optical spectroscopy for nanoparticles-can

Upload: dao-van-hoat

Post on 04-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    1/19

    Optical SpectroscopyOptical Spectroscopyonon

    Semiconductor NanostructuresSemiconductor Nanostructures

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    2/19

    OutlineOutline

    BackgroundBackground

    99 Low dimensional nanostructuresLow dimensional nanostructures

    From bulk to quantum dotsFrom bulk to quantum dots

    99 Optical spectroscopy techniquesOptical spectroscopy techniques

    ResultsResults

    99 Optical spectroscopy onOptical spectroscopy on Quantum wiresQuantum wires

    Quantum dotsQuantum dots

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    3/19

    Low dimensional nanostructuresLow dimensional nanostructures

    EEGG

    3D

    DOS

    3D

    DOS

    2D

    DOS

    2D

    DOS

    1D

    DO

    S

    1D

    DO

    S

    0D

    DO

    S

    0D

    DO

    S

    EEGG

    EEGG EEGG

    EnergyEnergy EnergyEnergy

    EnergyEnergyEnergyEnergy

    EE11 EE22 EE33

    EE1111 EE1212 EE1313 EE111111 EE112112 EE113113

    (a)(a) (b)(b)

    (c)(c) (d)(d)

    tz

    tz

    ty

    tz

    tytx

    EEGG

    3D

    DOS

    3D

    DOS

    2D

    DOS

    2D

    DOS

    1D

    DO

    S

    1D

    DO

    S

    0D

    DO

    S

    0D

    DO

    S

    EEGG

    EEGG EEGG

    EnergyEnergy EnergyEnergy

    EnergyEnergyEnergyEnergy

    EE11 EE22 EE33

    EE1111 EE1212 EE1313 EE111111 EE112112 EE113113

    (a)(a) (b)(b)

    (c)(c)

    (d)(d)

    tz

    tz

    ty

    tz

    ty

    tz

    tytx

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    4/19

    Example: QWRExample: QWR

    Return to selfReturn to self--

    limited profilelimited profile

    GaGa--rich VQWrich VQW

    AlGaAs barrierAlGaAs barrier

    GaAs QWRGaAs QWR

    20 nm20 nm

    (a)(a) (b)(b)

    zz

    xx

    TT((xx))

    cbcb

    vbvb

    Electron 1DElectron 1D

    subbandssubbands

    Hole 1DHole 1D

    subbandssubbands

    HighHigh

    bandgapbandgap

    LowLow

    bandgapbandgap

    Return to selfReturn to self--

    limited profilelimited profile

    GaGa--rich VQWrich VQW

    AlGaAs barrierAlGaAs barrier

    GaAs QWRGaAs QWR

    20 nm20 nm

    Return to selfReturn to self--

    limited profilelimited profile

    GaGa--rich VQWrich VQW

    AlGaAs barrierAlGaAs barrier

    GaAs QWRGaAs QWR

    20 nm20 nm

    Return to selfReturn to self--

    limited profilelimited profile

    GaGa--rich VQWrich VQW

    AlGaAs barrierAlGaAs barrier

    GaAs QWRGaAs QWR

    20 nm20 nm

    (a)(a) (b)(b)

    zz

    xx

    TT((xx))

    cbcb

    vbvb

    Electron 1DElectron 1D

    subbandssubbands

    Hole 1DHole 1D

    subbandssubbands

    HighHigh

    bandgapbandgap

    LowLow

    bandgapbandgap

    zz

    xx

    TT((xx))

    cbcb

    vbvb

    Electron 1DElectron 1D

    subbandssubbands

    Hole 1DHole 1D

    subbandssubbands

    HighHigh

    bandgapbandgap

    LowLow

    bandgapbandgap

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    5/19

    Example: QDsExample: QDs

    S-K Growth Pyramidal QDs

    22 mm22 mm

    QD

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    6/19

    Optical spectroscopy techniquesOptical spectroscopy techniques

    Barrier continuumBarrier continuum

    CBCB

    VBVB

    Non

    radiative

    Non

    radiative

    hh outouthh inin

    SampleSample

    Exciting lightExciting light

    (a)(a) (b)(b)

    MicroscopeMicroscope

    objectiveobjective

    (c)(c)

    SNOMSNOM

    tiptip(d)(d)

    ElectronElectron

    beambeam

    SampleSample

    Exciting lightExciting light

    (a)(a) (b)(b)

    MicroscopeMicroscope

    objectiveobjective

    (c)(c)

    SNOMSNOM

    tiptip(d)(d)

    ElectronElectron

    beambeam

    10-100m ~1m

    ~100nm

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    7/19

    PL / PLEPL / PLE

    energy

    PL

    JDOS

    det

    de

    t

    PLE

    PL: Spectroscopy of occupied levels

    PLE: Spectroscopy of unocuppied levels ( ~ absorption)

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    8/19

    Photoluminescence setupPhotoluminescence setup

    DetDetSingleSingle

    spectrometerspectrometer

    CCD

    CCD

    samplesample

    HeHe--flow cryostatflow cryostat

    MicroscopeMicroscopeobjectiveobjective

    LaserLaser TemperatureTemperaturecontrollercontroller

    CutCut--offoff

    filterfilter

    Spatial filterSpatial filterJY HR 460JY HR 460

    DetDetSingleSingle

    spectrometerspectrometer

    CCD

    CCD

    samplesample

    HeHe--flow cryostatflow cryostat

    MicroscopeMicroscopeobjectiveobjective

    LaserLaser TemperatureTemperaturecontrollercontroller

    CutCut--offoff

    filterfilter

    Spatial filterSpatial filterJY HR 460JY HR 460

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    9/19

    Optical spectroscopy onOptical spectroscopy onQWRsQWRs

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    10/19

    Photoluminescence on QWRsPhotoluminescence on QWRs

    Polarisation anisotropy in

    absorption spectrumSignature of 1D confinement

    Black arrows:

    6-band kp theoretical model

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    11/19

    Carrier localisation in QWRsCarrier localisation in QWRs

    X localisation on a ~m length scale:Chain of QDs

    Monolayer fluctuation of confinementpotential along QWR axis

    REALITY

    DREAM

    Fully delocalised 1D states

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    12/19

    Optical spectroscopy on QDsOptical spectroscopy on QDs

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    13/19

    Single QD spectroscopySingle QD spectroscopy

    Inhomogeneous broadening in QD ensembles

    cb

    energy

    30-80 meV

    10-50meV

    1-5meV

    Electronic fine structure onlyvisible if single QDs are probed!

    lu

    minescence

    vb

    SK QD P id l QD

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    14/19

    SK QDs vs. Pyramidal QDsSK QDs vs. Pyramidal QDs

    QD

    Typical micro-photoluminescence experiment

    ~1m laser spot

    1 m

    energy energy

    Al shadow mask

    QT d i l QD

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    15/19

    Towards single QD spectroscopyTowards single QD spectroscopy

    1.20 1.25 1.30 1.35 1.40

    PL energy (eV)

    P

    Lintensity

    (arb.units

    )

    = 130 eV1 QD

    WLEnsemble

    3 10 QDs5

    Exci tation power 0.1 mWT=4.2 K

    QD l iQD l t i t t

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    16/19

    QD electronic structureQD electronic structure

    Artificial atomElectronic propertiescan be tailored

    Quantum dot2D Harmonic oscillator model

    energy

    emission

    XX 2XX2

    Xchange

    A few meV

    Ch d i SCh d t t i S K QDK QD

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    17/19

    Charged states in SCharged states in S--K QDsK QDs

    Energy (meV)

    Ch d t t i id l QDCh d t t i id l QD

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    18/19

    Charged states in pyramidal QDsCharged states in pyramidal QDs

    1.56 1.565 1.57 1.575 1.58 1.585photon energy [eV]

    PL

    intensity

    [a.u.]

    X 10

    30 pW

    600 nW

    2.5 nW

    1.56 1.565 1.57 1.575 1.58 1.585

    Energy (eV)

    PL

    inten

    sity

    X

    X

    X2X2

    2X

    SS

  • 7/30/2019 Optical Spectroscopy for Nanoparticles-can

    19/19

    SummarySummary

    99 Optical spectroscopy techniquesOptical spectroscopy techniques

    99 Optical properties of QWRsOptical properties of QWRs

    Polarisation anisotropyPolarisation anisotropy

    Exciton localisationExciton localisation

    99 Optical properties of QDsOptical properties of QDs

    MultiMulti--charged excitonscharged excitons

    QDs as artificial atomsQDs as artificial atoms