77   3.47   7.81   730   69  3   2.77   3.47   7.02   659   62  4   2.77   3.47   7.58   625   62  5   2.77   3.60   7.10   1074   74  mean  ±  s.d.     740±  193   64  ±7  The  estimated  error  of  all  length  measurements  is  0.1µm,  which  leads  to  a  7%  error  in  compressive  strength  and  5%  error  in  elastic  modulus  using  Gaussian  error  propagation.        

 

 

17    

11.3  Isotropy  of  the  mechanical  properties  measured  by  nanoindentation  

As   stated   in  Methods:  Mechanical   Characterization   of   the  manuscript   „5x5   arrays   of   indentations  were  performed.“  The  distance  of  the  indents  was  50  µm  and  an  area  of  250x250  µm2  was  probed  by  the   indents.   From   SAXS   and   SEM   measurements   we   can   conclude   that   the   supercrystals   are  randomly   oriented   and   much   smaller   than   50  µm   in   size.   Hence   the   nanoindents   always   hit  supercrystals  of  different  orientation.  As  the  size  of  the  nanoindents  is  of  the  order  of  some  microns  every   indent   averages   over   several   supercrystalline   domains.   Therefore   we   conclude   that   the  measured  nanohardness  and  modulus  of  25  indents  for  the  different  annealing  temperatures  (Figure  4a)  give  an  average  value  of  isotropically  oriented  supercrystals.  

 12  Strength  estimation  of  literature  data  using  the  Weibull  analysis  for  the  size  effect  

In   Figure   4e,   literature   data   of   the   strength   of   thin   foils   consisting   of   layered  polymer/nanocomposites   measured   under   tension   are   compared   with   micro-­‐cantilevers.   The  materials  from  Bonderer  et  al.21  show  a  pronounced  plastic  behaviour  and  a  significant  size  effect  is  not  expected.  Nanocomposites  of  Podsiadlo  et  al.22,  on  the  other  hand,  show  brittle  fraction  and  the  nanocomposites  of  Walther  et  al.23  show  an  almost  brittle  fracture.  A  thorough  comparison  of  their  reported   strengths   with   our   data   thus   requires   a   size   effect   analysis   with   the   Weibull   theory   as  follows.    As  the  publications  of  Podsiadlo  et  al.22  and  Walther  et  al.23  only  show  the  standard  deviation  of  the  strength   stσ ,   we   use   the   following   equation   relating   the   Weibull   modulus   and   the   standard  deviation24:    

2/12

01121 ⎥⎦

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛+Γ−⎟

⎞⎜⎝

⎛+Γ=

mmst σσ .             (27)  

 Γ  is  the  Gamma-­‐function,  m  denotes  the  Weibull  modulus  and  σ0  is  related  to  the  average  strength  

σ  by  24:    

⎟⎠

⎞⎜⎝

⎛+Γ=m110σσ .                 (28)  

 

To  simplify  our  analysis  we  approximate  σ 0  with  σ  because  the  difference  is  less  than  13  %  for  all  Weibull   moduli.   With   the   given   tensile   strengths   and   standard   deviations   from   the   literature   we  determine  m  using  equ.  (27)  as  shown  in  Table  SI  4.    To  extrapolate  the  strength  for  a  micro-­‐cantilever  we  proceed  as  follows.  As  the  thickness  of  the  foils  is  in  the  micrometre  range,  we  assume  that  surface  effects  determine  their  average  tensile  strength.  Applying   the   Weibull   theory   for   the   size   effect   the   average   tensile   strength,   tensileσ   can   be  

extrapolated  to  the  bending  strength  of  the  micro-­‐cantilever  σ microbend  by24:  

 m

effmicrobend

tensiletensilemicrobend S

S/1

,⎟⎟⎠

⎞⎜⎜⎝

⎛=σσ               (29)  

 

 

18    

where  Stensile  is  the  surface  area  (both  sides)  of  the  tensile  foils.  As  the  micro-­‐cantilever  is  not  loaded  under   tension   but   bent,   the   effective   surface   must   be   used.   The   tensile   stress   along   the   upper  surface  of  the  cantilever  is18:    

⎟⎟⎠

⎞⎜⎜⎝

⎛ −= *

*

lxl

microbendσσ ,                 (30)  

 where  σ microbend   is  obtained  from  equ.   (21).  x   is   the  coordinate  along  the  cantilever,  being  0  at  the  edge.   l*   is   the   loaded   length   of   the   cantilever   by   the   nanoindenter   as   given   in   chap.   9.2.1.   The  effective  surface  area  of  the  micro-­‐cantelever  is  24:    

   1

*

0*

*

,

*

+=∫ ⎟⎟

⎞⎜⎜⎝

⎛ −=

microbend

ml

effmicrobend mwldx

lxlwS

microbend

        (31)  

 We   use   a   typical   surface   area  wl*=300µm2   for   our   cantilevers   (see   Table   SI   2).  With   the   standard  deviations  and  average  values  given  in  table  SI  2  and  applying  equ.  (27)  and  (28),  a  very  small  Weibull  modulus  of  mmicrobend  =2  is  determined  for  all  annealing  temperatures,  which  indicates  again  the  very  high  scatter  of  our  strength.  Introducing  this  result  in  equ.  (31)  leads  to  an  effective  surface  area  of  Smicrobend,eff=100µm2.    The  precision  of   the  evaluation  of  m  depends  on  the  number  of  samples  tested.  The  ASTM-­‐C1239-­‐0025   describes   how   to   determine   the   90  %   confidence   interval   upper   and   lower   bounds   of  m   as   a  function   of   the   number   of   samples,   [mlow,mup],   yielding   the   values   presented   in   Table   SI   4.   Taking  these  bounds  and  equ.  29,  we  obtain  the  90%  confidence  interval  for  the  predicted  bending  strength.    The  predicted   cantilever   strength   ranges   (last   column  of   Table   SI   4)   show   that   the   given   literature  data  allow  only   for  a  very  rough  estimate.  The  data  set   for  PVA/MTM  samples,   for  example,   is  not  sufficient   because   their   predicted   strength   is   calculated   to   be   even   higher   than   that   of   the   same  nanocomposite  with  a  grafted  polymer  having  a  more  than  twice  as  high  strength  in  tension.  Most  of  the  measured  micro-­‐cantilever  strength  data  of  our   iron  oxid/oleic  acid  nanocomposite   (Table  SI  2)  fall  within  the  ranges  of  the  predicted  strength  of  layered  nanocomposites.  We  conclude  that,  when  measured   as   micro-­‐cantilevers,   the   layered   composites   would   probably   fall   in   the   same   strength  range  as  the  presented  iron  oxid/oleic  acid  nanocomposites.    

 

19    

Table  SI  4  |  Prediction  of  the  micro-­‐cantilever  strength  of  thin  nanocomposite  foils  measured  under  tension  using  equ.  (29).  The  Weibull  moduli  are  calculated  numerically  from  equ.  (27)  and  combined  with  the  sample  number  to  calculate  an  upper  and  lower  bound  of  the  Weibull  moulus  for  a  90  %  confidence  interval.  The  upper  and  lower  bound  for  the  90  %  confidence  interval  of  the  predicted  micro-­‐cantilver  strength  can  then  be  calculated  using  equ.  (29).    Material   Number  

of  samples  

Elastic  modulus  (GPa)  

σ tensile ±σ tensile,St  

(MPa)  

σ tensile,St

σ tensile

 

m   90%  confidence  interval   for   m  [mlow,mup]  

90%   confidence  interval   for  σ microbend,low,σ microbend,up!"

#$  

Walther  et  al.  2010                Nacre-­‐paper:  PVA/MTM                -­‐                hot  pressed                GA  X-­‐linked                Borate  X-­‐linked  

 5  7  7  7  

 27.1±2.8  26.6±6.3  26.7±5.5  45.6±3.9  

 165±8.9  147±8.5  169±18  248±19  

 0.054  0.058  0.106  0.077  

 22  21  11  15  

 [8,32]  [11,30]  [6,16]  [8,21]  

 [256,949]  [234,525]  [405,1742]  [359,1427]  

Doctor  bladed   4   21.3±3.9   105±12   0.114   10   *   408  PVA/MTM     5   34.2±3.4   141±16   0.113   10   [4,15]   [358,4667]  Podsiadlo  et  al.  2007                PDDA-­‐MTM   ≥5   11±2   100  ±  10   0.1   12   [4,18]   [190,1778]  PVA/MTM   ≥5   13±2   150  ±  40   0.266   4   [1,6]   [1021,  1.5x107]  PVA/MTM  with  GA   ≥5   106±11   400  ±  40   0.1   12   [4,18]   [758,7113]    The  surface  area  for  nanocomposites  given  by  Walther  et  al.23  is:  Stensile=1.2  10

8  µm2    The  surface  area  for  nanocomposites  given  by  Podsiadlo  et  al22  is  estimated  to  be:  Stensile=10

7  µm2  *  There  are  no  tabulated  values  in  the  ASTM  C123925  for  only  4  samples      13  Intermolecular  forces  between  the  oleic  acid  molecules    The  non-­‐retarded  van  der  Waals  interaction  free  energy  between  two  alkane  molecules  is26:  

    5208

3ra

CLW π−= ,                 (32)  

with  C=50  10-­‐79  Jm3  for  hydrocarbons.  a0   is  the  distance  between  CH2-­‐groups  within  the  same  chain  and  L  is  the  length  of  the  molecule  and  r  the  distance  between  the  two  molecules.    If  we  assume  a  hexagonal  array  of  alkane  molecules  the  molar  cohesive  energy  is:  

   2

68

3 520

ANra

CLU ⎟⎠

⎞⎜⎝

⎛−= π  ,               (33)  

where   NA   is   Avogadro’s   constant.   The   distance   a0   between   CH2-­‐groups   is   equals   to   0.127  nm.  Applying   equ.   (33)   to   a   straight   alkane  molecule   with   17   CH2-­‐groups   and   r=0.41  nm   gives   a   value  which  differs  from  the  experimental  result19  of  U=125.9  kJ/mol  by  only  1  %.      

0leic&acid&molecule&Iron&oxide&

L&

L0&Iron&oxide&Iron&oxide&

 Figure   SI   15   |   Sketch   of   the   interdigitally   penetrating   alkane   molecules,   which   are   used   as   a   model   for   the   oleic   acid  molecules.    

 

20    

In  our  nanomechanical  model  we  assume  that  the  chains  are  interpenetrating  interdigitally  as  shown  in   Figure   SI   15.  With   the   geometrical   dimensions   given   in   the   same   figure,   the   interaction   energy  between  two  molecules  is  

    520

0

8)2(3

raLLCW −

−= π ,  for   0LL ≥ .             (34)  

If   we   pull   two   parallel-­‐aligned   alkane   molecules   apart   in   the   direction   of   their   long   axis,   the  corresponding  force  is:  

    5208

3raC

LWFvdW π−=∂∂

−= .               (35)  

With  the  surface  density  ρOA  the  density  of  the  interpenetrating  molecules  is  2  ρOA.  Consequently  the  

average  distance   r   between   interpenetrating  molecules   is  OA

r ρ21= .   For   the  densities   given   in  

Table  3  of   the  main  text,  we  obtain  r  between  0.6  and  0.85  nm.   Introducing  these  values   into  equ.  (34)   and   (35)   gives   intermolecular   interaction   energies   below   0.2  eV   and   forces   of   0.004-­‐0.016  nN  assuming   the   presence   of   4   nearest   neighbours.   These   forces   are   negligible   in   comparison   to   the  covalent  backbone  C-­‐C-­‐bond  energy  of  3.6  eV  and  breaking  forces  of  the  alkane  chains  of  up  to  4  nN.  The   main   reason   why   intermolecular   forces   are   so   small   stems   from   the   fact   that   the   molecule  density   in  our  nanocomposite   is  significantly   lower  than  in  an  oleic  acid  or  PE  crystal  and  therefore  the  distance  of  the  molecules  is  at  least  50  %  greater.  Consequently,  the  interaction  energy  and  the  forces  drop  by  more  than  a  factor  of  10  as  they  scale  with  r-­‐5.        14.  References    1.   Yu,  W.  W.  Falkner,  J.  C.  Yavuz,  C.  T.  &  Colvin,  V.  L.  Synthesis  of  monodisperse  iron  oxide  

nanocrystals  by  thermal  decomposition  of  iron  carboxylate  salts.  Chemical  Communications,  2306–2307  (2004).  

2.   Förster,  S.  Apostol,  L.  &  Bras,  W.  Scatter.  Software  for  the  analysis  of  nano-­‐  and  mesoscale  small-­‐angle  scattering.  Journal  of  Applied  Crystallography  43,  639–646  (2010).  

3.   Förster,  S.  et  al.  Scattering  Curves  of  Ordered  Mesoscopic  Materials.  Journal  Physical  Chemistry  B  109,  1347–1360  (2005).  

4.   R.  C.  Weast  (ed.).  Handbook  of  Chemistry  and  Physics  (CRC  Press,  Boca  Raton  Florida,  USA,  1985).  

5.   Habenschaden,  E.  &  Küppers,  J.  Evaluation  of  Flash  Desorption  Spectra.  Surface  Science,  L147-­‐L150  (1984).  

6.   Redhead,  P.  A.  Thermal  desorption  of  gases.  Vacuum  12,  203–211  (1962).  

7.   Xu,  M.  et  al.  Dissociation  of  formic  acid  on  anatase  TiO2(101)  probed  by  vibrational  spectroscopy.  Catalysis  Today,  12–15  (2012).  

8.   Buchholz,  M.  et  al.  The  Interaction  of  Formic  Acid  with  Zinc  Oxide.  A  Combined  Experimental  and  Theoretical  Study  on  Single  Crystal  and  Powder  Samples.  Top.  Catal.  174–183  (2015).  

9.   Snyder,  R.  G.  Maroncelli,  M.  Strauss,  H.  L.  &  Hallmark,  V.  M.  Temperature  and  phase  behavior  of  infrared  intensities.  the  poly  (methylene)  chain.  Journal  of  Physical  Chemistry  A  90,  5623–5630  (1986).  

10.  Snyder,  R.  G.  Strauss,  H.  L.  &  Elliger,  C.  A.  Carbon-­‐hydrogen  stretching  modes  and  structure  of  n-­‐alkyl  chains  1.  Long,  disordered  chains.  Journal  of  Physical  Chemistry  A  86,  5145–5150  (1982).  

 

21    

11.  Templeton,  A.  C.  Hostetler,  M.  J.  Kraft,  C.  T.  &  Murray,  R.  W.  Reactivity  of  Monolayer-­‐Protected  Gold  Cluster  Molecules.  Steric  Effects.  Journal  of  American  Chemical  Society  120,  1906–1911  (1998).  

12.  Tandon,  P.  Förster,  G.  Neubert,  R.  &  Wartewig,  S.  Phase  transitions  in  oleic  acid  as  studied  by  X-­‐ray  diffraction  FT-­‐Raman  spectroscopy.  Journal  of  Molecular  Structure  524,  201–215  (2000).  

13.  Hayden,  B.  E.  King,  A.  &  Newton,  M.  A.  Fourier  transform  relection-­‐adsorption  IR  spectroscopy  study  of  formate  adsorption  on  TiO2(110).  Journal  Physical  Chemistry  B  103,  203–208  (1999).  

14.  Nakatsuji,  H.  Yoshimoto,  M.  Umemura,  Y.  Takagi,  S.  &  Hada,  M.  Theoretical  study  of  the  chemisoption  and  surface  reaction  of  HCOOH  on  a  ZnO(1010)  surface.  Journal  Physical  Chemistry  B  100,  694–700  (1996).  

15.  Yanase,  A.  &  Hamada,  N.  Electronic  structure  in  high  temperature  phase  of  Fe3O4.  Journal  of  the  Physical  Society  of  Japan  68,  1607–1613  (1999).  

16.  Z.  L.  Wang  (ed.).  Handbook  of  Nanophase  and  Nanostructured  Materials-­‐Characterization  (Kluwer  Academic  Plenum  Publishers,  New  York,  2002).  

17.  Wandelt,  K.  Photoemission  studies  of  adsorbed  oxygen  and  oxide  layers.  Surface  Science  Reports  2,  1–121  (1982).  

18.  Dubbel,  H.  Grote,  K.  H.  &  Feldhusen,  J.  Taschenbuch  für  den  Maschinenbau.  22nd  ed.  (Springer,  Berlin,  2007).  

19.  Sneddon,  I.  N.  The  relation  between  load  and  penetration  in  the  axisymmetric  boussinesq  problem  for  a  punch  of  arbitrary  profile.  International  Journal  of  Engineering  Science  3,  47–57  (1965).  

20.  Han,  L.  Wang,  L.  Song,  J.  Boyce,  M.  C.  &  Ortiz,  C.  Direct  Quantification  of  the  Mechnaical  Anisotropy  and  Fracture  of  an  Individual  Exoskeleton  Layer  via  Uniaxial  Compression  of  Micropillars.  Nano  Letters  11,  3868–3874  (2011).  

21.  Bonderer,  L.  J.  Studart,  A.  R.  &  Gauckler,  L.  J.  Bioinspired  Design  and  Assembly  of  Platelet  Reinforced  Polymer  Films.  Science,  1069–1073  (2008).  

22.  Podsiadlo,  P.  et  al.  Ultrastrong  and  Stiff  Layered  Polymer  Nanocomposites.  Science  318,  80–83  (2007).  

23.  Walther,  A.  et  al.  Large-­‐area,  lightweight  and  thick  biomimetric  composites  with  superior  material  properties  via  fast,  economic  and  green  pathways.  Nano  Letters,  2742–2748  (2010).  

24.  Munz,  D.  &  Fett,  T.  Ceramics.  Mechanical  Properties,  Failure  Behaviour,  Materials  Selection.  2nd  ed.  (Springer,  Berlin,  2001).  

25.  ASTM.  Standard  Practice  for  Reporting  Uniaxial  Strength  Data  and  Estimating  Weibull  Distribution  Parameters  for  Advanced  Ceramics.  

26.  Israelachvili,  J.  Intermolecular  and  Surface  Forces  (Academic  Press,  Amsterdam,  2006).