op#miza#on*and*other* applied*mathema#cs*challenges*for*...

38
Op#miza#on and other Applied Mathema#cs Challenges for Complex Energy Systems Mihai Anitescu Mathema.cs and Computer Science Division Argonne Na.onal Laboratory IMSE Illinois 2012

Upload: others

Post on 24-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Op#miza#on  and  other  Applied  Mathema#cs  Challenges  for  Complex  Energy  Systems      

 Mihai  Anitescu    

Mathema.cs  and  Computer  Science  Division  Argonne  Na.onal  Laboratory  

   

IMSE  Illinois  2012    

 

Page 2: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

1.  Mo&va&on:  Management  of  Energy  Systems  under  Ambient  Condi&ons  Uncertainty  

2  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

Page 3: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Ambient  Condi&on  Effects  in  Energy  Systems  Opera&on  of  Energy  Systems  is  Strongly  Affected  by  Ambient  Condi&ons            -­‐  Power  Grid  Management:  Predict  Spa.o-­‐Temporal  Demands  (Douglas,  et.al.  1999)              -­‐  Power  Plants:  Genera.on  levels  affected  by  air  humidity  and  temperature  (General  Electric)            -­‐  Petrochemical:    Hea.ng  and  Cooling  U.li.es  (ExxonMobil)  

         -­‐  Buildings:  Hea.ng  and  Cooling  Needs  (Braun,    et.al.  2004)            -­‐  (Focus)  Next  Genera&on  Energy  Systems  assume  a  major  renewable  energy  penetra.on:  Wind  +  Solar  +  Fossil    (Beyer,  et.al.  1999)  

-­‐  Increased  reliance  on  renewables  must  account  for  variability  of  ambient  condi.ons,  which  cannot  be  done  determinis.cally  …  

-­‐  We    must  op.mize  opera.onal  and  planning  decisions  accoun.ng  for  the  uncertainty  in  ambient  condi.ons  (and  others,  e.g.  demand)      

-­‐  Op&miza&on  Under  Uncertainty.  

Wind  Power  Profiles  3  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

Page 4: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

2.  Impact:  Stochas&c  Unit  Commitment  –  Management  of  Energy  Systems  

4  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

Page 5: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Stochas&c  Predic&ve  Control  

Dynamic    System  Model  

 Stochas&c    

Op&miza&on    

Weather  Model  

 Low-­‐Level  Control  

 

Forecast  

 Energy    System  

 

Set-­‐Points  

Forecast  &  Uncertainty  

Measurements  

Stochas&c  NLMPC  

Min

x0

f0 (x0 ) + E Minx

f (x,ω )⎡⎣

⎤⎦{ }

subj.  to.  g0 x0( ) = b0gi x0 ,xi( ) = bi i =1,2…S

x0 ≥ 0, xi ≥ 0

Two-­‐stage  Stoch  Prog  

5  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

Page 6: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Stochas&c  Unit  Commitment  with  Wind  Power  (SAA)  

§  Wind  Forecast  –  WRF(Weather  Research  and  Forecas.ng)  Model  –  Real-­‐.me  grid-­‐nested  24h  simula.on    –  30  samples  require  1h  on  500  CPUs  (Jazz@Argonne)  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

6  

1min COST

s.t. , ,

, ,

ramping constr., min. up/down constr.

wind

wind

p u dsjk jk jk

s j ks

sjk kj

windsjk

j

wik ksj

ndsk

jjk

j

c c cN

p D s k

p D R s k

p

p

∈ ∈ ∈

⎛ ⎞= + +⎜ ⎟

⎝ ⎠+ = ∈ ∈

+ ≥ + ∈ ∈

∑ ∑∑

∑ ∑

∑ ∑S N T

N

N

N

N

S T

S T

Zavala  &  al  2010.  

Thermal  Units  Schedule?  Minimize  Cost    Sa.sfy  Demand    Have  a  Reserve    Dispatch  through  network  

Page 7: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

0 24 48 720

200

400

600

800

1000

1200

Tota

l P

ow

er

[MW

]

Time [hr]

§   Unit  commitment  &  energy  dispatch  with  uncertain  wind  power  genera.on  for  the  State  of  Illinois,  assuming  20%  wind  power  penetra.on,  using  the  same  windfarm  sites  as  the  one  exis.ng  today.  

§ Full  integra.on  with  10  thermal  units  to  meet  demands.  Consider  dynamics  of  start-­‐up,  shutdown,  set-­‐point  changes  

§   The  solu.on  is  only  1%  more  expensive  then  the  one  with  exact  informa.on.  Solu.on  on  average  infeasible  at  10%.  

wind  power  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

7  

Demand Samples Wind

Thermal

Wind  power  forecast  and  stochas&c  programming    

Page 8: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Some  Considera&ons  in  Using  Supercompu&ng  for  Power  Grid  

§  Is  it  really  worth  using  a  supercomputer  for  this  task?  (We  need  the  answer  every  1hr  with  24  hour  .me  horizons.  )  

§  Let’s  look  at  the  most  pressing  item  of  Supercompu.ng  usage:  power.    –  BG/P  (and  exascale)  needs  <~  20MW  of  power.    –  The  Midwest  US  has  140GW  of  power  installed,  and  the  peak  demands  runs  up  to  

110GW.    –  We  will  never  reduce  power  consump.on,  but  we  will  make  it  more  reliable,  less  

dependent  on  fossil,  and  cheaper  by  bemer  managing  the  peak  

§  If  we  accept  this  will  lead  to  10%  more  renewable  penetra.on  (our  SUC  study),  then  this  is  worth  on  the  order  of  10-­‐15GW,  far  above  what  BG/P  costs  in  power  consump.on.    

§  In  addi.on  opera.onal  constraints  makes  supercompu.ng  (if  uncertainty  needed  to  account  for)  necessary  and  not  just  useful  or  convenient.    

§  But,  even  if  approxima.ons  will  work,  this  tool  will  be  helpful  as  the  “gold  standard”  for  valida.ng  other  algorithms  to  be  deployed  on  defined  computa.onal  resources.    

   

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

8  

Page 9: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

3.  Low-­‐Hanging  Fruit  Scalable  SoWware:  PIPS  (Parallel  Interior  Point  Stochas&c  Programming)  –  Petra,  Lubin,  Anitescu  

9  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

Page 10: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

PIPS  –  Our  Scalable  Stochas&c  Programming  Solver  Using    Direct  Schur  Complement  Method        

§  The  arrow  shape  of  H  

   §  Solving  Hz=r  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

10  

H 1 G1T

H 2 G2T

H S GS

T

G1 G2 … GS H 0

⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥

=

L1L2

LSL10 L20 … LS 0 Lc

⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥

D1D2

DNDc

⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥

L1T L10

T

LT2 L20T

LTS LS 0

T

LTc

⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥

10

1

10

, , 1, ,

, .

T T

T Ti i i c

i i i i i i i iS

ci

c

L D L H L G L D i S

H H G D L CC G L−

− −

=

= =

= −

=

=∑

K

1

10 0

10

, 1, ,i i i

c i i

S

i

Lw r i S

w L r wL=

=

⎛ ⎞⎜ ⎟=⎝ ⎠

=

−∑

K1 , 0,...,i i iv iD Sw− == ( )

10 0

0 0 ,

1, .

c

T Ti i i i

L v

L v

z

z

i S

L z

=

= −

= KBack  subs.tu.on  

Implicit  factoriza.on,  C  is  dense,  H’s  are  sparse.  

Diagonal  solve   Forward  subs.tu.on  

Page 11: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Parallelizing  the  1st  stage  linear  algebra  

§  We  distribute  the  1st  stage  Schur  complement  system.  

§  C  is  treated  as  dense.  

§  Alterna.ve  to  PSC  for  problems  with  large  number  of  1st  stage  variables.  

§  Removes  the  memory  bomleneck  of  PSC  and  DSC.    

§  We  inves.gated  ScaLapack,  Elemental  (successor  of  PLAPACK)  –  None  have  a  solver  for  symmetric  indefinite  matrices  (Bunch-­‐Kaufman);  –  LU  or  Cholesky  only.  –  So  we  had  to  think  of  modifying  either.    

Mihai  Anitescu  -­‐-­‐  Stochas.c  Programming  

11  

C =Q A0

T

A0 0

⎢⎢

⎥⎥, Q dense  symm.  pos.  def.,     0A sparse  full  rank.  

Page 12: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Cholesky-­‐based                  -­‐like  factoriza&on  

§     

§  Can  be  viewed  as  an  “implicit”  normal  equa.ons  approach.  

§  In-­‐place  implementa.on  inside  Elemental:  no  extra  memory  needed.  

§  Idea:  modify  the  Cholesky  factoriza.on,  by  changing  the  sign  auer  processing  p  columns.      

§  It  is  much  easier  to  do  in  Elemental,  since  this  distributes  elements,  not  blocks.  

§  Twice  as  fast  as  LU  

§  Works  for  more  general  saddle-­‐point  linear  systems,  i.e.,  pos.  semi-­‐def.  (2,2)  block.  

Mihai  Anitescu  -­‐-­‐  Stochas.c  Programming  

12  

Q AT

A 0

⎢⎢

⎥⎥= L 0

AL−T L

⎣⎢⎢

⎦⎥⎥

I− I

⎣⎢

⎦⎥

LT L−1AT

0 LT

⎣⎢⎢

⎦⎥⎥, where LLT = Q, LLT = A Q−1AT

TLDL

Page 13: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Distribu&ng  the  1st  stage  Schur  complement  matrix  

§  All  processors  contribute  to  all  of  the  elements  of  the  (1,1)  dense  block  

§  A  large  amount  of  inter-­‐process  communica.on    occurs.  

§  Possibly  more  costly  than  the  factoriza.on  itself.  

§  Solu.on:    use  buffer  to  reduce  the  number  of  messages  when  doing  a    Reduce_scaLer.    

§                         approach  also  reduces  the  communica.on  by  half  –  only  need  to  send  lower  triangle.                                                                                              

Mihai  Anitescu  -­‐-­‐  Stochas.c  Programming  

13  

Q = Q 0 +1S

AiT BiQ

i

−1Bi

T⎛⎝

⎞⎠

−1

Ai

⎣⎢

⎦⎥

i=1

S

TLDL

Page 14: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Large-­‐scale  performance  

Mihai  Anitescu  -­‐-­‐  Stochas.c  Programming  

14  

§  Comparison  of  ScaLapack  (LU),  Elemental(LU),  and                            (1024  cores)  

§  Strong  scaling    §  90.1%  from  64  to  1024  cores;  §  75.4%  from  64  to  2048  cores.  §  >  4,000  scenarios.  

TLDL

SAA  problem:    189  million  variables  

Page 15: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

PIPS  –  Parallel  solver  for  stochas&c  op&miza&on  

§  Interior-­‐point  method  implementa.on  (Mehrotra’s  algorithm)    §  Scenario-­‐based  decomposi.on  of  the  linear  algebra.    §  PIPS  reuses  OOQP  (Object-­‐oriented  quadra.c  programming  solver)  class  hierarchy.  §  New  parallel  linear  algebra  layer  for  block-­‐angular  IPM  linear  systems.  §  Hybrid  MPI+SMP  paralleliza.on  

§  First-­‐stage  Schur  complement:  dense  linear  algebra.    –  Distributed  factoriza.on  and  backsolves  (by  using  Elemental)  if  needed.  –  Shared-­‐memory  paralleliza.on(SMP)  is  obtained  via  Elemental.  –  Distributed  assembling  of  the  SC  matrix  is  done  by  a  streamlined  Reduced_sca`er    that  is  also  

in-­‐node  SMP-­‐accelerated.  

§  Second-­‐stage  linear  systems  are  sparse.  –  Supports  various  sparse  solvers:  MA57  (HSL  UK),  WSMP(IBM).  –   SMP  is  obtained  with  WSMP  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

15  

Page 16: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

PIPS  Solver  Capabili&es  §  Hybrid  MPI/SMP  running  on  Blue  Gene/P  

–  Successfully  (though  incompletely  due  to  alloca.on  limit)  run  on  up  to  32,768  nodes  (96%  strong  scaling)  for  Illinois  problem  with  grid  constraints.  3B  variables,  maybe  largest  ever  solved?    

§  Handles  up  to  100,000  first-­‐stage  variables.  Previous  results  dealt  with  O(20-­‐50).      §  Close  to  real-­‐.me  solu.ons  (24  hr  horizon  in  1  hr  wallclock)  

–  Further  development  needed,  since  users  aim  for    •  More  uncertainty,  more  detail  (x  10)  •  Faster  Dynamics  à  Shorter  Decision  Window  (x  10)  •  Longer  Horizons  (California  ==  72  hours)  (x  3)  

 

16  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

Page 17: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Components  of  Execu&on  Time  and  Strong  Scaling  

4k 8k 16k 32k

Backsolve

Factor SC

Distrib. SC

BG/P Nodes

Sec./Iteration

0

10

1400

5

200

400

600

800

1000

1200

1

17  

§  32K  nodes=130K  cores  (80%  BG/P)  §  “Backsolve”  phase  embarrassingly  parallel,  but  not  Schur  Complement  (SC)  §  Communica.on  for  “Distrib.  SC”  not  yet  a  bomleneck,  but  we  will  get  there.    

Strong Scaling

BG/P Nodes

Speedup(baseline4k)

4k 8k 16k 32k

4k

8k

16k

32k

Linear

PIPS

1

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

Page 18: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

4.  The  harder  problems  need  some  mathema&cs  

18  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

Page 19: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

4.1  Q1:  How  do  I  deal  with  the  impending  first-­‐stage  bo`leneck?    

19  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

Page 20: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

The  Stochas&c  Precondi&oner  §  The  limi.ng  factor  in  the  scalability  of  Schur  method  is  the  expensive  solve  with  dense  

Schur  complement  matrix  

–  A  computa.onal  bomleneck:  workers  sit  idle  wai.ng  for  the  master  to  factorize  C.      

§  Remedy  –  the  precondi.oned  Schur  complement  (PSC)  –  1.  factorize  incomplete  matrix  P  in  the  same  .me  C  is  computed.    –  2.  use  the  factoriza.on  of  P  to  solve  with  C  very  fast.  

§  In  linear  algebra  terms  –  P  is  a  precondi.oner  for  C.  Our  choice  of  P  is  

   

where                                                                                    is  an  IID  subset  of  n  scenarios.  –  Krylov  itera.ves  solves  (PCG  or  BiCGStab)  replaces  the  direct  solves  

 20  

1 2{ , , , }nk k k= KK Sn = Q 0 +

1n

Aki

T BkiQ ki

−1Bki

T⎛⎝

⎞⎠

−1

Aki

⎣⎢

⎦⎥

i=1

n

∑ ,

C = Q 0 +

1N

AiT BiQ

i

−1Bi

T⎛⎝

⎞⎠

−1

Ai

⎣⎢

⎦⎥

i=1

N

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

Page 21: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Precondi&oned  Schur  Complement  (PSC)  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

21  

1

0 01

i i i

Nii

i

N

w r

r L

L

r w

=

=

⎛ ⎞⎜ ⎟⎝

=⎠

−∑%

1 , 0,...,i i iv iD Nw− ==

( )0 0T T

i i i iz L v L z−= −

10

1

Ti

N

ii

iH H GC G −

=

−= ∑1

0 1, , ,,T Ti i i i i i i iL L iD L H G L D N− −= == K          

 (separate  process)  

TM M ML D L P=

00 Krylov( , , )C Pz r= %

P  is  a  C  built  from  a  subset  of  scenarios  

Page 22: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Quality  of  the  Stochas&c  Precondi&oner  §  “Exponen&ally”  be`er  precondi&oning    (Petra  &  Anitescu  2010)  

 

22  

21

24 24Pr(| ( exp) 1| ) 2

||2 ||n NN max

np L S

S pS ε ελ − ⎛ ⎞−⎜ ⎟

⎝≥ ≤

⎠−

Op.mal  use  of  PSC  –  linear  scaling    

Factoriza.on  of  the  precondi.oner  can  not  be  hidden  anymore  by  the  computa.on  of  C.  

§  A  typical  scaling  behavior  of  our  approach.  Bemer  scaling  than  the  direct  Schur  complement  method  (DSC)  is  exhibited  by  PSC.  

§  DSC  uses  p  processes,  PSC  uses  p+1.    

 

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

Page 23: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Performance  of  the  precondi&oner  

§  Eigenvalues  clustering  &  Krylov  itera.ons                      §  Affected  by  the  well-­‐known  ill-­‐condi.oning  of  IPMs.    

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

23  

Sn ≈ SN and SN ≈ E S(ω )⎡⎣ ⎤⎦ , where

S(ω ) = Q0 + D0( )+ AT (ω ) B(ω ) Q(ω ) + D(ω )( )−1BT (ω )( )−1

A(ω )⎡

⎣⎢

⎦⎥

Page 24: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

4.2  Q2:  How  do  I  use  very  expensive  samples?    

24  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

Page 25: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Bootstrap  for  stochas&c  op&miza&on  of  energy  systems  

§  Sampling  the  uncertainty  present  in  complex  energy  systems  may  be  a  computa.onally  intensive  task  –  Example:  weather  forecas.ng  –  May  need  400K  CPUs  for  30  samples  at  the  resolu.on  we  need.    

§  Obtaining  uncertainty  es.mates  (confidence  intervals)  on  the  op.mal  value  is  important  in  policy-­‐making  process.  

§  Only  a  small  number  of  samples(scenarios)  can  be  afforded.  Therefore  an  opera.onal  constraint  makes  me  start  to  care  about  the  low-­‐sample  size  regime  and  its  asympto.cs.    

§  But  how  good  is  the  current  state  of  the  theory  in  that  regime?      

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

25  

Page 26: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Theory  situa&on  for  Stochas&c  Programming  §  Most  es.mates  for  SAA  are  based  on  results  of  the  following  type:  

§  This  allows,  in  principle,  for  the  convergence  of  the  confidence  intervals  to  be  arbitrarily  slow.    

§  Current  state  of  the  area  is  built  around  applica.on  of  the  Delta  Theorem  ,  which  provides  the  results  of  the  type:    

 §  But  this  is  not  sufficient  for  similar  results  for  the  confidence  intervals  !!!  

§  Intui.on:  Convergence  in  probability  tells  me  how  well  I  behave  on  a  “good”  set  increasing  to  probability  1,  but  tells  me  nothing  about  the  bad  set.    

      Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

26  

N 0.5 θ −θ̂σ̂

⎣⎢

⎦⎥

D⎯ →⎯ N(0,1)

X(ω ) =ω , XN (ω ) =−1, 0 ≤ω < 1

log(N +1)

ω , 1log(N +1)

≤ω ≤1.

⎨⎪⎪

⎩⎪⎪

⇒P( lim

N→∞Na XN (ω )− X(ω ) = 0) = 1

P(XN (ω ) ≤ 0)− P(X(ω ) ≤ 0) =1

log(N +1) N −b

⎨⎪⎪

⎩⎪⎪

XN (ω )− X(ω ) = oP (N−a )⇔ P Na XN (ω )− X(ω )( )→ 0

Page 27: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Large  Devia&on    +  Bootstrap  

§  Bootstrap  is  a  resampling  method  that  builds  high-­‐order  confidence  es.mates.  §  The  idea  of  bootstrapping  is  to  squeeze  out  informa.on  from  a  small  number  of  

samples  by  resampling  (with  replacement).  §  But  it  applies  only  to  finite-­‐dimensional  func.ons  of  means,  and  the  op.mal  value  

of  stochas.c  op.miza.on  is  not  one  (due  to  nonlinearity).    

§  Idea:  Use  large  devia.ons,  to  produce  exponen.ally  convergent  probability  sets  

§  Here,            depends  on  the  expected  value  of  the  objec.ve  func.on  and  its  higher  deriva.ves  at  the  solu.on  of  the  SAA  approxima.on  problem.  We  can  thus  use  bootstrap  theory  to  produce  confidence  intervals  for                  and  exponen.al  convergence  ensures  order  stays  the  same  as  for  bootstrap  !!    

 

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

27  

P(| Nb (θ̂ −θ) |> ) = f1()N

f2 () exp(− f3()Nc )

θ̂

θ̂

Page 28: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

The  es&mator    

 §  We  proposed  a  corrected  sta.s.c,  computable  at  the  SAA  approxima.on  

§  L  is  the  Lagrangian  of  the  problem  and  J  is  the  Jacobian  of  the  constraints.    §             is  the  solu.on  of  the  SAA  problem  obtained  from  a  sample  of  size  N.  

§  Bootstrapping  is  performed  based  on  a  second  sample  of  size  M,  and  it  works  due  to  the  fact  that  it  is  now  applied  at  a  set  point                so  finite  dimensional  results  do  apply.    

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

28  

Φ = E f (xN )⎡⎣ ⎤⎦ −

12

E∇L(xN ,λN )0

⎝⎜

⎠⎟

TE∇2 L(xN ,λN ) J (xN )T

J (xN ) 0

⎝⎜⎜

⎠⎟⎟

−1

E∇L(xN ,λN )0

⎝⎜

⎠⎟

Nx

Nx

Page 29: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Accuracy  of  the  es&mator’s  confidence  levels    

§  We  proved  that  bootstrap  confidence  intervals  build  using              are    close  to  second  order  correct  for  the  true  op.mal  value                                            :  

§  We  observed  the  predicted  or  bemer  correctness  in  the  numerical  simula.ons  

§  bootstrapping            outperforms  classical  normal  approxima.on  method.  §  We  now  have  analy.cal  techniques  for  asympto.cs  of  confidence  intervals  in  SP!  

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

29  

Φ*( )f xθ =

P(θ ∈Jαb ) =α +O(N −1+a ),a > 0.

Φ

Correctness  order  0.32  

Correctness  order  0.82  

Correctness  order  2.11  

Correctness  order  1.14  

Page 30: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

4.3:  Q3:  How  do  I  roll  the  horizon  in  real  &me?    

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

30  

Page 31: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Example DO:

Off-the-Shelf : Solve to Given Accuracy (Neglect Dynamics)

Real-Time (Z & A) : One SQP Iteration per step

Fundamental Limitations of Off-The-Shelf Optimization

Page 32: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Context:  Parametric  NLP  KKT  system  for    QP  

Note:  Canonical  Form  Iden&cal  to  Time-­‐Steping  for  DVI  

Exact  Solu&on  Sa&sfies:      

From  Lipschitz  Con&nuity  of  strongly  regular  GE:  

Op&mal  Solu&on  

Lineariza&on  Point  

QP  Solu&on  

-­‐  Strong  Regularity  Requires  SSOC  and  LICQ  -­‐  NLP  Error  is  Bounded  by  LGE  Perturba&on  -­‐  One  QP  solu&on  from  exact  manifold  is  second-­‐order  

accurate  

MPC as Dynamic Generalized Equation (Z & A)

wt* −wt ≤ LΔt 2

 Time  lineariza&on  of  Op&mality  Condi&ons:  Find        

Page 33: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

-­‐    A:  LGE  is  Strongly  Regular  at  ALL                              e.g.  NLP  sa&sfies  LICQ  and  SOSC  everywhere    

But  for  linearized  DO  I  am  never  EXACTLY  on  the  manifold:  What  then?    

Theorem  (elucida&ng  an  issue  posed  by  Diehl  et  al.)  

Solve  off-­‐manifold  &me-­‐dependent  QP  

Then:  For  sufficiently  small                  ,    we  can  track  the  manifold  stably,  solving  1  QP  per  step    

Moreover:  Stability  Holds  Even  if  QP  Solved  t      o                          accuracy.  Can  use  itera&ve  methods.  

Much  less  effort  per  step  and  be`er  chances  for  real-­‐&me  performance  !  

.  

   

One-QP per step stabilizes

Page 34: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Need for more features of DO solvers

Control  of  Polymeriza&on  Reactor                      

Closed-Loop Transitions

Time

Set-Point

System Cooling Agent

Reactant Concentration

Temperature

Product A

Product B

•  One  QP  per  step  may  s&ll  be  too  much  •  Moreover  I  may  need  also  good  global  and  fast  local  convergence  proper&es  as  well,  it  is  not  all  

about  asympto&cs!    •  Some&mes  one  switch  regimes,  the  op&mal  point  moves  far  away,  and  you  s&ll  want  to  be  able  to  

track  well.  –  MPC  algorithm  must  exhibit  global  convergence  and  fast  local  convergence  (i.e.  Newton)!  

•  Also,  power  grid  problems  can  be  huge  (US  ~  1  –  100  Billion  Variables).  Need  scalable  solvers.    

Page 35: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Solution forms Time-Moving and Non-Smooth Manifold

Technical Problem

Latency

Active-Set Change

Non-Smooth Manifold

-  Challenge is to Track Manifold Accurately (Classical Optimization) AND Stably (Latency Conscious: A good Step, Computer Fast)

Page 36: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Technical Problem

•  Challenge is to Track Manifold Accurately AND Stably (Get Good Step with Minimum Latency) •  This requires NLP Solvers with the Following Features:

•  A) Classical Optimization Oriented : 1) Superlinear Convergence (Newton-Based) 2) Scalable Step Computation (Iterative Linear Algebra)

•  B) Latency Conscious: 3)   Asymptotic Monotonicity of Minor Iterations (Makes Progress in O(N)) 4)   Active-Set Detection and Warm-Start

-  Existing Solvers Tend to Fail at Least One Feature -  Interior Point: 4, and to some extent, 2,3 -  Augmented Lagrangian: 1 -  SQP: 2

Page 37: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Exact Differentiable Penalty Functions (EDPFs) Consider Transformation using Squared Slacks  

Equivalent To:  

Apply DiPillo and Grippo’s Penalty Function DiPillo,Grippo, 1979, Bertsekas, 1982  

Solve NLP Indirectly Through EDPF Problem:  

Page 38: Op#miza#on*and*other* Applied*Mathema#cs*Challenges*for* …anitescu/Presentations/2012/anitescu-IMS… · 0 24 48 72 0 200 400 600 800 1000 1200 Total Power [MW] Time [hr]!!Unitcommitment&!energy!dispatch!with!

Conclusions    

§  Complex  energy  systems  pose  an  enormous  number  of  modeling  and  simula.on  challenges.  

§  Computa.onal  Power  will  help,  but  it  will  not  alone  address  many  of  the  challenges.    

§  This  research  requires  sustained,  mul.-­‐area,  integra.ve  thinking  in  mathema.cs.    §  Increases  focus  on  area  of  mathema.cs  that  were  not  explored  up  to  this  point  

and  creates  opportuni.es  for  FUNDAMENTAL  math  advances:    

§  Examples:  resampling  in  stoch  prog  for  expensive  scenarios;  stochas.c  precondi.oning,  fast  nonlinear  programming.    

§  We  expect  many  more  such  challenges,  as  embodied  in  our  MACS  center.    

Mihai  Anitescu  -­‐  Op.miza.on  under  uncertainty  

38