on the nonlinear transient analysis of planar steel frames ... · on the nonlinear transient...

28
Original Article Latin American Journal of Solids and Structures, 2018, 15ሺ3ሻ, e28 On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms and Numerical Studies Abstract This paper presents the fundamentals for prediction of a more realistic be‐ havior of planar steel frames with semi‐rigid connections under dynamic loading. The majority of the research in this area concentrates on the non‐ linear static analysis of frames with semi‐rigid connections. Indeed, few studies have contributed to the nonlinear dynamic and vibration analyses of frames. Therefore, this article first describes the frames’ semi‐rigid con‐ nection behavior under monotonic and cyclic loads, and presents the inde‐ pendent hardening technique adopted to simulate the joint behavior under cyclic excitation. In a finite element context, this paper presents an efficient numerical methodology that is proposed in algorithmic form to obtain the nonlinear transient response of the structural system. The paper also pre‐ sents, in algorithmic form, a complete description of the adopted connec‐ tion hysteretic model. Satisfying the equilibrium and compatibility condi‐ tions, and assuming only the connection’s rotational deformation due to bending as variable, this work obtains the tangent stiffness and mass ma‐ trices of the beam‐column element with semi‐rigid connections at the ends. The study concludes by verifying and validating the proposed numerical approach using four structural steel systems: a L‐frame, a two‐story frame, a six‐story frame, and a four‐bay five‐story frame. The analyses show that the hysteresis of the semi‐rigid connection has a strong effect on the frames’ responses and is an important source of damping during the struc‐ tural vibration. Keywords Steel frames, Nonlinear transient analysis, Geometric nonlinearities, Semi‐ rigid connections, Connection stiffness, Connection hysteretic behavior. 1 INTRODUCTION In the structural design and construction of reticulated steel structures involving one or more floors, the beam‐column and column‐base connections play a significant role in their structural response. They also repre‐ sent a significant fraction of the total cost of the structure. Thus, the characteristics of these connections are, in steel structures, economically and structurally significant. Therefore, the engineer must have a good understand‐ ing of the connection behavior. In most cases it is advisable to use semi‐rigid connections. In fact, modern stand‐ ards ሺABNT ‐ NBR 8800, 2008; AISC, 2010; Eurocode 3, 2005ሻ already include procedures to define the stiffness as well as strength of semi‐rigid connections for computational analysis programs and prescriptions for the de‐ sign engineer. Various studies on the static analysis of steel frames ሺKing, 1994; Li et al., 1995; Kruger et al., 1995; Chen, 2000; Chan and Chui, 2000; Sekulovic and Nefovska‐Danilovic, 2004; Cabrero and Bayo, 2005; Ihaddoudène et al., 2009; Valipour and Bradford, 2012ሻ have already shown that the deformation and bending moment transmission capacity of the connections can significantly alter the load carrying capacity, the internal force distribution and global and local instability of these structures. In addition, within the civil, naval, oceanic, and aeronautical indus‐ tries, more resistant materials and new design and construction techniques have led to lighter and slender struc‐ tures, which are, however, usually susceptible to excessive vibration problems. Consequently, an essential part of Andréa R. D. Silva a * Everton A. P. Batelo a Ricardo A. M. Silveira a Francisco A. Neves a Paulo B. Gonçalves b a Departamento de Engenharia Civil, Escola de Minas, Universidade Federal de Ouro Preto, Minas Gerais, Brasil. E‐mail: andreadiassil‐ [email protected], [email protected], [email protected], [email protected] b Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brasil. E‐mail: paulo@puc‐rio.br *Corresponding author http://dx.doi.org/10.1590/1679-78254087 Received: June 05, 2017 In Revised Form: October 22, 2017 Accepted: February 27, 2018 Available online: March 20, 2018

Upload: others

Post on 21-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

Original Article

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28

OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalsto

AlgorithmsandNumericalStudies

AbstractThispaperpresentsthefundamentalsforpredictionofamorerealisticbe‐haviorofplanar steel frameswith semi‐rigid connectionsunderdynamicloading.Themajorityoftheresearchinthisareaconcentratesonthenon‐linear static analysis of frames with semi‐rigid connections. Indeed, fewstudieshavecontributedtothenonlineardynamicandvibrationanalysesofframes.Therefore,thisarticlefirstdescribestheframes’semi‐rigidcon‐nectionbehaviorundermonotonicandcyclicloads,andpresentstheinde‐pendenthardeningtechniqueadoptedtosimulatethejointbehaviorundercyclicexcitation.Inafiniteelementcontext,thispaperpresentsanefficientnumericalmethodologythatisproposedinalgorithmicformtoobtainthenonlineartransientresponseofthestructuralsystem.Thepaperalsopre‐sents, inalgorithmic form,acompletedescriptionof theadoptedconnec‐tionhystereticmodel. Satisfying theequilibriumandcompatibility condi‐tions, and assuming only the connection’s rotational deformation due tobendingasvariable,thisworkobtainsthetangentstiffnessandmassma‐tricesofthebeam‐columnelementwithsemi‐rigidconnectionsattheends.The study concludes by verifying and validating the proposed numericalapproachusingfourstructuralsteelsystems:aL‐frame,atwo‐storyframe,asix‐storyframe,andafour‐bayfive‐storyframe.Theanalysesshowthatthe hysteresis of the semi‐rigid connection has a strong effect on theframes’responsesandisanimportantsourceofdampingduringthestruc‐turalvibration.

KeywordsSteelframes,Nonlineartransientanalysis,Geometricnonlinearities,Semi‐rigidconnections,Connectionstiffness,Connectionhystereticbehavior.

1INTRODUCTION

In the structural design and construction of reticulated steel structures involving one ormore floors, thebeam‐columnandcolumn‐baseconnectionsplayasignificantroleintheirstructuralresponse.Theyalsorepre‐sentasignificantfractionofthetotalcostofthestructure.Thus,thecharacteristicsoftheseconnectionsare, insteelstructures,economicallyandstructurallysignificant.Therefore,theengineermusthaveagoodunderstand‐ingoftheconnectionbehavior.Inmostcasesitisadvisabletousesemi‐rigidconnections.Infact,modernstand‐ards ABNT‐NBR8800,2008;AISC,2010;Eurocode3,2005 alreadyincludeprocedurestodefinethestiffnessaswellasstrengthofsemi‐rigidconnectionsforcomputationalanalysisprogramsandprescriptionsforthede‐signengineer.

Variousstudiesonthestaticanalysisofsteel frames King,1994;Lietal.,1995;Krugeretal.,1995;Chen,2000;ChanandChui,2000;SekulovicandNefovska‐Danilovic,2004;CabreroandBayo,2005;Ihaddoudèneetal.,2009;ValipourandBradford,2012 havealreadyshownthatthedeformationandbendingmomenttransmissioncapacityof theconnectionscansignificantlyalter the loadcarryingcapacity, the internal forcedistributionandglobalandlocalinstabilityofthesestructures.Inaddition,withinthecivil,naval,oceanic,andaeronauticalindus‐tries,moreresistantmaterialsandnewdesignandconstructiontechniqueshaveledtolighterandslenderstruc‐tures,whichare,however,usuallysusceptibletoexcessivevibrationproblems.Consequently,anessentialpartof

AndréaR.D.Silvaa*EvertonA.P.BateloaRicardoA.M.SilveiraaFranciscoA.NevesaPauloB.Gonçalvesb

aDepartamentodeEngenhariaCivil,EscoladeMinas,UniversidadeFederaldeOuroPreto,MinasGerais,Brasil.E‐mail:andreadiassil‐[email protected],[email protected],[email protected],[email protected],PontifíciaUniversidadeCatólicadoRiodeJaneiro,RiodeJaneiro,RJ,Brasil.E‐mail:paulo@puc‐rio.br

*Correspondingauthor

http://dx.doi.org/10.1590/1679-78254087

Received:June05,2017InRevisedForm:October22,2017Accepted:February27,2018Availableonline:March20,2018

Page 2: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 2/28

a structuraldesign should includeananalysisof theirdynamicbehaviorundervarious loading conditions.Re‐searchalongtheselines,accountingfortheeffectofconnectionflexibility,isstilllimited,particularlycomparedtothe amount of research on static analysis. Numerical investigations into the behavior of steel structures withsemi‐rigid connections submitted todynamic situationshavebeen carriedoutby, amongothers, the followingresearchers:ValipourandBradford 2012 ;ChanandHo 1994 ;LuiandLopes 1997 ;XuandZhang 2001 ;Sophianopoulos 2003 ;Silvaetal. 2008 ;Galvãoetal. 2010 ;Vimonsatitetal. 2012 ;NguyenandKim 2013 AttarnejadandPirmoz 2014 ;andAristizabal‐Ochoa 2015 .

Researchershavealsoexperimentallyevaluatedthecyclicresponsesofsemi‐rigidconnections.Bernuzzietal. 1996 ,Calado 2003 ,andShietal. 2007 carriedouttestsusingspecifictypesofconnectionsandproposedmathematicalmodelstorepresenttheobservedbehavior.

ThisarticlecanbeconsideredasanexpansionofanearlierworkbyGalvãoetal. 2010 .Inthiscontext,thecurrent paper evaluates, using the CS‐ASA Program Computational System for Advanced Structural Analysis;Silva,2009 ,thenonlineardynamicresponseofplanarsteelframe,consideringgeometricnonlineareffectsandthesemi‐rigidcharacteristicsof theconnectionsbetweenthestructuralelements.Whenthesemi‐rigidconnec‐tionsaresubmittedtoalternatingrepetitiveactions,theymaydevelopaninelasticbehaviorthatgivesrisetohys‐tereticdamping,whichisinmostcasesquitebeneficial.

CS‐ASAisaFEM‐basedcomputersystemimplementedinFortran90/95,originallydesignedforsteelstruc‐tures.Thisprogramcanperformadvancedstaticanddynamicnumericalanalysisconsideringsourcesofnonline‐aritiessuchassecondordereffectsandsemi‐rigidconnections usingpseudo‐springsatthefiniteelementends .Therefore,thispaperbringsthenumericalresultsobtainedfromanalteratedCS‐ASAversion,whichallowrepre‐sentthesemi‐rigidconnectionhystereticbehavior,inordertoallowabettermodelingofthenonlineartransientresponseofplanarsteelframeswithflexiblejoints.Actually,thisisanextensionoftheCS‐ASAinitialmodulethatcontemplatedthestaticnonlinearanalysisandsomecasesfordynamicnonlinearanalysisandvibration Galvãoetal.,2010;Silva,2009 .Asmaincontribution,inafiniteelementcontext,thispaperpresentsanefficientnumeri‐calmethodologytoobtainthenonlineartransientresponseofstructuralsystemswithsemi‐rigidjoints.Thepa‐peralsopresents,inalgorithmform,acompletedescriptionoftheadoptedconnectionhystereticbehavior.

The next section, Section 2, describes the connection behaviorwhen subjected tomonotonic and cyclicalloads,andpresents theadoptedtechniquetosimulatethisbehavior.Section3details themethodologyusedtoobtainthenonlineartransientresponseofthestructuralsystem.Section4presentstheformulationofthefiniteelementusedinthestructuralsystem’smodeling.Finally,tovalidatetheproposedanalysismethodology,Section5evaluatesthedynamicresponseoffourstructuralsystems.Theresultsdemonstratethatthestructuraldynamicbehaviorcanbegreatlyinfluencedbytheeffectsofthesemi‐rigidconnectionsandthatacarefuldynamicconnec‐tiondescriptionanddynamicanalysisisessentialforasafeandyetcost‐effectivedesign.

2SEMI‐RIGIDCONNECTIONS

Asnotedabove,connectionsplayakeyrole in theassembly,performance,andcostofasteelstructure. Inmostcases,theseconnectionscannotbemodeledasperfectlyrigidorideallyhinged.Rigidconnectionspreventanyalterationoftheanglebetweentheinterlinkedelements,transferringthefullmomentfromoneextremitytotheother.Inthecaseofhingedconnections,nomomentistransmittedbetweentheelements.Thesehypothesessimplifytheanalysisbutfailtorepresentthetruebehaviorofmoststructures.TheexperimentalinvestigationsofJonesetal. 1980;1983 andNethercotetal. 1998 demonstratedthatagreaterpartoftheconnectionsusedincurrentpracticesdisplaysemi‐rigidbehavior.Thiscansubstantiallyinfluencetheoverallstabilityofthestructur‐alsystemaswellasthedistributionoftheforcesactingonitselements.Indeed,geometricandmechanicaldiscon‐tinuitiescan,accordingtoColson 1991 ,introducelocalizedeffectsandimperfectionsintheconnectionsusedinsteelstructures,whichinterferewiththeoverallbehaviorofthestructure,providingjustificationforamorerig‐orousinvestigationintotheseconnectionbehavior.Suchstudiesshouldtakeintoaccountnotonlythemanufac‐turingandassemblypointofviewbutalsotheconnections’influenceonthestructuralresponse.

Notonlytheaxialandshearforcesbutalsothebendingandtorsionmomentsaretransmittedthroughacon‐nection.Foragreatmajorityofsteelstructures,however,theeffectsoftheseaxialandshearforcesonthedefor‐mationoftheconnectionaresmallcomparedtothosecausedbythebendingmoment Chenetal.,1996 .Forthisreason,andknowingthatintheanalysisofplanarstructuresthedeformationcausedbytorsionisnegligible,thisstudyconsidersonlytherotationaldeformationoftheconnectioncausedbybending.

Connectionbehaviorisgenerallydescribedbymoment‐rotationcurves,whichcanbeobtainedinthreeways:fromexperimentaltests,numericalsimulationinfiniteelements,orbytheoreticalmodels.Theselatteraredevel‐opedbyapplying curve‐adjustment techniques to the resultsobtainedby thenumerical simulationand/or the

Page 3: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 3/28

experimentaltests.Díazetal. 2011 presentedthemainfeaturesofdifferentconnectionmodels,highlightingtheadvantagesanddisadvantagesofeachone.Otherstudieshavebeenperformedtoevaluatethebehaviorofcon‐nectionsundermonotonicandcyclic loads, including AckroydandGerstle,1982;Azizinaminietal.,1987;YeeandMelchers, 1986; Kishi and Chen, 1987a; Kishi and Chen, 1987b; Korol et al., 1990; Tsai and Popov, 1990;Abolmaalietal.,2003;Abolmaalietal.,2009 .Thefollowingtwosubsectionsdescribethesebehaviorsaswellasthenumericalmodelsadoptedhere.

2.1BehaviorunderMonotonicLoadingandMathematicalRepresentation

Figure1illustratesthetypicalbehaviorofthreetypesofsemi‐rigidconnections:theflushendplate,topandseatangle,andsinglewebangle.Inthefiguretherelativerotationbetweentheinterconnectedelements, cf ,due

toanappliedmomentisalsoshown.Theseconnections,whensubmittedtobending,displayasofteningnonlinearbehaviorwithdecreasingstiffness.Themoment‐rotationcurve is initiallypractically linear,but,as the load in‐creases,thenonlinearityincreases.Thischangeinbehaviorisinfluencedbytheexistenceofstressconcentration,geometricimperfectionsanddiscontinuitiesandtheplasticbehaviorofitscomponents.Atacertainloadinglevel,thesefactorsbegintointerfereintherotationalcapacityoftheconnection.Inthefinalloadingstage,themoment‐rotationcurvetendstowardanasymptoticalvalueknownastheultimatemomentcapacityofconnection.

Figure1:Moment‐rotationcurvesofthreeusualtypesofconnectionsundermonotonicloading.

Themost important characteristics thatdefine theconnectionbehaviorare its initial stiffnessand itsulti‐matemomentcapacity Bjorhovdeetal.,1990 .Theconnectionstiffness,denotedas cS ,isdeterminedbyexperi‐

mental tests.Mathematically, it represents the inclinationof the tangent to themoment‐rotationcurve Fig.1 .Thestiffnessvaluedoesnotdeterminewhetheraconnectionwillbehaveinarigidorflexiblemanner.Thisbehav‐iorcanonlybeestablishedbyusingaparameter that relates theconnection’s stiffness to thebendingstiffnessEI oftheelementtowhichitisconnected.Cunningham 1990 proposed,toprovideabetterunderstandingof

therotationalbehaviorof theconnection,a fixed factor, 1(1 3 / ( ))cEI S Lg -= + , inwhichLrepresents theele‐

Page 4: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 4/28

ment’slength,where g variesbetween0and1.Foraperfectlyhingedconnection 0g = andforanideallyrigid

connection, 1g = ,since cS ¥ .Theconnectionstiffnesscanbecalculatedby:

cc

dMS

df= 1

whereM isthebendingmomentactingontheconnectionand cf isitsrotationaldeformation.

Themoment‐rotationcurvescangenerallybewrittenbyoneofthefollowingexpressions:

( )

( )c

c

M f

g M

ff

==

2

which relate themoment to the rotationwithmathematical expressions f and g,whichusually depend on thegeometryanddispositionoftheconnectingcomponentsandthecurveadjustmentparameters.

According to Chan and Chui 2000 , themathematicalmodels should provide a smoothmoment‐rotationcurvewiththefirstderivativepositiveandbeabletorepresentvarioustypesofconnections.Foralinearconnec‐tionmodelonlyoneparameterdefiningthejointstiffnessisnecessary.Inthiscase,themoment‐rotationrelation‐shipisgivenby:

cini cM S f= 3

where ciniS representstheinitialstiffness.Thisisthesimplestmodelandhasbeenwidelyusedintheanalysisof

semi‐rigidconnections Arbabi,1982;KawashimaandFujimoto,1984;Chan,1994;LuiandChen,1986 .Forlargedisplacementanalyses,however,itmayleadtoerroneousconclusions.

Unlike the linear model, the nonlinear models simulate the stiffness degradation as the load increases.Amongthevariousnonlinearmodelsfoundinliterature,onlythoseemployedinthisstudyarediscussed.

Thefirstisanexponentialmodel LuiandChen,1986;ChenandLui,1991 ,whosemathematicalexpressionforthemoment‐rotationcurveisgivenby:

01

1 exp 2

nc

j p cm

M M C Rm

ff

a=

é æ öù- ÷çê ú÷ç= + - +÷çê ú÷÷çè øê úë ûå 4

whereM isthemomentintheconnection, 0M istheinitialmoment, pR isthestrain‐hardeningstiffnessofthe

connection,a isanscalingfactor,and mC — 1,2,...m n= —isthecurve‐fittingcoefficient.

Alsousedhereisafour‐parametermodelproposedbyRichardandAbbott 1975 .Themodeldescribestheconnectionbehavioraccordingtotherelationship:

( )

( )1

0

+

1 /

cini p cp c

n ncini p c

S RM R

S R M

ff

f-

-=

é ù+ -ê úë û

5

in which pR is the strain‐hardening stiffness when cf tends to infinity; n is a parameter that defines the

sharpnessofthecurve,and 0M isareferencemoment.AstudymadebyKishietal. 2004 demonstratedthatthis

modeliseffectiveinestablishingthebehaviorofanendplateconnection.However,itcanbeappliedtoanytypeof connection. To do this, it is sufficient to either experimentally or numerically evaluate the four necessaryparameters.Fromthismodel,threeotherscanbeobtained:linear p ciniR S» ,bilinear n ¥ ,andignoring

the effect of the strain‐hardening stiffness, the three‐parameter potentialmodel presented by Kishi and Chen1986 . The stiffness of the connection is obtained using Eq. 1 , with M described by one of the nonlinearpresentedmodels.

Page 5: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 5/28

2.2BehaviorunderCyclicLoadingandMathematicalRepresentation

Whenarealisticnumericalsimulationofagivenstructuralsystemunderdynamicloadsisdesired, it ises‐sentialtoconsiderthebehavioroftheconnectionundercyclicload.Dependingontheloadlevelandtimehistory,semi‐rigidconnectionsmaydevelopaninelasticbehavior.AtypicalconnectionresponseisillustratedinFig.2.

Figure2:Connectionbehaviorundercyclicloading.

InFigure2the0Acurvedescribestheconnection’sbehaviorduringtheinitialloadingprocessofthestruc‐ture,whichiscompatiblewiththedifferenttypesofconnectionshowninFig.1.ThefollowingABandBCpathscorrespondtotheunloadingprocesscharacterizedbyadecreasingintensityofthebendingmomentthatactsontheconnectionandthereversalofthedirectionoftheexternalforcing,asshownbythearrows.ThesubsequentCDandDEpathscorrespondtothenextunloadingandloadingcycles.Afterthefirstunloadingstageiscomplete,only a part of the total deformation caf is recovered and the connection sustains a permanent residual defor‐

mation cbf .Thisalsooccursaftereachofthefollowingloadingandunloadingcycles.Theloopsresultingfromthe

non‐coincidentmoment‐rotationcurvescharacterizetheconnectionhystereticbehavior,asshown,throughcyclicloadingtests,byTsaiandPopov 1990 ,Koroletal. 1990 andAbolmaalietal. 2003 .

Thenonlinearbehaviorofthesemi‐rigidconnectionswhensubmittedtocyclicloadscanbeefficientlysimu‐lated by the independent hardening technique, employed previously by, among others, Ackroyd and Gerstle1982 ,Azizinaminietal. 1987 ,Chenetal. 1996 ,ChanandChui 2000 andSekulovicandNefovska‐Danilovic2008 .Animportantadvantageofthisapproachisthatonecanadoptanymathematicalfunctionrepresentingthemoment‐rotationrelationshipundermonotonicloads.

Consideratypicaltrajectoryunderincreasingload trajectoriesindicatedbythecontinuouslinesinFig.3a beginningatapointwithcoordinate pf , the lastpermanent residual rotation at0A, the initial loadingphase,

0pf = ,thebendingmomentM atanypositionalongthetrajectoryDEcanbecalculatedasfollows:

( )c pM f f f= - 6

where f is defined in accordance with a mathematical model that describes the nonlinear moment‐rotationbehavioroftheconnectionwhensubmittedtoamonotonicload.Thus,theconnectionstiffnessisgivenby:

Page 6: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 6/28

( )c c p

cc

dMS

d f f ff = -

= 7

Theloadingprocessbetweenatimestep t prior and t t+ D actual leadstoanincreaseinthebendingmoment, MD ,whichhasthesamesignofthebendingmoment,M .Therefore,theloadingconditionisverifiedif

0M M⋅ D > .Intheunloadingprocess,basedonexperimentalresults,alinearmoment‐rotationrelationwithaninclina‐

tionequaltotheinitialstiffnessoftheconnectionisconsidered,asillustratedbythesolidlinesinFigure3b.Con‐sider,forexample,thesegmentABofthehystereticcycle.Thestraightlinestartingatpoint ( ; )c aA Mf theendof

theprecedingloadingcycle withaninclination ciniS isdefinedas:

( )a cini ca cM M S f f= - - 8

where aM is the reversemoment at which unloading starts, which can be obtained from Eq. 6 considering

c caf f= .

Duringtheunloadingprocess,therelation 0M M⋅ D < isobeyed.Insomecase,however,additionalclarifi‐cationsarenecessary.ConsideragainFig.2.IftheconnectionisbeingunloadedfromAtoBandtheloadingpro‐cessbeginsbeforetheunloadinghasbeencompleted,sayatF,themoment‐rotationbehaviorofthiselementwillfollowtheFAtrajectoryuntilitreachesthelastreversemomentencountered.Atthispoint,theloadingprocessfollowstheoriginalmoment‐rotationcurveobtained,consideringthelastpermanentrotation pf .

Figure3:Independenthardeningmodel:loadingandunloadingportions.

Incomputingthe independenthardeningmodel, therotation pf shouldbestoredaftereachcompleteun‐

loadingcycle.Thereversemoment, aM ,shouldalsobestoredeverytime MD changessign.Inaddition,theinter‐

valsbetweenthetwosuccessivetime instantsshouldbesmallsothat thesevariablescanbedefinedwithade‐quateprecision.

3METHODOLOGYFORNONLINEARDYNAMICANALYSIS

Theequationsofmotionthatgovernsthedynamicresponseofastructuralsystemcanbeobtainedusingthevirtualworkprincipleorthevirtualdisplacementprinciple.Consideringtheinternal,inertialanddissipativeforc‐es,theequilibriumattime t t+ D ,canbeexpressedas ZienkiewiczandTaylor,1991 :

t t t

Tij ij k k k k k ek

V V V

dV d d dV d d dV d ft de + r d + m d = dò ò ò 9

Page 7: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 7/28

where ijt represents the Cauchy tensor in equilibriumwith external excitation ekf ; ije represents the virtual

Green‐Lagrangedeformationcomponentscorrespondingtoarbitrarydisplacements kdd ,whicharecinematically

compatiblewith theboundary conditions; r is themassdensityof thematerial and m is theviscousdampingcoefficient. To determine the equilibrium configuration of the structure at t t+ D , the updated Lagrangianreferentialisused.Inthiscase,theconfigurationatinstanttisusedasthereferenceforanalysis.

TheadvantageofusingtheupdatedLagrangianreferentialdependsonthefiniteelementformulationadopt‐ed Bathe,1996 .WongandTin‐Loi 1990 andAlves 1993 showedthattheresultsobtainedusingtheinitialLagrangianreferentialleadstoaccumulatederrorsiflinearinterpolationfunctions Silveira,1995 areadoptedintheFEformulationduetopossiblerigidbodymotionsduringtheincrementalprocess.WithanupdatedLagrangi‐anreferential, thesesimplified interpolation functionscanbeapplied,as thereferential isupdatedatevery in‐crementandrigidbodyrotationsaredividedintosmallerparts.

Accordingtotheusualfiniteelementprocedures,andusingEq. 9 ,thefollowingmatrixequationintermsofthenodaldisplacementsisobtained:

( ) ( )i rtl+ + =MU CU F U F 10

whereM andC arethemassanddampingmatrices,respectively; iF istheinternalforcevector; U ,U andU ,

represent the displacement, velocity and acceleration vectors, of the structural system, respectively; rF is the

vectorthatdefinestheexternalexcitation;andl istheloadintensityatainstantt.Thestiffnessmatrixisafunctionofthreevariables—thenodaldisplacements,theinternalforcesofeachel‐

ement,andconnectionstiffnessandmustbecontinuouslyupdatedusinganincremental‐iterativesolverstrategytocapturethesecond‐ordereffects P -DandP d- andconnectionbehavior.Tothisend,anumericalproce‐dure that combines theNewmark Chopra,1995 andNewton‐Raphson BurdenandFaires,2004 methods isadopted.Thenecessary computational stepsaredetailed inAppendixA.Notice that the connection stiffness isupdatedattheendofeachiterativecycle.AppendixBsummarizes,inalgorithmicform,theconnectionhystereticmodelimplementedhereanddescribedinSection2.

4THESEMI‐RIGIDFINITEELEMENT

Inmoststructuralanalysisprogramsspringsareusedtomodeltheconnections.Figure4showstheplanarbeam‐columnelement,withnodalpointsiandj,andtwospringsfixedattheextremities.Theypermittheconnec‐tions’degreeoffreedomtobeincorporatedintothetangentstiffnessofthebeam‐columnelement.Onlythecon‐nection’srotationaldeformationduetobendingisconsidered.

Figure4:Beam‐columnelementwithsemi‐rigidconnections.

Figure5showsadeformedconfigurationof the finiteelement, the internal forcesanddeformations in thesprings,where ciS and cjS denotethestiffnessofthespringelements.Theconnectionscanbecharacterizedby

differentmoment‐rotationcurves Eq.6 .Theconnection’srelativerotation, cf , isdefinedasthedifferencebe‐

Page 8: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 8/28

tweentherotationalanglesofthesideconnectedwiththeglobalnodeoftheelement, cq ,andtheoneconnected

tothebeam‐columnelement, bq .UsingEq. 6 andthemomentequilibriumofthespringelements,thefollowing

relationsareobtained:

θ

θci ci ci ci

bi ci ci bi

M S S

M S S

ì ü é ù ì üï ï ï ïD - Dï ï ï ïï ï ï ïê ú= =í ý í ýê úï ï ï ïD - Dê úï ï ï ïï ï ï ïî þ ë û î þ 11

θ

θcj cj cj cj

bj cj cj bj

M S S

M S S

ì ü é ù ì üï ï ï ïD - Dï ï ï ïê ú= =í ý í ýê úï ï ï ïD - Dê úï ï ï ïî þ ë û î þ 12

where cM and bM are the bendingmoments acting on the spring elements andon the beam‐columnelement,

respectively,andthesubscriptsiandjrefertotheelement’sextremities.Theeffectinducedbyconnectionflexibilityisaccountedforbymodifyingtheelementstiffnessmatrix.Here‐

in,thespringelementssimulatingtheconnection’sflexibilityhavenulllengthsandthemoment‐rotationequilib‐riumrelationisgivenby:

(3,3) (3,6)

(3,3) (3,3)

4 2 4 2 2

15 302 2 4 2 4

30 15

bi bi bi

bj bj bj

EI PL PL EI PL PIM k k L AL L AL

k kM EI PL PI EI PL PL

L AL L AL

q qq q

é ùê ú- + - +ì ü ì ü ì üé ùD D Dï ï ï ï ï ïê úï ï ï ï ï ïê ú= =í ý í ý í ýê úê úï ï ï ï ï ïD D Dê úê úï ï ï ï ï ïë ûî þ î þ î þ- + - +ê úë û

13

whereE is theYoung’smodulus; I andA are, respectively, the element cross section inertia and area; L is theelement’s length; andP is theaxial force.The termsof thematrix are the coefficientsof a conventionalbeam‐column element stiffnessmatrixwith perfectly rigid connections, determined using the nonlinear geometricalformulation proposed by Yang and Kuo 1994 , assuming large displacements and rotations, but smalldeformations.

CombiningEqs. 11 ‐ 13 ,resultsin:

θ

θ

θ

θ

(3,3) (3,6)

(6,3) (6,6)

0 0

0

0

0 0

ci cici ci

ci cibi bi

cj cjbj bj

cj cjcj cj

S SM

S S k kM

k S k SM

M S S

é ùì ü ì üï ï ï ï-D Dï ï ï ïê úï ï ï ïê úï ï ï ï- +D Dï ï ï ïê úï ï ï ï= =í ý í ýê úï ï ï ï+ -D Dê úï ï ï ïï ï ï ïê úï ï ï ïD D-ï ï ï ïê úï ï ï ïî þ î þë û

14

Assumingthattheloadsareonlyappliedattheglobalnodesoftheelement seeFig.5 ,theinternalmoments

biM and bjM areequaltozero,andthefollowingmoment‐rotationequilibriumrelationsisobtained:

θ

θ(6,6) (3,6)

(6,3) (3,3)

0 0 010 0 0

cjci ci ci ci ci

cj cj cj ci cj cj

S k kM S S S

M S S k S k Sb

æ öì ìé ùü é ù é ù é ù üï ïï ï+D D÷çï ïï ïï ï ï ïê úê ú ê ú ê ú÷ç= - ÷í ý í ýç ê úê ú ê ú ê ú÷çï ï ï ïD - + D÷÷ç ê úê ú ê ú ê úï ï ï ïè øï ïþ ë û ë û ë û þë ûï ïî î 15

inwhich ( )( )(3,3) (6,6) (6,3) (3,6)ci cjS k S k k kb = + + - .

Figures4and5showthat i ciM M= and j cjM M= .Thus,therelationshipbetweentheshearingforcesand

thebendingmoments,obtainedby theequilibriumforceandmoment,canbewritten inan incrementalmatrixformasfollows:

1/ 1/

1 0

1/ 1/

0 1

i

cii

cjj

j

L LQ

MM

L L MQ

M

é ùì üï ïDï ï ê úï ï ê ú ìï ï üï ïDDï ï ï ïê úï ï ï ï= =í ý í ýê úï ï ï ï- - DD ê úï ï ï ïïþïîï ï ê úï ïDï ï ê úï ïî þ ë û

16

with iMD and jMD beingtheincrementalnodalmoments, iQD and jQD beingtheincrementalshearingforces

intheequilibriumconfigurationt.

Page 9: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 9/28

Figure5:Deformedconfigurationandspringelementdegreeoffreedom.

ObservingFig.6,itispossibletoestablishtherelations:

1/ 1 1/ 0

1/ 0 1/ 1

i

ci i

cj j

j

v

L L

L L v

q qq

q

ì üï ïDï ïï ïì ï ïü é ùï ïD - Dï ïï ïï ï ï ïê ú=í ý í ýê úï ï ï ïD - Dê úï ï ï ïïþ ë ûïî ï ïï ïDï ïï ïî þ

17

Figure6:Nodaldisplacementsofthesemi‐rigidbeam‐columnelement.

Bysubstituting 15 into 16 ,using 17 ,andperformingall thenecessaryoperations, thesemi‐rigidele‐ment stiffnessmatrix is then obtained consideringboth the connection flexibility and the geometric nonlineareffects.Usingthesenewtermsinthecomplete6x6ordermatrixoftheconventionalbeam‐columnelement,theelementstiffnessmatrix is finallyobtained in the localcoordinatessystem. In this formulation, therelationbe‐tweentheaxialforces iP and jP ,andthenodaldisplacementssuffernoalterationswhenconsideringtheconnec‐

tionflexibilityeffects.Thetransformationoftheinternalforcevectorandthestiffnessmatrixtotheglobalcoor‐dinatessystemiscarriedoutfollowingtheusualprocedures.

Page 10: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 10/28

4.1Semi‐RigidFiniteElementMassMatrix

Theconsistentmassmatrixforthebeam‐columnelementisdefinedas KishiandChen,1986 :

Te

tV

dVr= òM H H 18

whereHistheinterpolationfunctionsmatrix.AccordingtoChanandChui 2000 ,thetransversaldisplacementvofthebeamelementcanbewritten,inan

incrementalform,usingthefollowingmatrixexpression:

( ) ( )2 21 2 2 1 1 1 2 2( ) 3 2 3 2bi i

bj j

vv x H H L H H L H H H H

v

qq

ì ü ì üD Dï ï ï ïï ï ï ïé ù é ùD = - + - -í ý í ýê ú ë ûë û ï ï ï ïD Dï ï ï ïî þ î þ 19

where ivD and jvD are the incremental vertical displacements of the nodes i and j, and biqD and bjqD are the

rotationsofthesesamenodes,asshowninFig.6.Inaddition, 1 1 /H x L= - and 2 /H x L= .

To introducetheconnection’s flexibilityeffect intothepreviousexpressionandtherebyobtainthedesiredmassmatrix,thebeam‐columnnodalrotationsarerelatedtotherotationsattheendsoftheelementwithsemi‐rigidconnectionsas:

14 2

0

2 4 0

cibi ci ci

bj cj cjcj

EI EIS SL L

EI EI SS

L L

q qq q

-é ùê ú+ì ü é ù ì üD Dï ï ï ïê úï ï ï ïê ú=í ý í ýê ú ê úï ï ï ïD Dê ú ê úï ï ï ïî þ ë û î þ+ê úë û

20

SubstitutingEq. 17 intoEq. 20 andusingEq. 19 , thefunctionthatdescribesthetransversaldisplace‐mentfieldofabeamwithsemi‐rigidconnectionsisobtained,i.e.:

{ }*( ) T

i i j jv x v vq qD = D D D DH 21

inwhich,

( ) ( )

1

2 21 2 2 1

1 1 2 2

4 20 1 / 1 1 / 0

( )2 4 0 1 / 0 1 / 1

3 2 0 3 2 0

ci ci

cjcj

EI EIS S L LL Lv x H H L H H L

EI EI S L LS

L L

H H H H

-é ùê ú+ é ù é ù-ê úé ù ê ú ê úD = - +ê úê ú ê ú ê úë û -ê ú ê ú ê úë û ë û+ê úë û

é ù- -ë û

22

Themassmatrixcomponents influencedbytheconnection’sstiffnessareobtainedusingtheH*matrix, in‐steadof theH inEq. 18 .Theother termsare identical to thosedeveloped for theconventionalbeam‐columnelementwithrigidconnections Silva,2009 .

5NUMERICALAPPLICATIONS

Inthissection,weusetheproposedmethodologytoobtainthenonlineardynamicresponseof fourplanarstructuralsteelsystems:aL‐frame,atwo‐storyframe,asix‐storyframe,andafour‐bayfive‐storyframe.Intheseexamples,viscousdamping isnotconsideredwhenthedissipativeeffectof theconnectionnonlinearhystereticbehavioronthedynamicresponseisevaluated.

5.1L‐Frame

ThefirstproblemtobeanalyzedistheL‐shapedframewithbuilt‐inextremitiesillustratedinFig.7,wheretherelevantdataisalsopresented.Theconnectionbetweenthesetwomembersiseitherperfectlyrigidorsemi‐rigid.Inthesemi‐rigidcase,anendplateconnectionswithaninitialstiffnessScini 137.3Nm/radisconsidered.Kawashima andFujimoto 1984 experimentallymeasured the frame’s natural frequencies considering a rigidbeam‐columnconnection.Theyalsonumericallydeterminedthesefrequenciesconsideringasemi‐rigidconnec‐

Page 11: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 11/28

tion.Inadditiontotheseauthors,ShiandAtluri 1989 andChanandChui 2000 usedthisstructuretotesttheirnumericalformulationsfordynamicanalysesofplaneframesapplyinganimpactload 19.6N inthemiddleoftheframecolumn.Theapplicationofaloadwithlowvalueisjustifiedbythelowresistanceofthesemi‐rigidcon‐nectionofthebeam‐columnelements.Table1comparesthepresentresultswiththenaturalfrequenciescorre‐spondingtothefirsttwovibrationmodesobtainedbytheaforementionedauthors.Theresultsagreewellwiththosefoundinliterature.

Figure7:L‐shapedframe:geometryandloading.

Toevaluatetheinfluenceoftheconnection’snonlinearbehavioronthedynamicresponse,ashort‐durationimpactloadP t withaconstantintensityof19.6Nisappliedatthecenterofthecolumn,asshowninFig.7.Toverify the importance of the adopted semi‐rigid connection’smoment‐rotation function in this representation,twomodelsare considered: theexponential 59 and the four‐parametermodel ChenandLui,1991 .Thepa‐rametersfortheexponentialmodel,describedbyEq. 4 ,areasfollows:m 6,C1 1.078915,C2 18.148410,C352.890917,C4 ‐34.035435,C5 ‐37.194613,C6 43.896458,α 0.000384,Rp 95.55031kgfcm/radand

Mo 0.Forthefour‐parametermodel Eq.5 ,inadditiontothepreviousinitialstiffness,thefollowingvaluesareused:Rp 8.826Nm/rad,Mo 0.883Nmandn 1.7.

Table1:ThetwolowestnaturalfrequenciesoftheL‐frame rad/s .

TypesofConnections

Presentwork

KawashimaandFujimoto1984 ShiandAt‐

luri 1989ChanandChui

2000 Numerical

Experi‐mental

Rigidω1 15.81 ω1 16.30 ω1 15.50 ω1 15.87 ω2 34.74 ω2 35.90 ω2 30.80 ω2 35.30

Semi‐rigidω1 14.90 ω1 14.90 ω1 14.75 ω1 15.22ω2 32.77 ω2 33.00 ω2 32.06 ω2 33.52

Inthenumericalanalysisaconstanttimeincrement∆t 10‐4sisused.Figure8ashowstheinitialtimere‐

sponseofthehorizontaldisplacementuattheloadapplicationpointconsideringalinerconnectionbehavior theconnectionstiffnessScisconstant andcomparetheresultswiththoseobtainedbyChanandChui 2000 andShiandAtluri 1989 .TheresultsobtainedbyusingtheconnectionexponentialmodelarecomparedinFig.8bwiththosebyChanandChui 2000 andShiandAtluri 1989 ,whoadoptedtheRamberg‐Osgoodmodeltodescribetheconnection’snonlinearbehavior.ComparingFigs.8aand8b,itispossibletoverifythedifferenceinresponseswhenconsideringthesemi‐rigidconnectionwith linearandnonlinearmodel.Seethat the frameresponsewiththenonlinearconnectionmodelhasthedisplacementamplitudesreducedduetothehystereticdampingprovid‐edbythejointnonlinearbehavior.

Page 12: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 12/28

Figure8:L‐shapedframe:geometryandloading.

Thecomparisonbetweentheconnection’s linearandnonlinearresponses isshowninFig.9.Thevibrationperiodispracticallythesameinbothcases,sincethesameinitialstiffnessoftheconnectionisconsidered.How‐ever,thenonlinearityoftheconnectionleadstoastrongdecreaseinthevibrationamplitude,duetoenergydissi‐pationduringeachhystereticcycle,asillustratedinFig.9b,wheretheconnection’smoment‐rotationresponseisdisplayed.

Toinvestigatetheinfluenceofthechosenmathematicalmodelfortheconnection’smoment‐rotationbehav‐ior,thesameanalysisiscarriedout,nowusingthefour‐parametermodel.Figure10shows,forboththeexponen‐tialandpotentialmodels,thehorizontaldisplacementattheloadpositionandtheconnection’shystereticbehav‐ior.Asmalldifferenceoccursintheconnection’shystereticbehavior Fig.10b butthetimeresponsesarecoinci‐dent Fig.10a .Thus,inthepresentcase,theconnection’sdescriptionhasnegligibleinfluenceontheframere‐sponse.

Page 13: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 13/28

Figure9:DynamicbehavioroftheL‐framewithsemi‐rigidconnection.

Figure10:DifferentconnectionmodelsusedintheL‐frameanalysis.

5.2Two‐StoryFrame

Thenextstructuretobeinvestigatedisthesingle‐bay,two‐storyframesubjectedtohorizontalloadsappliedat thetopofeachpavement,as illustrated inFig.11.Forthebeams,aW360x72profile isadopted,andfor thecolumns, aW310x143profile. Young’smodulus is equal to205GPa.Two concentratedmassesof 3730kg areconsideredattheextremitiesofeachbeamandinthemiddle,amassof7460kg.Thestructureisthenanalyzedconsideringaperiodicloadandarectangularpulse, seeFig.11 .

Figure11:Single‐bay,two‐storyportalframe:geometryandloads.

Extendedflushendplateconnections,withaninitialstiffnessof34804kNm/rad,areconsideredbetweenthebeamsandthecolumns. Itsnonlinearmoment‐rotationbehavior isrepresentedbytheexponentialmodel,withparameters: m 6, C1 ‐0.25038x10‐3, C2 0.50736x106, C3 ‐0.30396x105, C4 0.75338x105, C5 ‐0.82873x105,C6 0.33927x105,α 0.31783x10‐3,Rp 0.96415x103kip/radandMo 0.

Page 14: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 14/28

Figure12aillustratesthetimeresponseobtainedforthehorizontaldisplacementatthetopofthestructurewhensubmittedtoaperiodicload,wherethepresentresultsarecomparedwiththosebyChanandChui 2000 .Inthetransientregimethedisplacementreachesamaximumofaround 7cm.Afterapproximately6s,thestruc‐turereachesthepermanentregimewithanamplitudeof 5cm,whentheenergyintroducedintothestructureby the external loads and the energydissipated through the semi‐rigid connections are balanced. The connec‐tion’smoment‐rotationbehaviorduringthetotalresponseisshowninFig.12b.

ToinvestigatetheeffectofgravitationalloadsandtheP‐δeffectonthenonlineardynamicresponse,gravita‐tionalstatic loadsof36.6kNattheextremitiesandof73.2kNinthemiddleofthebeamareconsidered.Theseloadsinducesanincreaseoftheaxialforcesinthecolumnsandadditionalbendingmoments,reducingthestiff‐nessofthesemembersand,consequently,ofthestructuralsystem.Theanalysisisperformedconsideringarec‐tangularpulseof7.5kNactingduring1s.Threetypesofbeam‐columnconnectionsareconsidered:rigid, linearsemi‐rigidandnonlinearsemi‐rigid.Figures13a‐bexhibitsthetimehistoryofthehorizontaldisplacementatthetopofthestructurerespectivelywithandwithoutthepresenceofthegravitationalforces.Inbothcasesthesemi‐rigidconnectionleadstoastrongincreaseinthedisplacementsand,consequentlyonthestressesandstrains.Themaximumdisplacementforthenonlinearsemi‐rigidconnectionismorethanthreetimesthanthatoftheframewithrigidconnections.Thisunderlinestheimportanceofadetaileddynamicanalysisofportalframeswithsemi‐rigidconnectionsandexplainstheusuallylargevibrationamplitudesofthesestructures.

Figure12:Transientresponseofthesingle‐bay,two‐storyportalframeunderperiodicload.

For thisexample, inparticular, evenconsidering the influenceof the secondordereffects, thepresenceofgravitational forces induceda small increase in thedisplacements. In the rigid connections case, this influencewassmaller.While thevibrationamplitudesremainedconstant for thestructurewithrigidor linearsemi‐rigidconnections,itdecreasedinthenonlinearsemi‐rigidcaseduetothehystereticdamping.Ifviscousdampingwasalsoconsideredallresponsesconvergedtotherespectivestaticresponse.

Page 15: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 15/28

Figure13:Transientresponseofthesingle‐bay,two‐storyportalframeunderarectangularpulse.

5.3TheSix‐StoryVogelFrame

Now,theinfluenceofbeam‐column’ssemi‐rigidconnectionsonthedynamicresponseofatwo‐bay,six‐storysteelframe,showninFig.14,isinvestigated.Theanalysisofthisstructurewithbeam‐columnrigidconnectionsisaclassicproblem,proposedbyVogel 1985 ,tocalibrateinelasticformulations.Thebeamsaresubjectedtouni‐formlydistributedstaticloadswithintensitiesof31.7kN/m topfloor and49.1kN/m otherfloors ,whicharetransformedintoequivalentnodalloadsandaddedasadditionalmassestotheself‐weightofthestructuralmem‐bers.Atthetopofthecolumns,ineachofthesixpavements,concentratedlateralharmonicloadsareappliedhav‐ingthefollowingintensities:F1 10.23sin ωct kNandF2 20.44sin ωct kN.Thebeamsandcolumns’steelpro‐filesarealsoshown in the figure.Young’smodulus isassumedtobeequal to205GPaandan initialgeometricimperfectionofΔ0 1/450forthecolumnsisadopted.Again,threetypesofbeam‐columnconnectionsarecon‐sidered:rigid, linearsemi‐rigidandnonlinearsemi‐rigid.Thesamesemi‐rigidconnectionsusedinthepreviousproblemareadoptedhere flushendplate .

Page 16: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 16/28

Figure14:Two‐bay,six‐storyVogelframe:geometryandloading.

Thefundamentalnaturalfrequencyoftheframewithrigidconnectionsis2.41rad/s;whenadoptinglinearsemi‐rigidconnections,thevaluereducesto1.66rad/s,increasingtheeffectoflateralloadssuchaswindloadsonthestructuralresponse.Theframewithnonlinearsemi‐rigidconnectionshasthesamenaturalfrequency,sincetheinitialstiffnessisthesameasinthelinearcase.Figs.15a‐dillustratethetransientresponsesofthestructure’stop lateraldisplacement for increasingvaluesof the forcing frequencyωc.Thedisplacementsof the framewithnonlinearbeam‐columnconnectionscanbeamplifiedordampened,dependingontheforcingfrequency.Forlowforcing frequencies, see Fig. 15a ωc 1 rad/s , the horizontal displacement,when considering the nonlinearbehaviorof the connections Sc variable , is rather larger than theother two cases. InFig. 15b the forcing fre‐quencyisequaltothenaturalfrequencyoftheframewithlinearsemi‐rigidconnections,ωc 1.66rad/s,andthecorrespondingvibration amplitudes increases linearly.Therefore, itwas expected that the structurewith rigid

Page 17: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 17/28

connections,whensubmittedtotheactionoftheloadwhosefrequencyisequaltothenaturalfrequency,itwouldshowaresonantresponse withvibrationamplitudesincreasinglinearly .Thiswasalsoexpectedfortheframewithsemi‐rigidconnections,however,when the frame isanalyzedwithsemi‐rigidconnectionswithnon‐linearbehavior,itsamplitudeofvibrationalsoincreases,butthisislimitedbythehystereticdampingwhich,asshownhere,hasabeneficialeffectintheresonanceregion.Forωc 2.41rad/s,theframewithrigidconnectionsdisplayaresonantresponse,asillustratedinFig.15c.Forωc 3.33rad/s,Fig.15d,outsidethemainresonanceregion,asharp decrease in the vibration amplitudes are observed in all cases. Shown in Figs. 16a‐b are the moment‐rotationhystereticcycles forthebeam‐columnconnectionidentifiedinsetFig.16bconsideringωc 1.66rad/sandωc 2.41rad/s,respectively.Comparingthehystereticcycles,itisobservedthattheamountofenergydissi‐patedwhenωc 1.66rad/sisgreaterthanthatforωc 2.41rad/s,whichisinagreementwiththetimerespons‐esinFigs.15b‐c,highlightingtheinfluenceofthenonlinearmoment‐rotationbehaviorofthesemi‐rigidconnec‐tionsonthedynamicsofsteelstructures.

Figure15:TransientresponseofthesixstoryVogelframeunderlateralharmonicforcing.

Page 18: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 18/28

Figure16:Connectionhystereticbehavior.

5.4Four‐BayFive‐StoryFrame

Thislastexampleinvestigatesafour‐bay,five‐storysteelframelocatedinShanghai,China,underseismicex‐citation.Theresultsshowhowsemi‐rigidconnectionscansignificantlyalterthedynamicsofsteelstructuresun‐derbaseexcitationtoensureadequatestrengthandpreventcollapse.ItsgeometricconfigurationisshowninFig.17a.Theflushendplatebeam‐columnconnectionsareadoptedandtheirbehaviorisrepresentedbytheRichard‐Abbottmodelwiththeparameters:Scini 12336,86kNm/rad,Rp 112,97kNm/rad,M0 96,03kNmandn 1,6Nguyen,2010 .Gravitationalloadsarealsoincludedasadditionallumpedmassesatthebeams’nodes.Theeffectofameshrefinementinthebeamsisalsoconsidered.Theframeisassumedtobesubjectedtothefirsttensec‐ondsof the1940ElCentroN‐S earthquake component, shown inFig. 17b,with apeakgroundaccelerationof0.31g.

First, the free vibration analysis on the structure, considering the beam‐column rigid connections, is per‐formed.TheresultsarepresentedinTable2forthefirsttwonaturalperiodsofvibration.Table3presentstheresults considering semi‐rigid connections. In both cases an excellent agreement with the results by Nguyen2010 isobserved.Also,theinfluenceofthebeamdiscretizationisnegligible.Figure18showsthevariationofthefirst fivenatural frequenciesoftheframe,parametrizedbytherespectivevalueconsideringarigidconnec‐tion,asafunctionofthebeam‐columnconnectionsflexibility,γ.Allnaturalfrequencyratiosincreasewithγandconvergestooneatγ 1.Theconnectionflexibilityhasasignificantinfluenceonthevariationofthenaturalfre‐quencies,particularlyon the lowest frequencies.As thenatural frequenciesdecrease increases the influenceofenvironmentalloads,whosespectralcontentislocatedusuallyinthelowfrequenciesrange.Thisfactcanbeveryimportantforframesunderseismicloads,asthelowermodesmayhavestronginfluenceonabuilding’sseismicresponse.

Thehystereticmoment‐rotationbehaviorofthesemi‐rigidjointsAandC seeinsetinFig.19a ,areillustrat‐edinFig.19aand19b,respectivelyfortheframeundertheEl‐Centroearthquake.Figure20showsthetimere‐sponseofthehorizontaldisplacementatthestructure’srooflevel.

Page 19: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 19/28

Figure17:Transientresponseofthesingle‐bay,two‐storyportalframeunderarectangularpulse.

Table2:Firsttwonaturalperiodsofvibration s fortheframewithrigidconnections.

ModesNguyen2010

PresentWorkOneele‐ment

Twoele‐ments

Fiveele‐ments

1 1.2282 1.1818 1.1820 1.18242 0.4196 0.4196 0.4201 0.4201

Page 20: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 20/28

Thefirst‐andsecond‐orderelastictransientresponsesofthebuildingwithrigidconnectionsarepresentedinFig.20aandcomparedwiththenonlinearsecondorderresponseobtainedbyNguyen 2010 .

Table3:Firsttwonaturalperiodsofvibration s fortheframewithflexibleconnections.

ModesNguyen2010

PresentWorkOneele‐ment

Twoele‐ments

Fiveele‐ments

1 2.700 2.623 2.623 2.6232 0.777 0.733 0.773 0.770

Figure18:Influenceofbeam‐columnconnectionflexibilityonnaturalfrequencies.

Figure19:Beam‐columnconnectionhystereticbehavior.

Figure20bshowsthetransientresponsesforthesteelframewithflexibleconnections,butconsideringonlytheirlinearbehavior,inwhichcaseitisassumedthatSc Scini 12336,86kNm/rad.Finally,Figure20cpresentsthetransientsecond‐orderresponseofthesteelframewithflexibleconnections,butconsideringtheirnonlinear

Page 21: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 21/28

hystereticbehavior RichardAbbottmodel andanincreasingnumberoffiniteelementsinthebeams’discretiza‐tionprocess.Again,agoodagreementwiththeresults foundin Nguyen,2010 isobserved.Comparingthere‐sults, themarked influenceof thestructure’sgeometricnonlinearityon thedynamicresponse isobserved.Theconsideration of the connections’ flexibility significantly amplifies the displacements compare Figure 20a andFigure20b .

Figure20:Timeresponseofthehorizontaldisplacementatthestructure’srooflevel.

Page 22: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 22/28

Theconnectionsnonlinearity,Figure20b,decreases thedisplacements incomparisonwith the linearcase,buttheresultsarehigherthanthosewithrigidconnections.Thesecond‐ordereffectsleadtoaslightincreaseinthevibrationamplitudes.Finally,thebeamsdiscretizationhasnodetectableeffectontheresults.

6FINALREMARKS

Thisarticlepresentsthefundamentalsforpredictionofamorerealisticbehaviorofframeswithsemi‐rigidconnectionsunderdynamic loading. In thestructuralbehaviorevaluation, theeffectsofgeometricnonlinearityandconnectionflexibilityareconsidered.Differenttypesofconnectionsareconsideredandcompared.Numericalstudiesarecarriedoutforfourstructureswithdifferentgeometriesandloadconditions.Theobtainedresultsarecomparedwithexperimentsandsolutionsavailable inthe literature.Thecoincidenceornotwiththeresultsofothersauthorscanbestrongly influencedbythegeometricnonlinearfiniteelementformulationadopted,sincethestructuresstudiedareslender.ButGoodagreementisfoundinallcases,confirmingtheefficiencyofthefor‐mulation and numerical solution strategy adopted herein. Thus the numerical approach proposed here canbeefficientlyused to evaluate thenonlinear transient responseof planar steel structureswith semi‐rigid connec‐tions.

The connections flexibilitymaydecrease significantly thenatural frequencies, increasing consequently theeffectofenvironmentalloadssuchaswindandearthquakesonthedynamicresponseofthestructure.Thus,theseloadsmayinduceresonanceandthereforelargeamplitudeoscillationsbeyondtheacceptablemaximumvalues,whichdramaticallyreducethecomfort sea‐sickness andthereforelimittheuseofthebuilding,maycauselowcyclefatigueorevenimpairthesafetyofthestructure,producingunacceptableeconomiclosses.Forexample,theASCEStandard ASCE7‐05,2006 classifiesastructureasdynamicallysensitive,or“flexible”,ifthelowestnaturalfrequency 1Hz.Whenconsidering thehystereticbehaviorof the connection, a gradual reductionof thedis‐placement amplitudes is observed. The damping introduced by the connection’s nonlinear hysteretic behaviordecreasesthevibrationamplitudes,increasingthesafetyofthestructure.Thisdampingismeasuredbythecon‐nection’scapacitytodissipateenergyineachcycle,whichcanbeevaluatedbycalculatingtheenclosedareaofthecurvethatrelatestheforceactingontheconnectiontoitsdeformation.Viscousdampingwasnotconsideredinthepresentanalysistodrawattentiontotheinfluenceoftheconnection’sdissipativeproperties.Althoughbenefi‐cial,viscousdampingcoefficientsofslendersteelframesareusuallyverylow.Theconnectionbehaviorisshowntohaveastronginfluenceontheresults.Asthespringmodelisusedtorepresentthesemi‐rigidjointbehavior,thenumberofspringsdependsonthenumberofstructureconnections.Thustheconsiderationofthetruecon‐nectionbehavior isextremely important fora realistic forecastingof thedynamicresponseandresistanceofastructuralsteelframes.Finally,secondordereffectsareshowntoincreasethevibrationamplitudes,reducingthecomfortandsafetyoftallbuildingframes.

Acknowledgments

TheauthorswishtoexpresstheirgratitudetoCAPESandCNPq,FAPEMIGandUFOPforthesupportreceivedinthedevelopmentofthisresearch.SpecialthanksgotoProf.HarrietReisandProf.JohnWhitefortheireditorialreviews.

References

ABNT‐NBR8800. 2008 .ProjectandExecutionofSteelBuildingsStructures,BrazilianAssociationofTechnicalStandards,RiodeJaneiro,Brazil inPortuguese

Abolmaali, A., Kukreti, A.,Motahari, A., Ghassemieh,M. 2009 .Energydissipation characteristics of semi‐rigidconnections.JournalofConstructionalSteelResearch65:143‐171.

Abolmaali,A.,Kukreti,A.R.,Razavi,H. 2003 .Hysteresisbehaviorofsemi‐rigiddoublewebanglesteelconnec‐tions.JournalofConstructionalSteelResearch59:1057‐1082.

Ackroyd,M.H. and Gerstle, K.H. 1982 . Behavior of type 2 steel frames. Journal of the Structural Engineering108:1541‐1556.

Page 23: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 23/28

AISC. 2010 . Specification for Structural Steel Buildings, American Institute of Steel Construction, ANSI/AISC360‐05,Chicago,IL.

Alves,R.V. 1993 .FormulationforgeometricnonlinearanalysisinTotalLagrangianreference.1ºDoctoralSemi‐nar inPortuguese ,COPPE/UFRJ,RiodeJaneiro/RJ,Brazil.

Arbabi,F. 1982 .Driftofflexiblyconnectedframes.Computers&Structures,15 2 :102‐108.

Aristizabal‐Ochoa, J.D. 2015 .Stabilityof imperfect columnswithnonlinear connectionsundereccentricaxialloadsincludingsheareffects.InternationalJournalofMechanicalSciences90:6176.

ASCE7‐05. 2006 .MinimumDesignLoads forBuildings andOther Structures,AmericanSocietyofCivil Engi‐neers,Reston,Virginia.

Attarnejad,R.andPirmoz,A. 2014 .Nonlinearanalysisofdampedsemi‐rigidframesconsideringmoment‐shearinteractionofconnections.InternationalJournalofMechanicalSciences81:165173.

Azizinamini,A.,Bradburn,J.H.,Radziminski,J.B. 1987 .Initialstiffnessofsemi‐rigidsteelbeam‐to‐columnjoints.JournalofConstructionalSteelResearch8:71‐90.

Bathe,K.J. 1996 .FiniteElementProcedures.Prentice‐Hall,NewJersey.

Bernuzzi,C.,Zandonini,R.,Zanon,P. 1996 .Experimentalanalysisandmodellingofsemi‐rigidsteeljointsundercyclicreversalloading.JournalofConstructionalSteelResearch38 2 :95123.

Bjorhovde,R., Colson,A., Brozzetti, J. 1990 . Classification system for beam‐to‐column connections. Journal ofStructuralEngineering116 11 :3059‐3077.

Burden,R.L.andFaires,J.D. 2004 .NumericalAnalysis,8thedition,BrooksCole.

Cabrero, J.M.andBayo,E. 2005 .Developmentofpracticaldesignmethodsforsteelstructureswithsemi‐rigidconnections.EngineeringStructures27:11251137.

Calado,L. 2003 .Non‐linearcyclicmodeloftopandseatwithwebangleforsteelbeam‐to‐columnconnections.EngineeringStructures25:1189–1197.

Chan,S.L. 1994 .Vibrationandmodalanalysisofsteel frameswithsemi‐rigidconnections.EngineeringStruc‐tures16 1 :25‐31.

Chan,S.L.andChui,P.P.T. 2000 .Non‐linearStaticandCyclicAnalysisofSteelFrameswithSemi‐RigidConnec‐tions.Elsevier,Oxford.

Chan,S.L.andHo,G.W.M. 1994 .Nonlinearvibrationanalysisofsteelframeswithsemi‐rigidconnections.JournalofStructuralEngineering120 4 :10751087.

Chen,W.F. 2000 .PracticalAnalysisforSemi‐rigidFrameDesign.Singapore:WorldScientific.

Chen,W.F.,andLui,E.M. 1991 .StabilityDesignofSteelFrames.CRCPress,BocaRaton,Florida.

Chen,W.F.,Goto,Y.,Liew,L.Y.R. 1996 .StabilityDesignofSemi‐rigidFrames.JohnWiley&SonsInc.,USA.

Chopra,A.K. 1995 .DynamicsofStructures,Prentice‐Hall,Inc.,NewJersey.

Page 24: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 24/28

Colson,A. 1991 .Theoreticalmodelingof semi‐rigid connectionsbehavior. JournalofConstructionalSteelRe‐search19:213‐224.

CunninghamR. 1990 .Someaspectsofsemi‐rigidconnectionsinstructuralsteelwork.TheStructuralEngineer68 5 :85‐92.

Díaz,C.,Martí,P.,Victoria,M.,Querin,O.M. 2011 .Reviewon themodellingof jointbehaviour insteel frames.JournalofConstructionalSteelResearch67:741‐758.

Eurocode3. 2005 .DesignofSteelStructures.Part1.8:DesignofJoints.EuropeanCommitteeforStandardizationCEN Brussels,Belgium.

Galvão, A.S., Silva, A.R.D., Silveira, R.A.M., Gonçalves, P.B. 2010 . Nonlinear dynamic and instability of slenderframeswithsemi‐rigidconnection.InternationalJournalofMechanicalSciences52:15471562.

Ihaddoudène, A.N.T., Saidani,M., Chemrouk, K. 2009 .Mechanicalmodel for the analysis of steel frameswithsemi‐rigidjoints.JournalofConstructionalSteelResearch65:631‐640.

Jones,S.W.,Kirby,P.A.,Nethercot,D.A. 1980 .Effectofsemi‐rigidconnectionsonsteelcolumnstrength.JournalofConstructionalSteelResearch1:3846.

Jones,S.W.,Kirby,P.A.,Nethercot,D.A. 1983 .Theanalysisofframeswithsemi‐rigidconnections–astate‐of‐the‐artreport.JournalConstructionSteelResearch3 2 :2‐13.

Kawashima,S.,Fujimoto,T. 1984 .Vibrationanalysisofframeswithsemi‐rigidconnections.Computers&Struc‐tures19:8592.

King,W.S. 1994 Thelimitloadsofsteelsemi‐rigidframesanalyzedwithdifferentmethods.Computers&Struc‐tures51 5 :475‐487.

Kishi,N.andChen,W.F. 1987a .Moment‐rotationRelationofTopandSeatAngleConnections.StructuralEngi‐neeringReportNo.CE‐STR‐87‐4,SchoolofCivilEngineering,PurdueUniv.,WestLafayette.

Kishi, N. and Chen,W.F. 1987b .Moment‐rotation Relation of Semi‐rigid Connections. Structural EngineeringReportNo.CE‐STR‐87‐29,SchoolofCivilEngineering,PurdueUniv.,WestLafayette.

Kishi,N.,andChen,W.F., 1986 .DataBaseofSteelBeam‐to‐columnConnections.StructuralEngineeringReportNo.CE‐STR‐93‐15,SchoolofCivilEngineering,PurdueUniv.,WestLafayette,IN.

Kishi,N.,Komuro,M.,Chen,W.F. 2004 .Four‐parameterpowermodelforM–θcurvesofend‐plateconnections.In:ECCS/AISCworkshopconnectionsinsteelstructuresV:Innovativesteelconnections.

Korol,R.M.,Ghobarah,A.,Osman,A. 1990 .Extendedend‐plateconnectionsundercyclic loading:behavioranddesign.JournalofConstructionalSteelResearch16:253‐280.

Kruger,T.S.,Rensburg,B.W.J.,Plessis,G.M. 1995 .Nonlinearanalysisofstructuralsteel frames. JournalofCon‐structionalSteelResearch34:285‐306.

Li,T.Q.,Choo,B.S.,Nethercot,D.A. 1995 .Connectionelementmethodfortheanalysisofsemi‐rigidframes.Jour‐nalofConstructionalSteelResearch,32:143171.

Lui,E.M. andChen,W.F. 1986 .Analysis andbehaviorof flexible‐jointed frames.Engineering Structures8 2 :107‐118.

Page 25: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 25/28

Lui,E.M.andLopes,A. 1997 .Dynamicanalysisandresponseofsemirigidframes.EngineeringStructures,19 8 :644654.

Nethercot,D.A.,Li,T.Q.,Ahmad,B. 1998 .Unifiedclassificationsystemforbeam‐to‐columnconnections.JournalofConstructionalSteelResearch45 1 :39‐65.

Nguyen,P‐C. 2010 .NonlinearAnalysisofPlanarSemi‐RigidSteelFramessubjectedtoEarthquakesusingPlasticZoneMethod.MasterDissertation inVietnamese .HồChíMinh,Vietnam.

Nguyen,P‐C.andKim,S‐E. 2013 .Nonlinearelasticdynamicofspacesteelframeswithsemi‐rigidconnections.InternationalJournalConstructionalSteelResearch84:7281.

Richard, R.M. and Abbott, B.J. 1975 . Versatile elastic‐plastic stress‐strain formula.Journal of the EngineeringMechanicsDivision101 4 :511‐515.

Sekulovic,M.andNefovska‐Danilovic,M. 2004 .Staticinelasticanalysisofsteelframeswithflexibleconnections.JournalofTheoreticalandAppliedMechanics31 2 :101‐134.

Sekulovic,M.,andNefovska‐Danilovic,M. 2008 .Contributiontotransientanalysisofinelasticsteelframeswithsemi‐rigidconnections,EngineeringStructures30:976–989.

Shi,G.andAtluri,S.N. 1989 .Staticanddynamicanalysisof space frameswithnonlinear flexibleconnections.InternationalJournalforNumericalMethodsinEngineering28:2635‐2650.

Shi,G.,Shi,Y.,Wang,Y. 2007 .Behaviorofend‐platemomentconnectionunderearthquakeloading.EngineeringStructures,29:703‐716.

Silva,A.R.D. 2009 .ComputationalSystemforStaticandDynamicAdvancedAnalysisofSteelFrames.D.Sc.Dis‐sertation,GraduatePrograminCivilEngineering,FederalUniversityofOuroPreto UFOP ,OuroPreto/MG,Bra‐zil. inPortuguese .

Silva,J.G.S.,Lima,L.R.O.,Vellasco,P.C.G.S.,Andrade,S.A.L.,Castro,R.A., 2008 .Nonlineardynamicanalysisofsteelportalframeswithsemi‐rigidconnections.EngineeringStructures30:2566–2579.

Silveira,R.A.M. 1995 .AnalysisofstructuralelementsslenderwithunilateralContactConstraints.Ph.D.ThesisinPortuguese .GraduatePrograminCivilEngineering,PUC‐Rio,RiodeJaneiro/RJ,Brazil.

Sophianopoulos,D.S. 2003 .Theeffectofjointflexibilityonthefreeelasticvibrationcharacteristicsofsteelplaneframes.JournalofConstructionalSteelResearch59:995–1008.

Tsai,K.C.Popov,E.P. 1990 .Cyclicbehaviorofend‐platemomentconnections.JournalofStructuralEngineering116 11 :2917‐2930.

Valipour,H.R.andBradford,M. 2012 .Anefficientcompound‐elementforpotentialprogressivecollapseanalysisofsteelframeswithsemi‐rigidconnections.FiniteElementsinAnalysisandDesign,60:35‐48.

Vimonsatit,V.,Tangaramvong,S.,Tin‐Loi,F. 2012 .Secondorderelastoplasticanalysisofsemirigidsteelframesundercyclicloading.EngineeringStructures65:1187‐1197.

Vogel,U. 1985 .CalibratingFrames,Stahlbau54:295‐311.

Wong,M.B.andTin‐Loi,F. 1990 .Analysisofframesinvolvinggeometricalandmaterialnonlinearities,Computer&Structures34:641–646.

Page 26: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 26/28

Xu,Y.L.andZhang,W.S. 2001 .Modalanalysisandseismicresponseofsteel frameswithconnectiondampers.EngineeringStructures23385–396.

Yang,Y.B.andKuo,S.B. 1994 .Theory&AnalysisofNonlinearFramedStructures.PrenticeHall.

Yee,Y.L. andMelchers,R.E. 1986 .Moment‐rotation curves forbolted connections. Journalof StructuralEngi‐neering112:615‐635.

Zienkiewicz,O.C.andTaylor,R.L. 1991 .TheFiniteElementMethod,McGraw‐HillBookCompany UK ,vol.2. 

Page 27: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 27/28

Appendix A

Algorithmfornonlineartransientanalysis1: Definetheinputdata:geometric,materialandloadingpropertiesofthestructuralsystem2: Obtainthereferencenodalloadvector,Fr loadingdirection 3: 0t = 4:

1t t=

5: Considerthedisplacement,velocityandaccelerationvectorsprescribed:tU , tU ,and tU

6: SelectthetimeincrementΔt7: Definetheconstants:

0 1 2 3 4 52

1 1 1; ; ; 1 ; 1; 2

2 2

ta a a a a a

t tt

æ ö æ ög g D g÷ ÷ç ç÷ ÷ç ç= = = = - = - = -÷ ÷ç ç÷ ÷÷ ÷ç çbD bD b b bè ø è øbD

( )6 0 7 2 8 3 9 101a a ; a a ; a a ; a t and a tD g gD= =- =- = - =

whereβandγaretheNewmarkparameters8: for eachtimestepdo9:

1t t= Previoustimestep10:

1t t tD= + Previoustimestep11: Assemblethematrices:stiffness,K ;mass,M ;anddamping,C 12: Formtheeffectivestiffnessmatrix: 0 1

ˆ a a= + +K K M C

13: Formtheeffectiveloadvector: ( ) ( )12 3 4 5

ˆ t t t t t tr ia a a a= l + + + + -F F M U U C U U F

14: Solveforthedisplacementincrementvector ˆ ˆ:D D =U K U F 15: fork←1,maximumnumberofiterations do ITERATIVEPROCESS16: Evaluatetheacceleration,velocityanddisplacementvectorsapproximationsattime

1t :

+1 1 10 2 3 1 4 5 ; and t t tk k t t k k t t k t ka a a a a a= D - - = D - - = DU U U U U U U U U U U

17: Updatethestructuregeometry nodalcoordinates18: Evaluatetheinternalforcesvector: 1t k t k

i i F F K U

19: Evaluatethegradientvector: ( ) ( )1 1 1 1 11t t t t tk k k kr i

+ = l - + +R F M U C U F

20: Solvefortheresidualdisplacementvector: 11 1ˆ tk k K U R 21: Updatetheincrementaldisplacementvector: 1 1k k k U U U+ 22:

if ( ) ( )11 1 tk k tolerance factor+ +D £U U then

23: Exittheiterativeprocessandgotoline2624: endif25: endfor26: Updatetheacceleration,velocityanddisplacementvectorsattime

1t : 1 1 11 1 1 1 1 1

0 2 3 1 4 5; and +t t tk k t t k k t t k t ka a a a a a U U U U U U U U U U U

27: Updatetheinternalforcevectorattime1t :

28: Updatetheconnectionsstiffness SeeSection2andAppendixB29: endfor

 

Page 28: On the Nonlinear Transient Analysis of Planar Steel Frames ... · On the Nonlinear Transient Analysis of Planar Steel Frames with Semi‐Rigid Connections: From Fundamentals to Algorithms

AndréaR.D.Silvaetal.OntheNonlinearTransientAnalysisofPlanarSteelFrameswithSemi‐RigidConnections:FromFundamentalstoAlgorithmsandNumericalStudies

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e28 28/28

Appendix B

Algorithmforhystereticbehaviorofsemi‐rigidconnection1: for eachfiniteelementdo2: Identifythenodalpointswithsemi‐rigidconnection3: for eachofthesenodalpointsdo 4: M = actualmomentinthisnode 5:

oldM = momentinthisnodeintheinstantt

6:oldM M MD = -

7: if 0oldM M⋅ < then

8:p c:oldf f= SeeFigures3 andAppendixA

9: 0Mai = and 0aM = SeeFigures3 andAppendixA

10: endif11: if 0M MD⋅ > then LOADINGPROCESS12:

c:old cf f=

13: Updatec :f c c cM / Sf f D= +

14:c c pDf f f= +

15: if 1Mai = then Unloadingprocessincomplete

16: if aM M< then

17:c ciniS S=

18: else19: Definethestiffnessconnection

cS forcDf SeeEquations7,and4or5

20: 0Mai = and 0aM =

21: endif23: elseif 0Mai = then

24: DefinethestiffnessconnectioncS for

cDf SeeEquations7,and4or5

25: endif26: elseif 0M MD⋅ < then UNLOADINGPROCESS27: if 0oldM M⋅ > and 0Mai = then

28:ca c:oldf f=

29:aM M MD- and 1Mai =

30: endif31:

c:old cf f=

32: Updatec :f c c cM / Sf f D= +

33:c ciniS S=

34: endif35: endfor36: endfor