operational amplifier stability collin wells texas instruments hpa linear applications 2/22/2012

79
Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Upload: cody-kidd

Post on 26-Mar-2015

279 views

Category:

Documents


14 download

TRANSCRIPT

Page 1: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Operational Amplifier Stability

Collin Wells

Texas Instruments

HPA Linear Applications

2/22/2012

Page 2: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

The Culprits!!!Capacitive Loads!

High Feedback Network Impedance!

Transimpedance Amplifiers!

Reference Buffers! Cable/Shield Drive! MOSFET Gate Drive!

High-Source Impedance or Low-Power Circuits!

-

+

IOP2

R3 499kR4 499k

+

VG2

Cin 25p Vout

-

+

OPA

Cin 1u

C1 1u

C2 1u

VIN 5Vin

Temp

GND

Vout

Trim

U1 REF5025

C3 10u

ADC_VREF

C4 100n

-

+

OPA

RL 250

Rf 20kRg 1k

+

Vin

-

+

OPA

C_Cable 10nVout

VREF 2.5

VREF

Shielded Cable

-

+

OPA

VRef 2.5

R1 20k

R2 20k

Vin 10

VReg

Q1

RL 200

Vo

Rf 1M

Rd 4.99G Cd 10p-

+

OPA

Id

Photodiode Model

Attenuators!

V+

-

+

OPA

Rf 49kRg 4.99M

Cd 200p Vout

+Vin

D1

D2TVS

Page 3: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Just Plain Trouble!!Inverting Input Filter??

Output Filter??

-

+

OPA

VoutV1 5R1 10k

R2 49kC1 10u C5 100n

-

+

OPA

Rf 100kRg 10k

Cin 1u

Vout

+

Vin

Oscillator

OscillatorT

Time (s)

1.95m 2.23m 2.50m

VG1

0.00

10.00m

Vfb

-37.08m

62.12m

Vo

-1.00

1.16

T

Time (s)

1.95m 2.23m 2.50m

VG1

0.00

10.00m

Vfb

-37.08m

62.12m

Vo

-1.00

1.16

Page 4: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Recognize Amplifier Stability Issues on the Bench

• Required Tools:– Oscilloscope

– Step Generator

• Other Useful Tools:– Gain / Phase Analyzer

– Network / Spectrum Analyzer

Page 5: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Recognize Amplifier Stability Issues• Oscilloscope - Transient Domain Analysis:

– Oscillations or Ringing

– Overshoots

– Unstable DC Voltages

– High Distortion

T

Time (s)

1.75m 2.25m 2.75m

Vo

ltag

e (

V)

0.00

18.53m

T

Time (s)

1.75m 50.88m 100.00m

Ou

tpu

t

-14.83

0.00

15.00T

Time (s)

1.75m 2.25m 2.75m

Vo

ltag

e (

V)

0.00

21.88m

Page 6: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Recognize Amplifier Stability Issues• Gain / Phase Analyzer - Frequency Domain: Peaking, Unexpected

Gains, Rapid Phase Shifts

T

Ga

in (

dB

)

-60.00

-40.00

-20.00

0.00

20.00

40.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

-360.00

-180.00

0.00

Page 7: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

What causes amplifier stability issues???

Page 8: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

T

Time (s)

1.95m 2.08m 2.20m

Vo

-15.00

0.00

15.00

Vfb

-2.25

0.00

2.25

VG1

0.00

10.00m

ab

Cause of Amplifier Stability Issues• Too much delay in the feedback network

-

+BUF

BUF BUF

R1 100kR2 100k+ VG1

Vfb

Vo

DELAY

DELAY

Page 9: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

T

Time (s)

1.95m 2.23m 2.50m

VG1

0.00

10.00m

Vfb

-37.08m

62.12m

Vo

-1.00

1.16

Cause of Amplifier Stability Issues• Example circuit with too much delay in the feedback network

-

+BUF

BUF BUF

R1 100kR2 100k+

VG1

Vfb

Vo

R3 10

C1 10uC2 20p

Page 10: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Cause of Amplifier Stability Issues• Real circuit translation of too much delay in the feedback network

-

+BUF

BUF BUF

R1 100kR2 100k

+

VG1

Vfb

VoRo 10

Cin 4pCstray 16p

Cload 10u

Page 11: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Cause of Amplifier Stability Issues• Same results as the example circuit

-

+BUF

BUF BUF

R1 100kR2 100k

+

VG1

Vfb

VoRo 10

Cin 4pCstray 16p

Cload 10u

T

Time (s)

1.95m 2.23m 2.50m

VG1

0.00

10.00m

Vfb

-37.08m

62.12m

Vo

-1.00

1.16

Page 12: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

How do we determine if our system has too

much delay??

Page 13: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Phase Margin• Phase Margin is a measure of the “delay” in the loop

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (d

egre

es)

Frequency (Hz)

100

Phase Margin

AOL

AOLPhase

Unity-Gain

V+

V-

+

VG1 353.901124n+

-

+

U2 OPA627E

VF1

Open-Loop

Page 14: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Damping Ratio vs. Phase Margin

From: Dorf, Richard C. Modern Control Systems. Addison-Wesley Publishing Company. Reading, Massachusetts. Third Edition, 1981.

Page 15: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Small-Signal Overshoot vs. Damping Ratio

From: Dorf, Richard C. Modern Control Systems. Addison-Wesley Publishing Company. Reading, Massachusetts. Third Edition, 1981.

Phase Margin Overshoot

90° 0

80° 2%

70° 5%

60° 10%

50° 16%

40° 25%

30° 37%

20° 53%

10° 73%

Page 16: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

AC Peaking vs. Damping Ratio

From: Dorf, Richard C. Modern Control Systems. Addison-Wesley Publishing Company. Reading, Massachusetts. Third Edition, 1981.

Phase Margin AC Peaking @Wn

90° -7dB

80° -5dB

70° -4dB

60° -1dB

50° +1dB

40° +3dB

30° +6dB

20° +9dB

10° +14dB

Page 17: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

T

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Gai

n (d

B)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

AOL

AOL*B

1/Beta

Rate of Closure= 20dB/decade

Rate of ClosureRate of Closure: Rate at which 1/Beta and AOL intersect

ROC = Slope(1/Beta) – Slope(AOL)

ROC = 0dB/decade – (-20dB/decade) = 20dB/decade

Page 18: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Rate of Closure and Phase MarginRelationship between the AOL and 1/Beta rate of closure and Loop-Gain (AOL*B) phase margin

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

a120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (d

egre

es)

Frequency (Hz)

100

Phase Margin≥ 45 degrees!

Rate of Closure= 20dB/decade

AOL

1/B

AOL*BPhase

AOL*B

Page 19: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

T

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Gai

n (d

B)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

AOL

1/Beta

Understanding Amplifier Stability IssuesSo a pole in AOL or a zero in 1/Beta inside the loop will decrease AOL*B Phase!!

40dB/decade

40dB/decade

AOL pole

1/B zero

Page 20: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Understanding Amplifier Stability Issues

AOL Pole

1/Beta Zero

Page 21: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Noise Gain• Understanding Noise Gain vs. Signal Gain

Inverting Gain, G = -1 Non-Inverting Gain, G = 2

Both circuits have a NOISE GAIN (NG) of 2.

NG = 1 + ΙGΙ = 2 NG = G = 2

V+

V-

V+

V-

+

VG1

+

-

+

U1 OPA627E

Vo

R1 1k R2 1k

+

VG1

+

-

+

U1 OPA627E

Vo

R1 1k R2 1k

Page 22: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Noise Gain• Noise Gain vs. Signal Gain

Gain of -0.1V/V, Is it Stable?

Inverting Gain, G = -0.1

If it’s unity-gain stable then it’s stable as an inverting attenuator!!!

V+

V-

+

VG1

+

-

+

U1 OPA627E

Vo

R1 10k R2 1k

V+

V-

+

VG1

+

-

+

U1 OPA627E

Vo

R1 10k R2 1k

Noise Gain, NG = 1.1

Page 23: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Testing for Rate of Closure in SPICE

V+

V-

+

VG1 0

+

-

+

U2 OPA627E

VF1

R1 1k R2 1k

V+

V-

+

-

+

U1 OPA627E

Vo

R3 1k R4 1k

L1 1T

C1 1T

+

VG2

Vfb

VinShort out the input source

Break the loop with L1 at the inverting input

Inject an AC stimulus through C1

• Break the feedback loop and inject a small AC signal

Page 24: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Breaking the Loop

DC AC

V-

V+

+

-

+U1 OPA627E

Vo

Rf 1k

Rg 1k

+

VG2 Vfb

Vin

L1

C1V-

V+

+

-

+U1 OPA627E

Vo

Rf 1kRg 1k+

VG1

Vfb

VinL1

C1

Page 25: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Plotting AOL, 1/Beta, and Loop GainAOL = Vo/Vin

1/Beta = Vo/Vfb

AOL*B = Vfb/Vin

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 14.14k 200.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (d

egre

es)

Frequency (Hz)

100

Phase Margin= 82degrees

AOL*B

1/B

AOL*BPhase

AOLV+

V-

+

-

+

U1 OPA627E

Vo

+

VG1 0

L1 1T

C1 1T

Vin

Rg 1k Rf 1k

Vfb

Page 26: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Capacitive Loads

Page 27: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Capacitive LoadsUnity Gain Buffer Circuits Circuits with Gain

V+

V-

+

-

+

U1 OPA627E

VF1

R2 100kR3 249

+

VG1 0 CLoad 1uV+

V-

+

Vin

+

-

+

U1 OPA627E

Vo

CLoad 1uF

0 150u 300uTime (seconds)

80m

0

Vo (V)

T

Time (s)

0.00 150.00u 300.00u

VF1

-40.00m

-10.00m

20.00m

50.00m

80.00m

VG1

0.00

20.00m

Vin (V)

20m

-40m20m

10m

T

Time (s)

0.00 150.00u 300.00u

V1

0.00

20.00m

40.00m

VG1

0.00

1.00m

0 150u 300uTime (seconds)

40m

0

Vo (V)

Vin (V)

20m

01m

Page 28: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Capacitive Loads – Unity Gain Buffers - ResultsDetermine the issue:

Pole in AOL!!

ROC = 40dB/decade!!

Phase Margin 0!!

NG = 1V/V = 0dB

V+

V-

+

-

+

U1 OPA627E

Vo

CLoad 1u+

VG1 0

L1 1T

C1

1T

Vin

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

T

Vo

ltag

e (

V)

-40

-20

0

20

40

60

80

100

120

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Vo

ltag

e (

V)

0.00

45.00

90.00

135.00

180.00

Phase Margin= 0.2degrees!

Rate of Closure= 40dB/decade!

AOL + AOL*B

1/B

AOL*BPhase

Pole in AOL

Page 29: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Capacitive Loads – Unity Gain Buffers - Theory

V+

V-

+

-

+

U1 OPA627E

Vo

CLoad 1u+

VG1

L1 1T

C4

1T

Vin

Loaded AOLRo 54

CLoad 1u

L1

+

VG1

-

+

-

+

AOL 1M

C1

+

AOL

Ro 54

CLoad 1u

Loaded AOL

Page 30: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Capacitive Loads – Unity Gain Buffers - Theory

Transfer function:

W(s)=1

1+RoCload

s

T

Ga

in (

dB

)

-80.00

-60.00

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

-90.00

-45.00

0.00

0

-20

-40

-60

-80

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

Loaded AOLPole

CLoadRoFPOLE

2

1

+

Vin

Ro 54

CLoad 1u

Loaded AOL

Page 31: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Capacitive Loads – Unity Gain Buffers - Theory

X

=

T

Ga

in (

dB

)

-80.00

-60.00

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

-90.00

-45.00

0.00

0

-20

-40

-60

-80

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

100

T

Vo

lta

ge

(V

)

-40

-20

0

20

40

60

80

100

120

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Vo

lta

ge

(V

)

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gain

(dB)

Phas

e (de

gree

s)

Frequency (Hz)

100

AOL AOL Load

Loaded AOL

Page 32: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Stabilize Capacitive Loads – Unity Gain Buffers

Page 33: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Unity-Gain circuits can only be stabilized by modifying the AOL load

T

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Gai

n (d

B)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

Stability Options

Page 34: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: Riso

V+

V-

+

-

+

U1 OPA627E CLoad 1u

Riso 6+

VG1

Vo

VLoad

Page 35: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: Riso - ResultsTheory: Adds a zero to the Loaded AOL response to cancel the pole

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (

dB)

Pha

se (

degr

ees)

Frequency (Hz)

100

Phase Margin = 87.5degrees!

Rate of Closure = 20dB/decade

AOL + AOL*B

Pole in AOL1/B

AOL*BPhase

Zero in AOL

V+

V-

+

-

+

U1 OPA627E CLoad 1u

Riso 6

+

VG1

Vo

VLoad

Page 36: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: Riso - ResultsWhen to use: Works well when DC accuracy is not important, or when loads are very light

Vo (V)

Vload (V)

Vin (V)

T

Time (s)

0.00 125.00u 250.00u

V1

0.00

20.37m

V2

0.00

20.00m

VG1

0.00

20.00m

V+

V-

+

-

+

U1 OPA627E CLoad 1u

Riso 6

+

VG1

Vo

VLoad

Page 37: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: Riso - Theory

V+

V-

+

-

+

U1 OPA627E CLoad 1u

L1 1T

C1 1T

Vin

Riso 5

+

VG1

Vo

Ro 54

CLoad 1u

+

VG1

-

+

-

+

AOL 1M

Riso 5

Loaded AOL

C1

Ro 54

Riso 5

Loaded AOL

CLoad 1u

+

AOL

Page 38: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: Riso - Theory

Zero Equation:

f(zero)=1

2piRisoCLoad

s

Pole Equation:

f(pole)=1

2pi(Ro+Riso)CLoad

s

Transfer function:

Loaded AOL(s)=1+CLoad

Risos

1+(Ro+Riso)CLoad

s

Ro 54Ohm

Riso 5Ohm

Loaded AOL

CLoad 1uF

+

Vin

T

Ga

in (

dB

)-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

-90.00

-45.00

0.00

0

-20

-40

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

Page 39: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: Riso - Theory

X

=

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

100T

Ga

in (

dB

)

-40.00

-20.00

0.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

-90.00

-45.00

0.00

0

-20

-40

0

-45

-901 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)Ph

ase

(deg

rees

)

Frequency (Hz)

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gain

(dB)

Phas

e (d

egre

es)

Frequency (Hz)

100

Page 40: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: Riso - DesignEnsure Good Phase Margin:

1.) Find: fcl and f(AOL = 20dB)2.) Set Riso to create AOL zero: Good: f(zero) = Fcl for PM ≈ 45 degrees. Better: f(zero) = F(AOL = 20dB) will yield slightly less than 90 degrees phase margin

fcl = 222.74kHz

f(AOL = 20dB) = 70.41kHz

T

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

f(AOL = 20dB)

fcl

120

80

60

40

20

0

-20

-40

Gai

n (

dB)100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

Page 41: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: Riso - Design

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

F(zero) = 70.41kHz

PM = 84°

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (

dB)

Pha

se (

degr

ees)

Frequency (Hz)

100

F(zero) = 222.74kHz

PM = 52°

f(AOL = 20dB) = 70.41kHz

→ Riso = 2.26Ohms

fcl = 222.74kHz

→ Riso = 0.715Ohms

Zero Equation:

f(zero)=1

2piRisoCLoad

s

Pole Equation:

f(pole)=1

2pi(Ro+Riso)CLoad

s

Transfer function:

Loaded AOL(s)=1+CLoad

Risos

1+(Ro+Riso)CLoad

s

2.26R

V+

V-

+

-

+

U1 OPA627E

CLoad 1u

L1 1T

C1 1T

Vin

Riso 714m

+

VG1

Vo

1uF

0.715R

V+

V-

+

-

+

U1 OPA627E

CLoad 1u

L1 1T

C1 1T

Vin

Riso 714m

+

VG1

Vo

1uF

Ensure Good Phase Margin: Test

Page 42: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: Riso - Design

T

Ga

in (

dB)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se (

de

gre

es)

Frequency (Hz)

100

PM_min = 35°

F(zero) = 26.5kHzF(pole) =

2.65kHz

T

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Pha

se [d

eg]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se (

de

gre

es)

Frequency (Hz)

100

PM_min = 20°

F(zero) = 100.2kHz

F(pole) = 2.86kHz

Riso = Ro/9 Riso = Ro/34

Prevent Phase Dip:

Place the zero less than 1 decade from the pole, no more than 1.5 decades away Good: 1.5 Decades: F(zero) ≤ 35*F(pole) → Riso ≥ Ro/34 → 70° Phase Shift Better: 1 Decade: F(zero) ≤ 10*F(pole) → Riso ≥ Ro/9 → 55° Phase Shift

Page 43: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: Riso - DesignPrevent Phase Dip: Ratio of Riso to Ro

If Riso ≥ 2*Ro → F(zero) = 1.5*F(pole) → ~10° Phase Shift **Almost completely cancels the pole.

Riso = Ro*2 Phase Shift vs. Riso/Ro

Page 44: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: Riso – Design Summary

6R

V+

V-

+

-

+

U1 OPA627E

CLoad 1u

L1 1T

C1 1T

Vin

Riso 714m

+

VG1

Vo

1uF

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

PM_min = 35°

PM = 87.5°

Final Circuit

Summary:

1.) Ensure stability by placing Fzero ≤ F(AOL=20dB)2.) If Fzero is > 1.5 decades from F(pole) then increase Riso up to at least Ro/343.) If loads are very light consider increasing Riso > Ro for stability across all loads

Page 45: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: Riso - Disadvantage

6R

1uFV+

V-

+

-

+U1 OPA627E

CLoad 1u

Riso 6

+

VG1

Vo

Vload

RLoad 25

25R

+ -

T

Time (s)

0.00 125.00u 250.00u

Vol

tage

(V)

0.00

20.09m20.19m

0

0 125u 250u

Vo

ltag

e (

V)

Time (seconds)

Riso Voltage Drop

Vo

VLoad

Disadvantage:

Voltage drop across Riso may not be acceptable

Page 46: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 2: Riso + Dual Feedback

V+

V-

+

-

+

U1 OPA627E CLoad 1u

Riso 6

+

VG1

VLoad

Rf 49k

Cf 100n

Vo

Page 47: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 2: Riso + Dual FeedbackTheory: Features a low-frequency feedback to cancel the Riso drop and a high-frequency feedback to create the AOL pole and zero.

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

Phase Margin = 87.5degrees!

Rate of Closure = 20dB/decade

AOL + AOL*B

Pole in AOL1/B

AOL*BPhase

Zero in AOL

V+

V-

+

-

+

U1 OPA627E CLoad 1u

+

VG1

Rf 49k

Cf 100n

VoL1 1T

C1 1T

Vfb

Vin

Riso 6

Page 48: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 2: Riso + Dual FeedbackWhen to Use: Only practical solution for very large capacitive loads ≥

10uF

When DC accuracy must be preserved across different current loads

T

Time (s)

0.00 150.00u 300.00u

V1

0.00

20.27m

V2

0.00

20.00m

VG1

0.00

20.00m

0 150u 300uTime (seconds)

20.3m

0

VLoad(V)

020m

20m0

Vo(V)

Vin(V)

V+

V-

+

-

+

U1 OPA627E CLoad 1u

Riso 5

+

VG1

Vload

R2 49k

C1 100n

Vo

Page 49: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 2: Riso + Dual Feedback - DesignEnsure Good Phase Margin:

1.) Find: fcl and f(AOL = 20dB)2.) Set Riso to create AOL zero: Good: f(zero) = Fcl for PM ≈ 45 degrees. Better: f(zero) = F(AOL = 20dB) will yield slightly less than 90 degrees phase margin3.) Set Rf so Rf >>Riso Rf ≥ (Riso * 1004.) Set Cf ≥ (200*Riso*Cload)/Rf

fcl = 222.74kHz

f(AOL = 20dB) = 70.41kHz

T

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

f(AOL = 20dB)

fcl

120

80

60

40

20

0

-20

-40

Gai

n (d

B)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

Page 50: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 2: Riso + Dual Feedback - SummaryEnsure Good Phase Margin (Same as “Riso” Method):

1.) Set Riso so f(zero) = F(AOL = 20dB)2.) Set Rf: Rf ≥ (Riso * 100) 3.) Set Cf: Cf ≥ (200*Riso*Cload)/Rf

V+

V-

+

-

+

U1 OPA627E CLoad 1u

Riso 5

+

VG1

Vload

R2 49k

C1 100n

Vo

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

Phase Margin = 87.5degrees!

Page 51: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Capacitive Loads – Circuits with Gain

Page 52: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Capacitive Loads – Circuits with Gain

V+

V-

+

-

+

U1 OPA627E

Vo

Rf 100kRg 4.99k

+

VG1 0 CLoad 100n

0 150u 300uTime (seconds)

40m

0

Vol

tage

(V

)

30m

20m

10m

T

Time (s)

0.00 150.00u 300.00u

Vo

ltag

e (

V)

0.00

10.00m

20.00m

30.00m

40.00m

Page 53: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Capacitive Loads – Circuits With Gain - ResultsSame Issues as Unity Gain Circuit

Pole in AOL!!

ROC = 40dB/decade!!

Phase Margin = 10°!!T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

has

e (

deg

rees

)

Frequency (Hz)

100

PM = 10.5°

AOL

1/B

AOL*BPhase

Pole in AOL

AOL*B

ROC = 40dB/decade

V+

V-

+

-

+

U1 OPA627E

Vo

Rg 100kRf 4.99k

CLoad 100n

+

VG1

L1 1T

C1 1T

Vin

Vfb

Page 54: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Stabilize Capacitive Loads – Circuits with Gain

Page 55: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

T

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Gai

n (d

B)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

AOL

1/Beta

Stability OptionsCircuits with gain can be stabilized by modifying the AOL load and by modifying 1/Beta

Page 56: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1 + Method 2

Method 1: Riso

Method 2: Riso+Dual Feedback

Methods 1 and 2 work on circuits with gain as well!

V+

V-

+

-

+U1 OPA627E

Rf 100kRg 4.99k

+

VG1CLoad 100n

Riso 10VLoad

Vo

0 150u 300uTime (seconds)

25m

0

VLoad(V)

025m

1m

0

T

Time (s)

0.00 150.00u 300.00u

V1

0.00

12.50m

25.00m

V2

0.00

12.50m

25.00m

VG1

0.00

1.00m

Vo(V)

Vin(V)

V+

V-

+

-

+

U1 OPA627E CLoad 100n

Riso 10VLoad

Rf 100k

Cf 100p

Vo

Rg 4.99k

+

VG1

T

Time (s)

0.00 150.00u 300.00u

V1

0.00

10.00m

20.00m

V2

0.00

10.00m

20.00m

VG1

0.00

1.00m

0 150u 300uTime (seconds)

25m

0

VLoad(V)

025m

1m

0

Vo(V)

Vin(V)

Page 57: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 3: Cf

V-

V+

+

-

+U1 OPA627E CLoad 100n

Vo

Rf 100kRg 4.99k

C1 27p

+

VG1

Page 58: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 3: Cf - ResultsTheory: 1/Beta compensation. Cf feedback capacitor causes 1/Beta to decrease at -20dB/decade and if placed correctly will cause the ROC to be 20dB/decade.

T

Gai

n (d

B)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Pha

se [d

eg]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se (

de

gre

es)

Frequency (Hz)

100

PM = 68°

AOL

1/B

AOL*BPhase

AOL*B

ROC = 20dB/decade

1/B Pole

1/B Zero

AOL Pole

V-

V+

+

-

+U1 OPA627E

CLoad 100n

Vo

Rf 100kRg 4.99k

Cf 27p

+

VG2

L1 1T

C1 1T

Vin

Vfb

Page 59: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 3: Cf - ResultsWhen to use: Especially effective when NG is high, ≥ 30dB.

Systems where a bandwidth limitation is not an issue

- Limits closed-loop bandwidth at 1/(2*pi*Rf*Cf)

V-

V+

+

-

+U1 OPA627E CLoad 100n

Vo

Rf 100kRg 4.99k

C1 30p

+

VG1

T

Time (s)

0.00 150.00u 300.00u

Vo

ltag

e (

V)

0.00

5.00m

10.00m

15.00m

20.00m

25.00m

Page 60: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 3: Cf - DesignEnsure Good Phase Margin:

For 20dB/decade ROC, 1/Beta must intersect AOL while its slope is -20dB/decade. Therefore: f(1/B pole) < f(cl_unmodified)

f(1/B zero) > f(AOL = 0dB)T

Frequency (Hz)

1.00 10.91 118.92 1.30k 14.14k 154.22k 1.68M 18.34M 200.00M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

f(cl_unmodified)

f(AOL = 0dB)

f(cl_unmodified) = 152.13kHz

f(AOL = 0dB) = 704.06kHz

1/B Pole Equation:

f(1/B pole)=1

2piRfCf

1/B Zero Equation:

f(1/B zero)=1

2pi(Rg Rf)Cf

Page 61: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

T

Frequency (Hz)

1.00 10.91 118.92 1.30k 14.14k 154.22k 1.68M 18.34M 200.00M

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

f(cl_unmodified)

f(AOL = 0dB)

Method 3: Cf - DesignEnsure Good Phase Margin:

1.) Find f(AOL=0dB)2.) Set f(1/B zero) by choosing Cf:

Good: Set f(1/B zero) = f(AOL = 0dB) for PM ≈ 45 degrees. Better: Set f(1/B zero) so AOL @ f(cl) = ½ Low-Frequency NG in dB

f(cl) @ f(AOL = ½ DC NG)

f(AOL = 0dB) = 704.06kHz

1/B Zero Equation:

f(1/B zero)=1

2pi(Rg Rf)Cf

Page 62: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 3: Cf – Design - SummarySummary:

1.) Ensure stability by placing:a) f(1/B zero) ≥ f(AOL = 0dBb) f(1/B pole) ≤ f(cl_unmodified)

2.) Try to adjust the zero location so the 1/B curve crosses the AOL curve in the middle of the 1/B span allowing for shifts in AOL

V-

V+

+

-

+U1 OPA627E

CLoad 100n

Vo

Rf 100kRg 4.99k

C1 27p

+

VG1

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

PM = 68°

Final Circuit

Page 63: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 4: Noise-Gain

V-

V+

+

-

+U1 OPA627E

CLoad 100n

Vo

Rf 100kRg 4.99k

Cn 820n

+

VG1

Rn 75

Page 64: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 4: Noise Gain - ResultsTheory: 1/Beta compensation. Raise high-frequency 1/Beta so the ROC occurs before the AOL pole causes the AOL slope to change

T

Gai

n (d

B)-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Pha

se [d

eg]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Ga

in (

dB

)P

ha

se

(d

eg

ree

s)

Frequency (Hz)

100

PM = 56°

AOL

1/B

AOL*BPhase

AOL*B

ROC = 20dB/decade

1/B Pole1/B ZeroAOL Pole

Page 65: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 4: Noise Gain - ResultsWhen to use: Better for lighter capacitive loading

When AOL @ f(AOL pole) < (Closed loop gain + 20dB)

Due to the increase in noise gain, this approach may not be practical when required noise gain is greater than the low-frequency signal gain by more than ~25-30dB.

T

Time (s)

0.00 150.00u 300.00u

Vo

ltag

e (

V)

0.00

5.00m

10.00m

15.00m

20.00m

25.00m

0 150u 300uTime (seconds)

0

25m

10m

20m

15m

5m

Vo

ltag

e (

V)

V-

V+

+

-

+U1 OPA627E

CLoad 100n

Vo

Rf 100kRg 4.99k

Cn 820n

+

VG1

Rn 75

Page 66: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 4: Noise Gain - DesignEnsure Good Phase Margin:

For 20dB/decade ROC, 1/Beta must intersect AOL above the AOL pole. Therefore: |High-Freq NG| > |AOL| @ f(AOL pole)

f(1/B zero) < f(AOL = High-Freq NG)

1/B Zero Equation:

f(1/B zero)=1

2piRnCn

1/B Pole Equation:

f(1/B pole)=1

2pi(Rn+(Rg Rf)Cf

High-Freq Noise-Gain Equation:

HF NG = Rf

(Rg Rn)

|AOL| @ f(AOL pole) = 52.11dB

f(AOL pole) = 29.49kHz

T

Frequency (Hz)

1.00 10.91 118.92 1.30k 14.14k 154.22k 1.68M 18.34M 200.00M

Vo

lta

ge

(V

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

f(AOL pole)

|AOL| @ f(AOL pole)

Page 67: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 4: Noise Gain - DesignEnsure Good Phase Margin:

1.) Find f(AOL pole) and |AOL| @ f(AOL pole)2.) Set High-Freq Noise-Gain by choosing Rn:

Good: |HF NG| ≥ |AOL| @ f(AOL pole)Better: |HF NG| ≥ |AOL| @ f(AOL pole) + 10dB

High-Freq Noise-Gain Equation:

HF NG = Rf

(Rg Rn)

|AOL| @ f(AOL pole) = 52.11dB

f(AOL pole) = 29.49kHz

T

Frequency (Hz)

1.00 10.91 118.92 1.30k 14.14k 154.22k 1.68M 18.34M 200.00M

Vo

lta

ge

(V

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

f(AOL pole)

|AOL| @ f(AOL pole)

Page 68: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 4: Noise Gain - DesignEnsure Good Phase Margin:

3.) Find f(cl_modified) = f(AOL @ |HF NG|)4.) Set f(1/B zero) by choosing Cn:

Good: f(1/B zero) ≤ f(cl_modified)Better: f(1/B zero) ≤ f(cl_modified) / 3.5 (~ ½ decade)

High-Freq Noise-Gain Equation:

HF NG = Rf

(Rg Rn)

f(cl_modified) = 29.49kHz

T

Frequency (Hz)

1.00 10.91 118.92 1.30k 14.14k 154.22k 1.68M 18.34M 200.00M

Vo

lta

ge

(V

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00120

80

60

40

20

0

-20

-40

Ga

in (

dB

)

100

1 10 100 1k 10k 100k 1M 10M 100MFrequency (Hz)

f(AOL pole)

|AOL| @ f(AOL pole)

f(cl_modified)

Page 69: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 4: Noise Gain - SummarySummary:

1.) Ensure stability by setting:a) |HF NG| ≥ (|AOL| @ f(AOL pole) + 10dB)b) f(1/B zero) ≤ f(cl_modified) / 3.5

Final Circuit

V-

V+

+

-

+U1 OPA627E

CLoad 100n

Vo

Rf 100kRg 4.99k

Cn 820n

+

VG1

Rn 75

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[de

g]

0.00

45.00

90.00

135.00

180.00

120

80

60

40

200

-20

-40

180

135

90

45

01 10 100 1k 10k 100k 1M 10M 100M

Gai

n (d

B)

Pha

se (

degr

ees)

Frequency (Hz)

100

PM = 56°

Page 70: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 4: Noise GainQuick reminder that inverting and non-inverting noise gain circuits are different!

T

Time (s)

0.00 150.00u 300.00u

Vo

lta

ge

(V

)

0.00

5.00m

10.00m

15.00m

20.00m

25.00m

0 150u 300uTime (seconds)

0

25m

10m

20m

15m

5m

Volta

ge (V

)

0 150u 300uTime (seconds)

-24m

1m

-14m

-4m

-9m

-19m

Volta

ge (V

)T

Time (s)

0.00 150.00u 300.00u

Vo

lta

ge

(V

)

-24.00m

-19.00m

-14.00m

-9.00m

-4.00m

1.00m

V-

V+

+

-

+U1 OPA627E

CLoad 100n

Vo

Rf 100kRg 4.99k

Cn 820n

+

VG1

Rn 75

V-

V+

+

-

+U1 OPA627E

CLoad 100n

Vo

Rf 100kRg 4.99k

Cn 820n

Rn 75

+

VG1

Page 71: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Circuits with High Feedback Resistance

Page 72: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Circuits with High Feedback Resistance

V-

V+

+

-

+U1 OPA627E

Vout

R1 499k

R2 100k

R6 499k

+

VinCstray 20p

T

Time (s)

0.00 150.00u 300.00u

VG2

0.00

20.00m

Vo

-13.01

13.01

Page 73: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Circuits with High Feedback ResistanceDetermine the Problem

Zero in 1/Beta

AOL unaffected

Phase Margin 0!!

T

Ga

in (

dB

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Ph

ase

[d

eg

]

0.00

45.00

90.00

135.00

180.00

V-

V+

+

-

+U1 OPA627E

Vo

R3 499k

R4 100k

R5 499k

+

VG2

L1 1T

C4

1T

Vin

Vfb

C5 25p

Page 74: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Circuits with High Feedback Resistance

V-

V+

+

-

+U1 OPA627E

Vo

R3 499k

R4 100k

R5 499k

+

VG2

L1 1T

C4

1TVin

Vfb

C5 25p

Ro 50

Rf 499k

Rg 499k Cin 27p

+

VG1 Beta

Loaded_AOL

R1 50

+

VG2

-

+

-

+

AOL 1MLoaded AOL

R3 499k

R4 499k C2 27p

Beta

C1

Page 75: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Circuits with High Feedback Resistance

Ro 50

Rf 499k

Rg 499k Cin 27p

+

VG1

Loaded_AOL

Beta

Beta Transfer function:

W(s)=Rg

Ro+Rf+Rg+(Ro+Rf)CinRg

s

Pole in Beta is Zero in 1/Beta

F(Pole) = 1/(2*pi*Cin*(Rf||Rg))

T

Beta

Loaded_AOL

Gai

n (d

B)

-78.55

-39.28

0.00

Frequency (Hz)

1.00 10.00k 100.00M

Pha

se [d

eg]

-89.99

-44.99

0.00

Beta

Loaded_AOL

Page 76: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Stabilize Circuits With High Feedback Resistance

Page 77: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: CfMethod 1 – 1/Beta Compensation, “Cf”

Theory: Cf feedback places a pole in 1/Beta to cancel the zero from the input capacitance.

When to use: Almost always a safe design practice. Limits gain at 1/(2*pi*Rf*Cf)

T

Time (s)

0.00 125.00u 250.00u

VG1

0.00

100.00u

Vload

-19.60m

0.00

V-

V+

+

-

+U1 OPA627E

Vo

R3 499k

R4 100k

R5 499k

+

VG2

C5 20p

C1 34p

Page 78: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Method 1: CfMethod 1 – 1/Beta Compensation, “Cf”

1/Beta Pole at 1/(2*pi*Rf*Cf)

V-

V+

+

-

+U1 OPA627E

Vo

R3 499k

R4 100k

R5 499k

+

VG2

C5 20p

C1 34p

T

Volta

ge (V

)

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Frequency (Hz)

1.00 10.00 100.00 1.00k 10.00k 100.00k 1.00M 10.00M 100.00M

Volta

ge (V

)

0.00

45.00

90.00

135.00

180.00

Page 79: Operational Amplifier Stability Collin Wells Texas Instruments HPA Linear Applications 2/22/2012

Questions/Comments?

Thank you!!Special Thanks to:Art Kay

Bruce Trump

Tim Green

PA Apps Team