optimal electronic circuits and microsystems networked designer optimal electronic circuits and...

58
OPTIMAL ELECTRONIC CIRCUITS and OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED MICROSYSTEMS NETWORKED DESIGNER DESIGNER Prof. ANATOLY PETRENKO National Technical University of Ukraine “Kiev Polytechnic Institute”, Tel./FAX +380 44 280 90 46, e-mail: [email protected]

Upload: luke-cole

Post on 12-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

OPTIMAL ELECTRONIC CIRCUITS and OPTIMAL ELECTRONIC CIRCUITS and

MICROSYSTEMS NETWORKED MICROSYSTEMS NETWORKED DESIGNERDESIGNER

Prof. ANATOLY PETRENKO National Technical University of Ukraine

“Kiev Polytechnic Institute”, Tel./FAX +380 44 280 90 46,

e-mail: [email protected]

Page 2: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 2

OutlineOutline

• Networked CAD tools • International co-operation

Experience• ALLTED – All Technology

Designer • Novel numerical methods• Results of solving the

benchmark circuits • Optimization example• AND Logical Circuit on OET • Possible co-operation

Page 3: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 3

Networked CAD tools

• Remote access to CAD tools and collectively execution the joint Projects ;

• Meeting different requirements to hardware of a server and a client ;

• New level of functional cooperation via GRID infrastructure;

• Possibilities for Small and Middle enterprises to take a part in international work force distribution developing competitive products.

Page 4: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 4

ALLTED – All Technology Designer

Previous versions of this system (named SPARS, PRAM-01, PRAM-PK, PRANS for EC and SM computers) were used in the former Soviet Union as the branch Ministry of the Defense industry standard OST V3-4776-80 for circuit design automation and similar standards for the Ministries of General and Average Machinobuilding and Radio industry.

ALLTED is especially useful in the development of new products which combine various physical phenomena in one device

Page 5: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 5

International co-operation ExperienceInternational co-operation Experience• Digital (Alpha Processor simulation)

• Intel (Parallel computation, Formal verification, Layout extraction, VLSI Interconnects Model-Order Reduction ,ALOE to Cadence / Cadence to ALOE converters )

• General Electric (MEMS Model design)

• Motorola ( Signal Processors implementation)

• Sun ( Layout verification)

• Panasonic (Remote Access to Networked Appliances )• Melexes (VLSI design with 0.25 u)

• HPC –Germany ( RF circuits design)

• EC Projects ( Tempus, Inco- Copernicus)

• STCU Projects ( Remote Simulation, MEMS Design)

Page 6: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 6

Layout visualizationLayout visualization

Page 7: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 7

PostGL-3D Open GL ViewerPostGL-3D Open GL Viewer

Page 8: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 8

ALLTED – All Technology Designer

• ALLTED is an acronym for ALL TEchnology Designer. It was developed not only for simulation and analysis, but for processing project procedures such as: – parametric optimization tasks;– optimal tolerance assignments;– centering availability regions;– yield maximization;– design of Nonlinear Dynamic Systems composed of

either/and electronic, hydraulic, pneumatic, mechanical, electromagnetic, and other elements.

Page 9: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 9

ALLTED – All Technology Designer

Page 10: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 10

ALLTED – Shematic editor

Page 11: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 11

ALLTED in distributed Web environment

Allted Studio

ComputationCoordinator

Workstation

The Internet/message exchange

protocol

Librarian

Postprocessor

Calculation module

Wrapper

Local Data

ResourceCatalog

DirectoryService

DBMS

Page 12: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 12

ALLTED usage examplesALLTED usage examples

Page 13: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 13

ALLTED usage examplesALLTED usage examples

Page 14: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 14

ALLTED usage examplesALLTED usage examples

Page 15: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 15

ALLTED usage examplesALLTED usage examples

Page 16: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 16

ALLTED usage examplesALLTED usage examples

Page 17: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 17

ALLTED usage examplesALLTED usage examples

Page 18: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 18

System on a ChipSystem on a Chip

Page 19: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 19

System on a ChipSystem on a Chip

Page 20: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 20

ALLTED offers:

• Faster simulation speed and improved numerical convergence;• Sensitivity analysis for frequency and transient analyses; • Comprehensive optimization procedure and optimal

tolerances assignment ;• Alternative approach to the secondary response parameters

determination (delays, rise and fall times, etc.); • Powerful user-defined modeling capability .• Original way of generating a system-level model of MEMS

from FEM component equations.

Page 21: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 21

Novel numerical methods

• The new solution curve-search method for Steady State (DC) Analysis which provides the quick descent to

the solution point region from any starting point

• The Diagonal Modification Method which helps considerably preserve convergence of linearized equations solution without re-ordering when matrix element values change from one iteration to another iteration .

• The Optimization Variable-order Methods which is equivalent to taking into consideration five terms of Tailor’s series for the Goal function which considerably improve determination of a direction to the optimal point

Page 22: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 22

Novel numerical methods

• The Implicit Linear Multi-step Variable-order Integration Method for Transient Analysis(TR) which uses high order back differences that allows to select the proper one resulting in minimization of solution time for prescribed accuracy .

• The Optimal Tolerances Assignment Method which is based on applying Optimization procedures and takes into account the prescribed deviations of Controlled Output Parameters

• Statistical Yield Maximization Method which provides “centering” the solution point in the region of acceptable solutions

Page 23: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 23

DC Method Example 1DC Method Example 1

EVVRIVVf T 13 ex pD i o d e c i r c u i t e x a m p l e

f ( V )

V

N e w t o n ’ s s t e p

C S - p a t hS t a r t

VE

Page 24: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 24

Diagonal modification methodDiagonal modification method

It helps considerably preserve convergence of linearized equations solution without re-ordering : Ajx=b

Let during calculation jkk

a ,

tkekgkejAjA , where 0100ke ...... .

From two solutions kezjA and bXjA

we shall get the initial solution in hand:

ZXX

qzx

k

k

k

1

Page 25: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 25

TR solution approachTR solution approach

1 . P o s s i b l e e r r o r s a r e e s t i m a t e d f o r 1 , 2 , . . . , k + 1 o r d e r s o f i m p l i c i ti n t e g r a t i o n m e t h o d :

D D Dk

E E E1 2 1, , . . . , ,

1 6 kw h i c h a r e i n t h e f o r m :

T

n n knk

nh

t t X

1

11

1 .

2 A t e a c h t i m e s t e p m a x i m u m p o s s i b l e e r r o r v a l u e i s s e l e c t e d a n dc o r r e s p o n d e d o r d e r k i s u s e d .3 . N e w t i m e s t e p i s m o d i f i e d b y

j ji

D

kh h eE

1 1 .

w h e r e ( = E h / T ) - a n e r r o r , w h i c h c h o o s i n g b y c u s t o m e r

4 . C o m p o s e I m p l i c i t - E x p l i c i t p r o c e d u r e s ( E x p l i c i t P E C E m e t h o d a n d I m p l i c i t N e w t o n ’ s i n t e r p o l a t i o n f o r m u l a a s H i g h o r d e r b a c k d i f f e r e n c e s m e t h o d )

Page 26: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 26

Optimization Variable order methodOptimization Variable order method

It allows:

to generalize existing methods (steepest descent method, damped Newton's method, etc.) ;

to decrease weight of a line search in determine next point during optimization procedure.

X X X X X X X

X X X X

t

0 0 0

03

04

1

2

9''''

The matrices of fourth and fifth terms are determined through Hessian and Jacobian matreces

Page 27: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 27

INTEL AWARD

Конкурс исследовательских проектов области автоматизации Проектирования интегральных схем

награждается

ПЕТРЕНКО АНАТОЛИЙ ИВАНОВИЧ

Национальный Технический Университет Украины «Киевский политехнический институт

ПРОЕКТ

Разработка эффективных численных методов моделирования и оптимизации схемотехнических решений для СБИС

Page 28: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 28

Results of solving the benchmark circuits of the Microelectronics Center in North

Carolina

Circuit ALLTED PSPICE Gain

Iteration Iteration

INPUT 358 755 2.11

CHARGE 4682 7625 1.63

FADD32 873 2280 2.61

Page 29: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 29

CHARGE Circuit with BISIM 49 ModelsCHARGE Circuit with BISIM 49 Models

M12

M1 M2

M13 M14

M3 M4

M15

M5

M16 M17

M6 M7

M18

M8

M19 M20

M9 M10

M21

M11

Out

Ecc

M22

M23Evin

Page 30: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 30

ALLTEDALLTED and PSPICE v.9.2 outputs: and PSPICE v.9.2 outputs:

Page 31: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 31

FADD32FADD32 Circuit (288 transistors) Circuit (288 transistors)

Cin

A1

B1

Cout

Out

FullAdddd1

Cin

A1

B1

Cout

Out

FullAdd2

Cin

A1

B1

Cout

Out

FullAdd3

Cin

A1

B1

Cout

Out

FullAdd4

M1

M3

M2

M4

VSS

VDD

Out

InputB

InputA

InA InB

Out

CNAND1 A1

A2

Out

FullAd

Cin

R1 R2 Out

HALFADD1 S3

R1 R2 Out

HALFADD2

S3

Cout

InA InB

Out

CNAND1

InA InB

Out

CNAND2

InA InB

Out

CNAND3 InA InB

Out

CNAND4

RAMP1

RAMP2

S3

Out

HALFADD

Page 32: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 32

ALLTED and PSPICE v.9.2 outputsALLTED and PSPICE v.9.2 outputs

Page 33: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 33

Simulation results obtained by ALLTED and Simulation results obtained by ALLTED and HSPICEHSPICE

Circuit DC Iteration number, ALLTED

DC Iteration number, HSPICE

TR Iteration number, ALLTED

TR Iteration number, HPSPICE

Bjtinv 95 96 1340 3239

Gm3 80 185 149 219

Make2 12 10 527but 256 steps

327outputs aredistorted

Page 34: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 34

MIKE2 Circuit with bsim13 models:MIKE2 Circuit with bsim13 models:

Page 35: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 35

ALLTED and HSPICE outputs for ALLTED and HSPICE outputs for Mike2_bisim13:Mike2_bisim13:

Page 36: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 36

ALLTEDALLTED statistics of the transient analysis statistics of the transient analysis of of Mike 2Mike 2

• S t a t i s t i c s• Number of steps = 256• Number of iterations = 528• Number of steps per order:• order - 0 - = 26• order - 1 - = 46• order - 2 - = 90• order - 3 - = 71• order - 4 - = 19• order - 5 - = 4• order - 6 - = 0• Number of rejected steps = 23• HSPICE uses only 2-d order integration formula

Page 37: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 37

Optimization example 1

Circuit: Operational Amplifier

RCA 3040 with 11 transistors

Task: calculate the resistances R1, R3

and R4 values in such a way, that the

output impulse amplitude on resistor

R11 would be equal to 8 V.

0.1       <=        R1       <=        10

0.1K    <=        R3       <=         10

0.1K    <=        R4       <=         10K

Page 38: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 38

Optimization example 1Task file:• tr;• optim;• const DCERR=1.e-6;• const tmax=90, MINSTEP=1e-4,

ERR=0.01, LERR=0.1, REVAL=3;

• # TR OUTPUT parameters• fix T3=MINF(UR11); • fix T4=MAXF(UR11); • INT DURF=T4-T3;• const method=120;• varpar R1(0.01,10), R3(1,100),

R4(1,100);• of DIF1 = F1(8/DURF);• plot Ur11;

Objective function DIF1 = .3146487870E-07• R E S U L T S O F O P T I M I Z A T

I O N Variable parameters R1 = .1000000000E+01 R3 = .6778549874E+01 R4 = .6778549874E+01

Directive F I X output characteristics• T3 = 2.47580528 • T4 = 10.4756279 Directive I N T output characteristics

• DURF = 7.99982262

Page 39: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 39

Optimization example 2Circuit: Active RC filter RAD• Task;• dc;• ac;• optim;• const lfreq=0.0025,

ufreq=0.005,METHOD=152;• TF K1=V6/UE1; • plot MA.K1; • fix f1=MAXA(MA.K1); • fix f2=MAXF(MA.K1)• func f5=F7(1/f2);• of error=f5(1/f5);• varpar Alpha.OP1(3E1,4E3),

Alpha.OP2(0.6E1,1E3);• limit Lim2=F2(0.003734/f1);

RESULTS OF OPTIMIZATION

ERROR = 0.1786038652D-01 Variable parameters ALPHA.OP1 = 0.3709765013D+04 ALPHA.OP2= 0.1000000000D+04

ALPHA.OP1ALPHA.OP2

= 0.3709765013D+04= 0.1000000000D+04

Constraints

LIM2

Page 40: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 40

Interactive Tasks formationInteractive Tasks formation

Page 41: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 41

Optimal tolerance assignment example:

Circuit: Operational Amplifier RCA 3040 with 11 transistors

Task: calculate the resistances R2, R3 and voltage source E2 tolerances values

for which the output minimal voltage UR11 changes +/- 5% of its value.task;

dc;

tr;

tolas;

const tmax=90 ,ERR=0.01,

LERR=0.1, REVAL=3;

FIX UM=minf(UR11);

const TOLERR=0.001;

control UM(5,5);

varpar E2(10),R2,R3(10);

O P T I M A L T O L E R A N C E S

***********************************

Parameter Nominal Tolerance

value % abs

E2 .1200000000E+02 +- 19.682 +- -.2361829758E+01

R2 .1000000015E+00 +- 4.614 +- .4613934550E-02

R3 .1000000000E+01 +- 3.697 +- .3696829081E-01

Page 42: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 42

Mixed Analyses example

Macromodel 2-input AND Cell (0,1,2,3);

j1(1,0)=f300(ut,rbx/uj1);

j2(2,0)=f300(ut,rbx/uj2);

e1(3,0)=f310(u1,u0,f1,d1,f0,d0,r1,r0,-1/ue1,ie1);

list m1.icand;

rbx=50; ut=1; u0=0.3; u1=2.4; f1=-1; d1=10;

f0=-1; d0=10; r1=0.1; r0=0.02;

Now we are going to provide possibilities

for users to access NetALLTED resources through the Internet for optimal

Microsystems design.

Page 43: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 43

The example of Micro-machined Ultrasonic Transducer simulation

Model Membr00 ( Vin, Center, Base ); • Jcap (Vin, Base) = F253 ( eps_0, area, dred / UJcap, UJvel, UJx); • Ls(Center,Base) = compl; • Ga(Center,Base) = damp; • Cm(Center,Base) = mass; • Jst(Center,Base)=F42(10., gap, 128, 0.1 / UJx, UJvel); • Jel(Base,Center) = F252 ( 8.842e-12, 1963., 1.06 / UJcap, UJx ); • Jvel(Center,Base)=0; • Jdx(Base,x)=f249(1/UJvel); • Cx(x,Base)=1; • Jx(x,Base)=0; • Jfqs(Base,x) = f250( 1. / IJel ); • Jfss(x,Base) = f250( stiff / UJx ); • Jfst(Base,x) = f251( 10., gap, 1000. / UJx );

Page 44: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 44

AND Logical Circuit on OETAND Logical Circuit on OET

One-electron transistor model

Page 45: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 45

Microwave Devices in ALLTEDMicrowave Devices in ALLTED

• Model of transmission line with a negative inductance

H

W

ErT

L

Fig. 8 The

Page 46: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 46

ALLTED adaptation to a new applicationALLTED adaptation to a new application

• New components mathematical models incorporating ( in equations form)

• New graphical symbols for components, if any• New sections in library with components parameters• OF, LIMIT and FUNC libraries upgrading

if any• Numerical procedures constants adjusting for new types of

tasks

Page 47: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 47

MEMS Simulation levelMEMS Simulation level

System levelSystem level

Components levelComponents level

Circuit levelCircuit level

Page 48: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

Model Order reductionModel Order reduction

( ) ( ) ( )

( ) ( )T

X t AX t Bv t

Y t C X t

( ) ( ) ( )

( ) ( )T

x t Ax t Bv t

y t C x t

(Krylov- Arnoldi Method)(Krylov- Arnoldi Method)

Page 49: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 49

Circuit model reduction methodCircuit model reduction method

( )T T

Mx Dx Kx BF t

y Q x R x

,Y v F Y C G L

1

, , 1(1) ,

, 1(1) .

ij ij

N

ii ijj

C m i j N i j

C m i N

1

1/ , , 1(1) ,

1/ , 1(1) .

ij ij

N

ii ijj

L k i j N i j

L k i N

1

, , 1(1) ,

, 1(1) .

ij ij

N

ii ijj

G d i j N i j

G d i N

Page 50: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 50

Y/∆ transformationY/∆ transformation

* ,ji ikjk jk

ii

y yy y

Y

1

k

2

i

y1

yk

y2

1

2

k

y1 y2

yk

L

R

Ci

/RCi i iC G

/RCi i iC G /LCi i iC B

Page 51: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 51

Y/∆ transformationY/∆ transformation

Для складних 2-х і 3-х вимірних компонентів схемні моделі можуть мати дуже велику розмірність, ґтак що їхпорядок теж треба скорочувати

RCi LCi LCi RCi

Page 52: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 52

Y/∆ transformationY/∆ transformation

Для складних 2-х і 3-х вимірних компонентів схемні моделі можуть мати дуже велику розмірність, ґтак що їхпорядок теж треба скорочувати

RCi LCi

Page 53: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 53

MicroaccelerometerMicroaccelerometer

Page 54: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 54

The finite element model of the The finite element model of the accelerometeraccelerometer

Page 55: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 55

Eigenfrequencies of MicroaccelerometerEigenfrequencies of Microaccelerometer

n = 1; f = 181,36 kHz n = 2; f = 1018,1 kHz

n = 3; f = 1018,1 kHz n = 4; f = 3427,8 kHz

Page 56: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 56

Electrical Circuit Reduction ResultsElectrical Circuit Reduction Results

Page 57: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 57

Possible Project TasksPossible Project Tasks

• ALLTED facilities Testing on Samsung Examples (optimization, tolerance assignment, yield maximization, DC conversion, RF design etc.)

• Adaptation and enrichment of ALLTED component models Library (including new ones, say, for CCD , MEMS and IP Solutions), using semantic formats

• Developing parallel numerical simulation algorithms for a supercomputer

• Implementation of parallel ALLTED version in Grid environment and providing possibilities of remote its executing through Internet

• Development of the methodology of IC energy consumption minimization based on ALLTED optimization procedures (say, by varying W and L of transistors and keeping the given frequency value).

Page 58: OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER OPTIMAL ELECTRONIC CIRCUITS and MICROSYSTEMS NETWORKED DESIGNER Prof. ANATOLY PETRENKO

SW, EB, Grid 58

Thanks you very much !Thanks you very much !