organic chemistry – the functional group...

26
1 YSU YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.) non-polar (grease, fats) tetrahedral OH alcohol polar (water soluble) tetrahedral Br halide non-polar (water insoluble) tetrahedral alkene non-polar (water insoluble) trigonal alkyne non-polar (water insoluble) linear aromatic non-polar (water insoluble) flat aldehyde/ketone polar (water soluble) trigonal imine polar (water soluble) trigonal O NH YSU YSU Organic Chemistry – The Functional Group Approach OCH 3 carboxylic ester polar (water-solube) trigonal NH 2 carboxylic amide polar (water soluble) trigonal Cl acyl halide non-polar (reacts w/water) trigonal O acid anhydride non-polar (reacts w/water) trigonal O O O O O hydrate polar (water soluble) tetrahedral acetal non-polar (water insoluble) tetrahedral amine polar (water soluble) tetrahedral OH carboxylic acid polar (water soluble) trigonal NH 2 O HO OH H 3 CO OCH 3

Upload: vokhanh

Post on 27-May-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

1

YSUYSU

Organic Chemistry – The Functional Group Approach

alkane(no F.G.)

non-polar (grease, fats)

tetrahedral

OH

alcohol

polar (water soluble)

tetrahedral

Br

halide

non-polar (water insoluble)

tetrahedral

alkene

non-polar (water insoluble)

trigonal

alkyne

non-polar (water insoluble)

linear

aromatic

non-polar (water insoluble)

flat

aldehyde/ketone

polar (water soluble)

trigonal

imine

polar (water soluble)

trigonal

O NH

YSUYSU

Organic Chemistry – The Functional Group Approach

OCH3

carboxylic ester

polar (water-solube)

trigonal

NH2

carboxylic amide

polar (water soluble)

trigonal

Cl

acyl halide

non-polar (reacts w/water)

trigonal

O

acid anhydride

non-polar (reacts w/water)

trigonal

O O O O O

hydrate

polar (water soluble)

tetrahedral

acetal

non-polar (water insoluble)

tetrahedral

amine

polar (water soluble)

tetrahedral

OH

carboxylic acid

polar (water soluble)

trigonal

NH2 OHO OH H3CO OCH3

Page 2: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

2

YSUYSU

Organic Chemistry – The Functional Group Approach

alkane(no F.G.)

non-polar (grease, fats)

tetrahedral

OH

alcohol

polar (water soluble)

tetrahedral

Br

halide

non-polar (water insoluble)

tetrahedral

alkene

non-polar (water insoluble)

trigonal

alkyne

non-polar (water insoluble)

linear

aromatic

non-polar (water insoluble)

flat

aldehyde/ketone

polar (water soluble)

trigonal

imine

polar (water soluble)

trigonal

O NH

YSUYSU

Organic Chemistry – The Functional Group Approach

alkane(no F.G.)

non-polar (grease, fats)

tetrahedral

OH

alcohol

polar (water soluble)

tetrahedral

Br

halide

non-polar (water insoluble)

tetrahedral

alkene

non-polar (water insoluble)

trigonal

alkyne

non-polar (water insoluble)

linear

aromatic

non-polar (water insoluble)

flat

aldehyde/ketone

polar (water soluble)

trigonal

imine

polar (water soluble)

trigonal

O NH

Page 3: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

3

YSUYSU

Carey Chapter 4 – Alcohols and Alkyl Halides

Figure 4.2 – Electron density maps of CH3OH and CH3Cl

YSUYSU

Alcohols and Halogens in Medicine and Nature

ChloramphenicolAcetaminophen

O2NHN

O

OH OH

Cl

Cl

Valium

Page 4: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

4

YSUYSU

4.2 IUPAC Nomenclature of Alkyl Halides

• Functional class nomenclature

pentyl chloride cyclohexyl bromide 1‐methylethyl iodide

• Substitutive nomenclature

2‐bromopentane 3‐iodopropane 2‐chloro‐5‐methylheptane

YSUYSU

4.3 IUPAC Nomenclature for Alcohols

1‐pentanolcyclohexanol

2‐propanol

2‐pentanol 1‐methyl cyclohexanol 5‐methyl‐2‐heptanol

Page 5: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

5

YSUYSU

4.4 Classes of Alcohols and Alkyl Halides

Cl OHBr

OH ICl

BrCH3

(CH3)3COHCH2CH3

Cl

Primary (1o)

Secondary (2o)

Tertiary (3o)

YSUYSU

4.5 Bonding in Alcohols and Alkyl Halides

Figure 4.1

Page 6: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

6

YSUYSU

4.5 Bonding in Alcohols and Alkyl Halides

Figure 4.2 – Electron density maps of CH3OH and CH3Cl

YSUYSU

4.6 Physical Properties – Intermolecular Forces

CH3CH2CH3 CH3CH2F CH3CH2OH

propane                         fluoroethane ethanol

b.p. ‐42 oC ‐32 oC 78 oC

Page 7: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

7

YSUYSU

4.6 Physical Properties – Intermolecular Forces

Figure 4.4

YSUYSU

4.6 Physical Properties – Intermolecular Forces

Figure 4.4

Page 8: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

8

YSUYSU

4.6 Physical Properties – Water Solubility of Alcohols

Alkyl halides are generally insoluble in water (useful in lab)

YSUYSU

4.6 Physical Properties – Water Solubility of Alcohols

Solubility is a balance between polar and non‐polar characteristics

Page 9: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

9

YSUYSU

4.6 Physical Properties – Water Insolubility

Biochemistry involves a delicate balance of “like dissolves like”

Cholesterol – non‐polar alcohol Limited solubility in water Precipitates when to concentrated Results in gallstones

YSUYSU

4.7 Preparation of Alkyl Halides from Alcohols and H-X

R OH + H X R X + H O H

alcohol hydrogen halide alkyl halide water

Lab Conditions

Page 10: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

10

YSUYSU

4.8 Mechanism of Alkyl Halide Formation

Mechanism – a description of how bonds are formed and/or broken when 

converting starting materials (left hand side) to products (right hand side)

Usually involves solvents and reagents, sometimes catalysts

Curved arrows are used to describe the chemical changes 

YSUYSU

4.8 Reaction of a Tertiary Alcohol with H-Cl

Look for chemical changes – which bonds are formed or broken?

learn the outcome of reaction in order to get going quickly

recognize the nature of the organic substrate (1o, 2o, 3o?)

be aware of the reaction conditions (acidic, basic, neutral?)

Page 11: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

11

YSUYSU

4.8 Reaction of a Tertiary Alcohol with H-Cl

YSUYSU

4.8 Energetic description of mechanism - Step 1 : protonation

Figure 4.6

Page 12: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

12

YSUYSU

4.8 Energetic description of mechanism - Step 2 : carbocation

Figure 4.7

YSUYSU

4.8 Energetic description of mechanism - Step 3 : trap cation

Figure 4.9

Page 13: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

13

YSUYSU

4.9 Full mechanism “pushing” curved arrows

H3C

CH3C

H3C

O H

H Cl H3C

CH3C

H3C

Cl

H3C

CH3C

H3C

O H

H

C

CH3

H3C CH3Cl

Cl

(+ H2O)

H Cl

(- H2O)

YSUYSU

4.9 Full SN1 mechanism showing energy changes

Figure 4.11

Page 14: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

14

YSUYSU

4.10 Carbocation structure and stability

Figure 4.8

YSUYSU

Hyperconjugation – the donation of electron densityfrom adjacent single bonds

4.10 Carbocation structure and stability

Figure 4.15

Page 15: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

15

YSUYSU

4.10 Relative carbocation stability

Figure 4.12

YSUYSU

4.11 Relative rates of reaction of R3COH with HX

Related to the stability of the intermediate carbocation:

Page 16: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

16

YSUYSU

4.11 Relative rates of reaction of R3COH with HX

Rate‐determining step involves formation of carbocation

Figure 4.16

YSUYSU

4.12 Reaction of methyl- and 1o alcohols with HX – SN2

Same bonds are formed and broken as in 3o case, however;

CH3 and 1o carbon cannot generate a stabilized carbocation

kinetic studies show the rate‐determining step is bimolecular

sequence of bond‐forming/breaking events must be different

Page 17: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

17

YSUYSU

4.12 Reaction of methyl- and 1o alcohols with HX – SN2

Alternative pathway for alcohols that cannot form a good carbocation

YSUYSU

4.12 Geometry changes during SN2

http://www.bluffton.edu/~bergerd/classes/cem221/sn‐e/SN2.gif

Page 18: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

18

YSUYSU

4.12 Energy profile for SN2 reaction

YSUYSU

4.13 Other methods for converting ROH to RX

OH PBr3 BrSOCl2Cl

Convenient way to halogenate a 1o or 2o alcohol

Avoids use of strong acids such as HCl or HBr

Via SN2 mechanism at 1o and CH3 groups

Page 19: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

19

YSUYSU

4.14 Free Radical Halogenation of Alkanes

heterolytic

homolytic

Possible modes of bond cleavage

YSUYSU

4.15 Free Radical Chlorination of Methane

CH4 + Cl2

CH3Cl + Cl2(~400oC)

CH2Cl2 + Cl2

CHCl3 + Cl2

(~400oC)

(~400oC)

(~400oC)

CH3Cl + HCl

CH2Cl2 + HCl

CHCl3 + HCl

CCl4 + HCl

Page 20: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

20

YSUYSU

4.16 Structure and stability of Free Radicals

Figure 4.17 – Bonding models for methyl radical

YSUYSU

4.16 Structure and stability of Free Radicals

Free radical stability mirrors that of carbocations

Hyperconjugation is the main factor in stability

Experimental evidence that radicals are flat (sp2)

Page 21: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

21

YSUYSU

4.16 Bond Dissociation Energies (BDE)

YSUYSU

4.16 Bond Dissociation Energies (BDE)

104                    58                                    83.5                   103

Page 22: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

22

YSUYSU

4.17 Mechanism for Free Radical Chlorination of Methane

YSUYSU

4.17 Mechanism for Free Radical Chlorination of Methane

Page 23: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

23

YSUYSU

4.17 Mechanism for Free Radical Chlorination of Methane

YSUYSU

4.17 Mechanism for Free Radical Chlorination of Methane

Page 24: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

24

YSUYSU

4.18 Free Radical Halogenation of Higher Alkanes

YSUYSUYSUYSU

4.18 Free Radical Halogenation of Higher Alkanes

Radical abstraction of H is selective since the stability of the ensuing radical is reflected in the transition state achieved during abstraction.

Cl H CH2CH2CH2CH3

Cl H CHCH2CH3

CH3

Lower energy radical, formed faster

Page 25: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

25

YSUYSU

4.18 Free Radical Halogenation of Higher Alkanes

Figure 4.16

YSUYSU

4.18 Bromine radical is more selective than chlorine radical

Consider propagation steps – endothermic with Br∙, exothermic with Cl∙

Page 26: Organic Chemistry – The Functional Group Approachpeople.ysu.edu/~pnorris/Semesters/3719F2009/Slides/...1 YSU Organic Chemistry – The Functional Group Approach alkane (no F.G.)

26

YSUYSU

4.18 Bromine radical is more selective than chlorine radical

Bromination – late TS looks a lot like radical

Chlorination – early TS looks less like radical