optical serdes test interface for high-speed and parallel

22
Optical SerDes Test Interface for High-Speed and Parallel Testing Sanghoon Lee, Ph. D Sejang Oh, Kyeongseon Shin, Wuisoo Lee Memory Division, SAMSUNG ELECTRONICS June 7-10, 2009 San Diego, CA

Upload: others

Post on 22-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Optical SerDes Test Interface for High-Speed and Parallel Testing

Sanghoon Lee, Ph. DSejang Oh,

Kyeongseon Shin,Wuisoo Lee

Memory Division, SAMSUNG ELECTRONICS

June 7-10, 2009San Diego, CA

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 2/222/22

Why Optical Interface ?• High speed up to 10GHz, Significant scalability

• Smaller cross-sectional area than electrical cable or trace.

• Immune to electromagnetic interference → Impedance matching not needed

[T. Okayasu, et al., JLT, vol. 22, no. 9, Sept. 2004]

Optical

Path

Electrical

Path

Optical

Path

Electrical

Path

DUT1

DUT2

Electrical signal

Electrical stub

Reflection

DUT1

DUT2

Optical signal

Optical coupler

Opt.RX

Opt.RX

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 3/223/22

Contents1. Introduction

2. Three optical Issue in Test Interface

3. Proposed Optical SerDes Test System

4. 3D Electromagnetic Board Simulation

5. Measurement and Analysis

6. Summary

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 4/224/22

Introduction

NeedleDUT (Wafer)Probe Card

MainFrame

PCB

Optical Test Interface

• Basic concept– Optical Interface is applied onto PCB of Probe Card

• For what ?– More high-speed Test– Scalability for expansion of ATE’s resource– Good PCB noise immunity

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 5/225/22

Optical TX

Optical fiber

DUT

CLK

RAS

CAS

A0

A1

DQ0

DQ1

Optical RX

1

40

39

3

2

4

1

40

39

3

2

4

ATE

CLK

RAS

CAS

A0

A1

DQ0

DQ1

ATE

CLK

RAS

CAS

A0

A1

DQ0

DQ1

Optical Issue in Test Interface (1)• Many of optical modules required (Optical TX/RX + Fiber)

– Total of about 80 optical modules including transmitter and receiverwhen evaluate a single memory chip with only write operation.

DUT

CLK

RAS

CAS

A0

A1

DQ0

DQ1

ATE

CLK

RAS

CAS

A0

A1

DQ0

DQ1

ATE

CLK

RAS

CAS

A0

A1

DQ0

DQ1

Optical TX Optical RX

SerDes SerDes

Parallel

to

Serial

Parallel

to

Serial

Serial

to

Parallel1 1

Solution: SerDes (Serialization/De-serialization) techniquewhich combines 8 electrical channels into 1 channel

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 6/226/22

• Interface mismatching – Different I/O interface standards between ATE/DUT and Optical TX/RX Signal Reflection and degradation

Optical Issue in Test Interface (2)

Optical TX

SSTL CML

ReflectionATE

CML SSTL

DUTReflection

Optical RX

• SSTL: Stub Series Terminated Logic (+ 0.8 V ~ + 0.6 V) • CML : Current Mode Logic (+ 0.6 V ~ – 0.6 V)

Solution: Signal level conversion using FPGA logicfor the same interface standards

Optical TX

SSTL CML

ReflectionATE

CML SSTL

DUTReflection

Optical RXOptical TX

CML CML

Optical RX

No Reflection

CML

FPGA

SSTL

No Reflection

SSTL

FPGA

CML

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 7/227/22

• Signal skew in multi-channel interconnects– Impossible to calibrate skews because the optical modules

inserted into the electrical path.

Optical Issue in Test Interface (3)

Optical ChannelSkew

Electrical ChannelSkew

ATE DUTOptical TX Optical RX

Solution: Simple skew adjustment technique in optical& electrical channel by using FPGA I/O delay

ATE DUT

Optical Channel Skew-free Electrical Channel Skew-free

Optical TX Optical RXFPGA

Delay Control

FPGA

Delay Control

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 8/228/22

Proposed Optical SerDes Interface

DUTDUT

FPGA_ATE

SSTL18

De-Serializer

Serializer

I/OATEATE

CML CML SSTL18

SerDes

PD LD

LD PD

De-Serializer

Serializer

FPGA_DUT

I/O

[8 bit Serialization ] [8 bit De-serialization ]

Optical Link

Optical Splitter

Probe Card PCB

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 9/229/22

Details

OUTPUTSERDES

OUTPUTSERDES

DelayChain

DelayChain

INPUTSERDES

INPUTSERDES

ATEATE IOBIOB

DQ 0_W

DQ 1_W

DQ 2_WDQ 3_W

DQ_R DQ_R

(IDDR)(FIFO)

(ODDR)

(IDDR)(FIFO)

(ODDR)DQ_R

I/O-DELAY

OUTPUTSERDES

OUTPUTSERDES

DelayChain

DelayChain

INPUTSERDES

INPUTSERDES

DUT 1DUT 1 IOBIOB(IDDR)(FIFO)

(ODDR)

(IDDR)(FIFO)

(ODDR)

I/O-DELAY

DQ 0

DQ 1

DQ 2DQ 3

FPGA Fabric SERDES

FPGA Fabric SERDESDQ 0_RDQ 1_RDQ 2_RDQ 3_R

DQ 0_RDQ 1_RDQ 2_RDQ 3_R

DQ_R

DQ 0_WDQ 1_WDQ 2_WDQ 3_W

DQ 0_WDQ 1_WDQ 2_WDQ 3_W

DQ 0_WDQ 1_WDQ 2_WDQ 3_W

DQ 0_WDQ 1_WDQ 2_WDQ 3_W

DQ 0_WDQ 1_WDQ 2_WDQ 3_W

DQ 0_WDQ 1_W

DQ 2_WDQ 3_W

OpticalTX

OpticalTX

OpticalRX

OpticalRX

OpticalTX

OpticalTX

OpticalRX

OpticalRX

DQ_R

DQ_W

DQ_W

DQ_R’

DQ_R’

Optical Fiber

DUT 3DUT 3

DUT 2DUT 2

DUT 4DUT 4

1× 4

Optical

Splitter

[FPGA_ ATE ]

[FPGA_ DUT ]

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 10/2210/22

3D ElectromagneticBoard Simulation

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 11/2211/22

Serialized 2.5 Gbps Performance• FPGA Input Signal (2.5 Gbps)

– Differential Line – Back-drilling at all DQ via channel

1 2 3 40 5

-40

-30

-20

-10

-50

0

freq, GHz

dB(S

(1,1

))dB

(S(1

,2))

m1

m1freq=dB(S(1,2))=-0.670

1.250GHz

95 %

FPGAOptical RXDDR2

Optical

fiber

PCB

Voltage of 7 % decreases

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 12/2212/22

Write Signal 125 MHz Performance• DDR2 Input Signal (125 MHz)

– Single ended

1 2 3 40 5

-40

-30

-20

-10

-50

0

freq, GHz

dB(S

(1,1

))dB

(S(1

,2))

m1

m1freq=dB(S(1,2))=-0.180

125.0MHz

Voltage of 2 % decreases

FPGAOptical RXDDR2

Optical

fiber

PCB

98 %

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 13/2213/22

Measurementand Analysis

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 14/2214/22

Structure & Operation

Optical Fiber

Probe Card Main PCB

FPGA

ZIF Connector

DRAM PackageOptical

TXOptical

RX

Multi-ChannelOptical Module(Transmitter)

OpticalSplitter FPGA

1×4 Optical Splitter

Multi-ChannelOptical Module

(Receiver)

FPGA

Write Path

Read Path

DDR2 Package Write/Read Operation

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 15/2215/22

Experimental Setup

• X-March Pattern• tRCD = 4• CL = 4• Speed = 125 MHz (8 ns)• Background Write/Read

Test Condition

• SerDes (2.5 Gbps)Transmission

•× 4 Expansion using Optical SplitterResource Expansion

• 5 ea (12 optical channel / Module)• Bandwidth: 2.7 Gbps

Optical TX/RXModule

• DDR2-533 (60 BOC)_4eaDUT

SpecificationItems

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 16/2216/22

DUTDUT

ATE_FPGA

I/OOptical

Link

DUT_FPGA

De-Serializer

Serializer

I/OATEATE

PD LD

LD PD

De-Serializer

Serializer

DUTDUT

ATE_FPGA

I/OOptical

Link

DUT_FPGA

De-Serializer

Serializer

I/OATEATE

PD LD

LD PD

De-Serializer

Serializer

ATE Output Write Signal (125 MHz)

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 17/2217/22

DUTDUT

ATE_FPGA

I/OOptical

Link

DUT_FPGA

De-Serializer

Serializer

I/OATEATE

PD LD

LD PD

De-Serializer

Serializer

DUTDUT

ATE_FPGA

I/OOptical

Link

DUT_FPGA

De-Serializer

Serializer

I/OATEATE

PD LD

LD PD

De-Serializer

Serializer

Input Signal into FPGA_ATE (125 MHz)

ActiveWrite

WriteOut

Pre-charge

ActiveWrite

WriteOut

Pre-charge

- The same logic compared with ATE function logic

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 18/2218/22

DUTDUT

ATE_FPGA

I/OOptical

Link

DUT_FPGA

De-Serializer

Serializer

I/OATEATE

PD LD

LD PD

De-Serializer

Serializer

DUTDUT

ATE_FPGA

I/OOptical

Link

DUT_FPGA

De-Serializer

Serializer

I/OATEATE

PD LD

LD PD

De-Serializer

Serializer

Received Serialized Signal (2.5 Gbps)

• Amplitude = 270 mV • Jitter = 54 ps • tR/tF = 180 ps/164 ps

2.5 Gbps

Using Oscilloscope

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 19/2219/22

DUT Input Signal at FPGA_DUT (125 MHz)

DUTDUT

ATE_FPGA

I/OOptical

Link

DUT_FPGA

De-Serializer

Serializer

I/OATEATE

PD LD

LD PD

De-Serializer

Serializer

DUTDUT

ATE_FPGA

I/OOptical

Link

DUT_FPGA

De-Serializer

Serializer

I/OATEATE

PD LD

LD PD

De-Serializer

Serializer

CLK vs. CAS CLK vs. CAS (skew-free)

DQS vs. DQ_7 DQS vs. DQ_7 (skew-free)

[ Skew Control using FPGA IO-delay ]

CLK = 2 ns Delay DQS = 2 ns Delay

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 20/2220/22

DUTDUT

ATE_FPGA

I/OOptical

Link

DUT_FPGA

De-Serializer

Serializer

I/OATEATE

PD LD

LD PD

De-Serializer

Serializer

DUTDUT

ATE_FPGA

I/OOptical

Link

DUT_FPGA

De-Serializer

Serializer

I/OATEATE

PD LD

LD PD

De-Serializer

Serializer

Read Signal into ATE Comparator

All good read signal with synchronous operation in front of ATE.

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 21/2221/22

Hardware Performance

4 times expansion

1/40 reduction

1/8 reduction

Advantage

by Optical SplitterNot expandedATE channel

expansion

2 ea(Parallel

modules used)

80 ea(only write-mode)

# of Optical Module (TX and RX)

5 ch40 ch# of Optical fiber

for 1 DUT

Optical SerDesSystem

Conventional System

TypePerformance

June 7 to 10, 2009June 7 to 10, 2009 IEEE SW Test WorkshopIEEE SW Test Workshop 22/2222/22

Summary• Optical signal 4 times splitting scheme and SerDes

techniques for a multi-parallel high speed memory test • An actual write/read optical memory test operation

• Optical fiber channels of 87 % and Optical module of 95 % are reduced dramatically, compared to a conventional optical interface

• Further, this scheme, with proper modifications and optimizations in terms of size and power, might be applied for CPU-memory optical interconnects in the future computing environment.