on the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf ·...

81
On the mixing time of the flip walk on triangulations of the sphere Thomas Budzinski ENS Paris Journées de l’ANR GRAAL, Nancy 6 Décembre 2016 Thomas Budzinski Flips on triangulations of the sphere

Upload: others

Post on 31-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

On the mixing time of the flip walk ontriangulations of the sphere

Thomas Budzinski

ENS Paris

Journées de l’ANR GRAAL, Nancy6 Décembre 2016

Thomas Budzinski Flips on triangulations of the sphere

Page 2: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Planar maps

DefinitionsA planar map is a finite, connected graph embedded in thesphere in such a way that no two edges cross (except at acommon endpoint), considered up to orientation-preservinghomeomorphism.A planar map is a rooted type-I triangulation if all its faceshave degree 3 and it has a distinguished oriented edge. It maycontain multiple edges and loops.

=

Thomas Budzinski Flips on triangulations of the sphere

Page 3: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Planar maps

DefinitionsA planar map is a finite, connected graph embedded in thesphere in such a way that no two edges cross (except at acommon endpoint), considered up to orientation-preservinghomeomorphism.A planar map is a rooted type-I triangulation if all its faceshave degree 3 and it has a distinguished oriented edge. It maycontain multiple edges and loops.

=

Thomas Budzinski Flips on triangulations of the sphere

Page 4: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Random planar maps in a nutshell

Let Tn be the set of rooted type-I triangulations of the sphere withn vertices, and Tn(∞) be a uniform variable on Tn. What doesTn(∞) look like for n large ?

Exact enumeration results [Tutte],the distances in Tn(∞) are of order n1/4

[Chassaing–Schaeffer],when the distances are renormalized, Tn(∞) to a continuumrandom metric space called the Brownian map [Le Gall],if we don’t renormalize the distances and look at aneighbourhood of the root, convergence to an infinitetriangulation of the plane called the UIPT [Angel-Schramm],the volume of the ball of radius r in the UIPT grows like r4

[Angel, Curien-Le Gall].

Thomas Budzinski Flips on triangulations of the sphere

Page 5: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Random planar maps in a nutshell

Let Tn be the set of rooted type-I triangulations of the sphere withn vertices, and Tn(∞) be a uniform variable on Tn. What doesTn(∞) look like for n large ?

Exact enumeration results [Tutte],

the distances in Tn(∞) are of order n1/4

[Chassaing–Schaeffer],when the distances are renormalized, Tn(∞) to a continuumrandom metric space called the Brownian map [Le Gall],if we don’t renormalize the distances and look at aneighbourhood of the root, convergence to an infinitetriangulation of the plane called the UIPT [Angel-Schramm],the volume of the ball of radius r in the UIPT grows like r4

[Angel, Curien-Le Gall].

Thomas Budzinski Flips on triangulations of the sphere

Page 6: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Random planar maps in a nutshell

Let Tn be the set of rooted type-I triangulations of the sphere withn vertices, and Tn(∞) be a uniform variable on Tn. What doesTn(∞) look like for n large ?

Exact enumeration results [Tutte],the distances in Tn(∞) are of order n1/4

[Chassaing–Schaeffer],

when the distances are renormalized, Tn(∞) to a continuumrandom metric space called the Brownian map [Le Gall],if we don’t renormalize the distances and look at aneighbourhood of the root, convergence to an infinitetriangulation of the plane called the UIPT [Angel-Schramm],the volume of the ball of radius r in the UIPT grows like r4

[Angel, Curien-Le Gall].

Thomas Budzinski Flips on triangulations of the sphere

Page 7: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Random planar maps in a nutshell

Let Tn be the set of rooted type-I triangulations of the sphere withn vertices, and Tn(∞) be a uniform variable on Tn. What doesTn(∞) look like for n large ?

Exact enumeration results [Tutte],the distances in Tn(∞) are of order n1/4

[Chassaing–Schaeffer],when the distances are renormalized, Tn(∞) to a continuumrandom metric space called the Brownian map [Le Gall],

if we don’t renormalize the distances and look at aneighbourhood of the root, convergence to an infinitetriangulation of the plane called the UIPT [Angel-Schramm],the volume of the ball of radius r in the UIPT grows like r4

[Angel, Curien-Le Gall].

Thomas Budzinski Flips on triangulations of the sphere

Page 8: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Random planar maps in a nutshell

Let Tn be the set of rooted type-I triangulations of the sphere withn vertices, and Tn(∞) be a uniform variable on Tn. What doesTn(∞) look like for n large ?

Exact enumeration results [Tutte],the distances in Tn(∞) are of order n1/4

[Chassaing–Schaeffer],when the distances are renormalized, Tn(∞) to a continuumrandom metric space called the Brownian map [Le Gall],if we don’t renormalize the distances and look at aneighbourhood of the root, convergence to an infinitetriangulation of the plane called the UIPT [Angel-Schramm],

the volume of the ball of radius r in the UIPT grows like r4

[Angel, Curien-Le Gall].

Thomas Budzinski Flips on triangulations of the sphere

Page 9: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Random planar maps in a nutshell

Let Tn be the set of rooted type-I triangulations of the sphere withn vertices, and Tn(∞) be a uniform variable on Tn. What doesTn(∞) look like for n large ?

Exact enumeration results [Tutte],the distances in Tn(∞) are of order n1/4

[Chassaing–Schaeffer],when the distances are renormalized, Tn(∞) to a continuumrandom metric space called the Brownian map [Le Gall],if we don’t renormalize the distances and look at aneighbourhood of the root, convergence to an infinitetriangulation of the plane called the UIPT [Angel-Schramm],the volume of the ball of radius r in the UIPT grows like r4

[Angel, Curien-Le Gall].

Thomas Budzinski Flips on triangulations of the sphere

Page 10: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

A uniform triangulation of the sphere with 10 000 vertices

Thomas Budzinski Flips on triangulations of the sphere

Page 11: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

How to sample a large uniform triangulation ?

"Modern" tools : bijections with trees, peeling process.Back in the 80’s : Monte Carlo methods : we look for a Markovchain on Tn for which the uniform measure is stationary.A simple local operation on triangulations : flips.

tflip(t, e2) = t

e1

flip(t, e1)

e2???

Thomas Budzinski Flips on triangulations of the sphere

Page 12: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

How to sample a large uniform triangulation ?

"Modern" tools : bijections with trees, peeling process.Back in the 80’s : Monte Carlo methods : we look for a Markovchain on Tn for which the uniform measure is stationary.A simple local operation on triangulations : flips.

t

flip(t, e2) = t

e1

flip(t, e1)

e2???

Thomas Budzinski Flips on triangulations of the sphere

Page 13: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

How to sample a large uniform triangulation ?

"Modern" tools : bijections with trees, peeling process.Back in the 80’s : Monte Carlo methods : we look for a Markovchain on Tn for which the uniform measure is stationary.A simple local operation on triangulations : flips.

t

flip(t, e2) = t

e1

flip(t, e1)

e2???

Thomas Budzinski Flips on triangulations of the sphere

Page 14: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

How to sample a large uniform triangulation ?

"Modern" tools : bijections with trees, peeling process.Back in the 80’s : Monte Carlo methods : we look for a Markovchain on Tn for which the uniform measure is stationary.A simple local operation on triangulations : flips.

tflip(t, e2) = t

e1

flip(t, e1)

e2???

Thomas Budzinski Flips on triangulations of the sphere

Page 15: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

How to sample a large uniform triangulation ?

"Modern" tools : bijections with trees, peeling process.Back in the 80’s : Monte Carlo methods : we look for a Markovchain on Tn for which the uniform measure is stationary.A simple local operation on triangulations : flips.

tflip(t, e2) = t

e1

flip(t, e1)

e2???

Thomas Budzinski Flips on triangulations of the sphere

Page 16: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

How to sample a large uniform triangulation ?

"Modern" tools : bijections with trees, peeling process.Back in the 80’s : Monte Carlo methods : we look for a Markovchain on Tn for which the uniform measure is stationary.A simple local operation on triangulations : flips.

t

flip(t, e2) = t

e1

flip(t, e1)

e2

???

Thomas Budzinski Flips on triangulations of the sphere

Page 17: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

How to sample a large uniform triangulation ?

"Modern" tools : bijections with trees, peeling process.Back in the 80’s : Monte Carlo methods : we look for a Markovchain on Tn for which the uniform measure is stationary.A simple local operation on triangulations : flips.

tflip(t, e2) = t

e1

flip(t, e1)

e2

???

Thomas Budzinski Flips on triangulations of the sphere

Page 18: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

How to sample a large uniform triangulation ?

"Modern" tools : bijections with trees, peeling process.Back in the 80’s : Monte Carlo methods : we look for a Markovchain on Tn for which the uniform measure is stationary.A simple local operation on triangulations : flips.

t

flip(t, e2) = t

e1

flip(t, e1)

e2

???

Thomas Budzinski Flips on triangulations of the sphere

Page 19: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

How to sample a large uniform triangulation ?

"Modern" tools : bijections with trees, peeling process.Back in the 80’s : Monte Carlo methods : we look for a Markovchain on Tn for which the uniform measure is stationary.A simple local operation on triangulations : flips.

tflip(t, e2) = t

e1

flip(t, e1)

e2???

Thomas Budzinski Flips on triangulations of the sphere

Page 20: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

How to sample a large uniform triangulation ?

"Modern" tools : bijections with trees, peeling process.Back in the 80’s : Monte Carlo methods : we look for a Markovchain on Tn for which the uniform measure is stationary.A simple local operation on triangulations : flips.

tflip(t, e2) = t

e1

flip(t, e1)

e2???

Thomas Budzinski Flips on triangulations of the sphere

Page 21: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

How to sample a large uniform triangulation ?

"Modern" tools : bijections with trees, peeling process.Back in the 80’s : Monte Carlo methods : we look for a Markovchain on Tn for which the uniform measure is stationary.A simple local operation on triangulations : flips.

tflip(t, e2) = t

e1

flip(t, e1)

e2???

Thomas Budzinski Flips on triangulations of the sphere

Page 22: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

A Markov chain on Tn

We fix t0 ∈ Tn and take Tn(0) = t0.Conditionally on (Tn(k))0≤i≤k , let ek be a uniform edge ofTn(k) and Tn(k + 1) = flip (Tn(k), ek).

The uniform measure on Tn is reversible for Tn, thusstationary.The chain Tn is irreducible (the flip graph is connected[Wagner 36]) and aperiodic (non flippable edges), so itconverges to the uniform measure.Question : how quick is the convergence ?

Thomas Budzinski Flips on triangulations of the sphere

Page 23: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

A Markov chain on Tn

We fix t0 ∈ Tn and take Tn(0) = t0.Conditionally on (Tn(k))0≤i≤k , let ek be a uniform edge ofTn(k) and Tn(k + 1) = flip (Tn(k), ek).The uniform measure on Tn is reversible for Tn, thusstationary.

The chain Tn is irreducible (the flip graph is connected[Wagner 36]) and aperiodic (non flippable edges), so itconverges to the uniform measure.Question : how quick is the convergence ?

Thomas Budzinski Flips on triangulations of the sphere

Page 24: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

A Markov chain on Tn

We fix t0 ∈ Tn and take Tn(0) = t0.Conditionally on (Tn(k))0≤i≤k , let ek be a uniform edge ofTn(k) and Tn(k + 1) = flip (Tn(k), ek).The uniform measure on Tn is reversible for Tn, thusstationary.The chain Tn is irreducible (the flip graph is connected[Wagner 36]) and aperiodic (non flippable edges), so itconverges to the uniform measure.

Question : how quick is the convergence ?

Thomas Budzinski Flips on triangulations of the sphere

Page 25: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

A Markov chain on Tn

We fix t0 ∈ Tn and take Tn(0) = t0.Conditionally on (Tn(k))0≤i≤k , let ek be a uniform edge ofTn(k) and Tn(k + 1) = flip (Tn(k), ek).The uniform measure on Tn is reversible for Tn, thusstationary.The chain Tn is irreducible (the flip graph is connected[Wagner 36]) and aperiodic (non flippable edges), so itconverges to the uniform measure.Question : how quick is the convergence ?

Thomas Budzinski Flips on triangulations of the sphere

Page 26: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Mixing time of Tn

For n ≥ 3 and 0 < ε < 1 we define the mixing time tmix(ε, n)as the smallest k such that

maxt0∈Tn

maxA⊂Tn

|P (Tn(k) ∈ A)− P (Tn(∞) ∈ A)| ≤ ε,

where we recall that Tn(∞) is uniform on Tn.

Theorem (B., 2016)

For all 0 < ε < 1, there is a constant c > 0 such that

tmix(ε, n) ≥ cn5/4.

Thomas Budzinski Flips on triangulations of the sphere

Page 27: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Mixing time of Tn

For n ≥ 3 and 0 < ε < 1 we define the mixing time tmix(ε, n)as the smallest k such that

maxt0∈Tn

maxA⊂Tn

|P (Tn(k) ∈ A)− P (Tn(∞) ∈ A)| ≤ ε,

where we recall that Tn(∞) is uniform on Tn.

Theorem (B., 2016)

For all 0 < ε < 1, there is a constant c > 0 such that

tmix(ε, n) ≥ cn5/4.

Thomas Budzinski Flips on triangulations of the sphere

Page 28: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Sketch of proof

We will be interested in the existence of small separating cycles.

Theorem (≈ Le Gall–Paulin, 2008)

Let `n = o(n1/4). Then, with probability going to 1 as n→ +∞,there is no cycle in Tn(∞) of length at most `n that separatesTn(∞) in two parts, each of which contains at least n

4 vertices.

Let T 1n (0) and T 2

n (0) be two independent uniform triangulations ofa 1-gon with n

2 inner vertices each, and Tn(0) the gluing of T 1n (0)

and T 2n (0) along their boundary. It is enough to prove

Proposition

Let kn = o(n5/4). There is a cycle γ in Tn(kn) of length o(n1/4) inprobability that separates Tn(kn) in two parts, each of whichcontains at least n

4 vertices.

Thomas Budzinski Flips on triangulations of the sphere

Page 29: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Sketch of proof

We will be interested in the existence of small separating cycles.

Theorem (≈ Le Gall–Paulin, 2008)

Let `n = o(n1/4). Then, with probability going to 1 as n→ +∞,there is no cycle in Tn(∞) of length at most `n that separatesTn(∞) in two parts, each of which contains at least n

4 vertices.

Let T 1n (0) and T 2

n (0) be two independent uniform triangulations ofa 1-gon with n

2 inner vertices each, and Tn(0) the gluing of T 1n (0)

and T 2n (0) along their boundary. It is enough to prove

Proposition

Let kn = o(n5/4). There is a cycle γ in Tn(kn) of length o(n1/4) inprobability that separates Tn(kn) in two parts, each of whichcontains at least n

4 vertices.

Thomas Budzinski Flips on triangulations of the sphere

Page 30: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Sketch of proof

We will be interested in the existence of small separating cycles.

Theorem (≈ Le Gall–Paulin, 2008)

Let `n = o(n1/4). Then, with probability going to 1 as n→ +∞,there is no cycle in Tn(∞) of length at most `n that separatesTn(∞) in two parts, each of which contains at least n

4 vertices.

Let T 1n (0) and T 2

n (0) be two independent uniform triangulations ofa 1-gon with n

2 inner vertices each, and Tn(0) the gluing of T 1n (0)

and T 2n (0) along their boundary.

It is enough to prove

Proposition

Let kn = o(n5/4). There is a cycle γ in Tn(kn) of length o(n1/4) inprobability that separates Tn(kn) in two parts, each of whichcontains at least n

4 vertices.

Thomas Budzinski Flips on triangulations of the sphere

Page 31: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Sketch of proof

We will be interested in the existence of small separating cycles.

Theorem (≈ Le Gall–Paulin, 2008)

Let `n = o(n1/4). Then, with probability going to 1 as n→ +∞,there is no cycle in Tn(∞) of length at most `n that separatesTn(∞) in two parts, each of which contains at least n

4 vertices.

Let T 1n (0) and T 2

n (0) be two independent uniform triangulations ofa 1-gon with n

2 inner vertices each, and Tn(0) the gluing of T 1n (0)

and T 2n (0) along their boundary. It is enough to prove

Proposition

Let kn = o(n5/4). There is a cycle γ in Tn(kn) of length o(n1/4) inprobability that separates Tn(kn) in two parts, each of whichcontains at least n

4 vertices.

Thomas Budzinski Flips on triangulations of the sphere

Page 32: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Spatial Markov property

We write Tn,p for the set of triangulations of a p-gon with n innervertices. If T is uniform in Tn,p, we consider an edge e ∈ ∂T andthe face f of T adjacent to e.

fe

n − 1

with probability#Tn−1,p+1

#Tn,p

f

e

im

n −m

with probability#Tm,i+1#Tn−m,p−i

#Tn,p

Moreover, in every case, the (one or two) connected components ofT\f are independent and uniform given their volume and perimeter.

Thomas Budzinski Flips on triangulations of the sphere

Page 33: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Spatial Markov property

We write Tn,p for the set of triangulations of a p-gon with n innervertices. If T is uniform in Tn,p, we consider an edge e ∈ ∂T andthe face f of T adjacent to e.

fe

n − 1

with probability#Tn−1,p+1

#Tn,p

f

e

im

n −m

with probability#Tm,i+1#Tn−m,p−i

#Tn,p

Moreover, in every case, the (one or two) connected components ofT\f are independent and uniform given their volume and perimeter.

Thomas Budzinski Flips on triangulations of the sphere

Page 34: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Spatial Markov property

We write Tn,p for the set of triangulations of a p-gon with n innervertices. If T is uniform in Tn,p, we consider an edge e ∈ ∂T andthe face f of T adjacent to e.

fe

n − 1

with probability#Tn−1,p+1

#Tn,p

f

e

im

n −m

with probability#Tm,i+1#Tn−m,p−i

#Tn,p

Moreover, in every case, the (one or two) connected components ofT\f are independent and uniform given their volume and perimeter.

Thomas Budzinski Flips on triangulations of the sphere

Page 35: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0

τ1 = 2τ2 = 4τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)

T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)

T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1

Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3

Vn(0) = 1

Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 36: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0

τ1 = 2τ2 = 4τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)

T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)

T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1

Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3

Vn(0) = 1

Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 37: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0

τ1 = 2τ2 = 4τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)

T 1n (1)

T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)

T 2n (1)

T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1

Pn(1) = 1

Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1

Vn(1) = 1

Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 38: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0

τ1 = 2τ2 = 4τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)

T 1n (1)

T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)

T 2n (1)

T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1

Pn(1) = 1

Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1

Vn(1) = 1

Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 39: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0

τ1 = 2τ2 = 4τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)

T 1n (1)

T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)

T 2n (1)

T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1

Pn(1) = 1

Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1

Vn(1) = 1

Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 40: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0

τ1 = 2

τ2 = 4τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)

T 1n (2)

T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)

T 2n (2)

T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1

Pn(2) = 2

Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1

Vn(2) = 2

Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 41: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0

τ1 = 2

τ2 = 4τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)

T 1n (2)

T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)

T 2n (2)

T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1

Pn(2) = 2

Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1

Vn(2) = 2

Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 42: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0

τ1 = 2

τ2 = 4τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)

T 1n (3)

T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)

T 2n (3)

T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2

Pn(3) = 2

Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2

Vn(3) = 2

Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 43: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3

e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0

τ1 = 2

τ2 = 4τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)

T 1n (3)

T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)

T 2n (3)

T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2

Pn(3) = 2

Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2

Vn(3) = 2

Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 44: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3

e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0

τ1 = 2

τ2 = 4τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)

T 1n (3)

T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)

T 2n (3)

T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2

Pn(3) = 2

Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2

Vn(3) = 2

Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 45: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2

τ2 = 4

τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)

T 1n (4)

T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)

T 2n (4)

T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2

Pn(4) = 3

Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2

Vn(4) = 3

Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 46: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3

e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2

τ2 = 4

τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)

T 1n (4)

T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)

T 2n (4)

T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2

Pn(4) = 3

Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2

Vn(4) = 3

Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 47: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2

τ2 = 4

τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)

T 1n (5)

T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)

T 2n (5)

T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3

Pn(5) = 3

Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3

Vn(5) = 3

Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 48: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2

τ2 = 4

τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)

T 1n (5)

T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)

T 2n (5)

T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3

Pn(5) = 3

Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3

Vn(5) = 3

Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 49: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2

τ2 = 4

τ3 = 6τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)

T 1n (5)

T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)

T 2n (5)

T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3

Pn(5) = 3

Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3

Vn(5) = 3

Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 50: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4

τ3 = 6

τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)

T 1n (6)

T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)

T 2n (6)

T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3

Pn(6) = 4

Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3

Vn(6) = 4

Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 51: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4

τ3 = 6

τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)

T 1n (6)

T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)

T 2n (6)

T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3

Pn(6) = 4

Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3

Vn(6) = 4

Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 52: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4

τ3 = 6

τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)

T 1n (7)

T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)

T 2n (7)

T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4

Pn(7) = 4

Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4

Vn(7) = 4

Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 53: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4

τ3 = 6

τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)

T 1n (7)

T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)

T 2n (7)

T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4

Pn(7) = 4

Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4

Vn(7) = 4

Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 54: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4

τ3 = 6

τ4 = 8τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)

T 1n (7)

T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)

T 2n (7)

T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4

Pn(7) = 4

Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4

Vn(7) = 4

Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 55: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6

τ4 = 8

τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)

T 1n (8)

T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)

T 2n (8)

T 2n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4

Pn(8) = 5

Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4

Vn(8) = 5

Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 56: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6

τ4 = 8

τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)

T 1n (8)

T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)

T 2n (8)

T 2n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4

Pn(8) = 5

Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4

Vn(8) = 5

Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 57: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6

τ4 = 8

τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)

T 1n (8)

T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)

T 2n (8)

T 2n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4

Pn(8) = 5

Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4

Vn(8) = 5

Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 58: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6

τ4 = 8

τ5 = 9τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)

T 1n (8)

T 1n (9)T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)

T 2n (8)

T 2n (9)T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4

Pn(8) = 5

Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4

Vn(8) = 5

Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 59: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6τ4 = 8

τ5 = 9

τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)

T 1n (9)

T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)

T 2n (9)

T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5

Pn(9) = 4

Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5

Vn(9) = 6

Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 60: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9

e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6τ4 = 8

τ5 = 9

τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)

T 1n (9)

T 1n (10)T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)

T 2n (9)

T 2n (10)T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5

Pn(9) = 4

Pn(10) = 4Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5

Vn(9) = 6

Vn(10) = 6Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 61: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9

e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6τ4 = 8

τ5 = 9

τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)

T 1n (10)

T 1n (11)T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)

T 2n (10)

T 2n (11)T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4

Pn(10) = 4

Pn(11) = 4Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6

Vn(10) = 6

Vn(11) = 6Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 62: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6τ4 = 8

τ5 = 9

τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)

T 1n (11)

T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)

T 2n (11)

T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4

Pn(11) = 4

Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6

Vn(11) = 6

Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 63: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6τ4 = 8

τ5 = 9

τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)

T 1n (11)

T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)

T 2n (11)

T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4

Pn(11) = 4

Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6

Vn(11) = 6

Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 64: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6τ4 = 8

τ5 = 9

τ6 = 12τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)

T 1n (11)

T 1n (12)T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)

T 2n (11)

T 2n (12)T 2

n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4

Pn(11) = 4

Pn(12) = 5Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6

Vn(11) = 6

Vn(12) = 7Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 65: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6τ4 = 8τ5 = 9

τ6 = 12

τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)

T 1n (12)

T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)

T 2n (12)

T 2n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4

Pn(12) = 5

Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6

Vn(12) = 7

Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 66: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6τ4 = 8τ5 = 9

τ6 = 12

τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)

T 1n (12)

T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)

T 2n (12)

T 2n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4

Pn(12) = 5

Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6

Vn(12) = 7

Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 67: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6τ4 = 8τ5 = 9

τ6 = 12

τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)

T 1n (12)

T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)

T 2n (12)

T 2n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4

Pn(12) = 5

Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6

Vn(12) = 7

Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 68: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6τ4 = 8τ5 = 9

τ6 = 12

τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)

T 1n (12)

T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)

T 2n (12)

T 2n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4

Pn(12) = 5

Pn(13) = 3Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6

Vn(12) = 7

Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 69: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Exploration of Tn(k)

e0

e1

e2

e3e4

e5

e6

e7

e8

e9 e10

e11

e12

τ0 = 0τ1 = 2τ2 = 4τ3 = 6τ4 = 8τ5 = 9τ6 = 12

τ7 = 13

T 1n (0)T 1n (1)T 1n (2)T 1n (3)T 1n (4)T 1n (5)T 1n (6)T 1n (7)T 1n (8)T 1n (9)T 1n (10)T 1n (11)T 1n (12)

T 1n (13)

T 2n (0)T 2n (1)T 2n (2)T 2n (3)T 2n (4)T 2n (5)T 2n (6)T 2n (7)T 2n (8)T 2

n (9)T 2n (10)T 2n (11)T 2n (12)

T 2n (13)

Pn(0) = 1Pn(1) = 1Pn(2) = 2Pn(3) = 2Pn(4) = 3Pn(5) = 3Pn(6) = 4Pn(7) = 4Pn(8) = 5Pn(9) = 4Pn(10) = 4Pn(11) = 4Pn(12) = 5

Pn(13) = 3

Vn(0) = 1Vn(1) = 1Vn(2) = 2Vn(3) = 2Vn(4) = 3Vn(5) = 3Vn(6) = 4Vn(7) = 4Vn(8) = 5Vn(9) = 6Vn(10) = 6Vn(11) = 6Vn(12) = 7

Vn(13) = 7

Thomas Budzinski Flips on triangulations of the sphere

Page 70: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

T 2n (k) stays uniform

Lemma

For all k ≥ 0, conditionally on (T 1n (i))0≤i≤k , the triangulation

T 2n (k) is a uniform triangulation with a boundary of length|∂T 1

n (k)| and n − |T 1n (k)| inner vertices.

Proof : induction on k :if ek lies in the interior of T 1

n (k), then T 2n (k + 1) = T 2

n (k),if ek lies in the interior of T 2

n (k), stationarity of the uniformmeasure on triangulations with a boundary,if ek ∈ ∂T 1

n (k), it follows from the spatial Markov property.

Thomas Budzinski Flips on triangulations of the sphere

Page 71: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

T 2n (k) stays uniform

Lemma

For all k ≥ 0, conditionally on (T 1n (i))0≤i≤k , the triangulation

T 2n (k) is a uniform triangulation with a boundary of length|∂T 1

n (k)| and n − |T 1n (k)| inner vertices.

Proof : induction on k :if ek lies in the interior of T 1

n (k), then T 2n (k + 1) = T 2

n (k),if ek lies in the interior of T 2

n (k), stationarity of the uniformmeasure on triangulations with a boundary,if ek ∈ ∂T 1

n (k), it follows from the spatial Markov property.

Thomas Budzinski Flips on triangulations of the sphere

Page 72: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Peeling estimates

We write τj for the times k such that ek−1 ∈ ∂T 1n (k − 1). Let

Pn(j) = Pn(τj) and Vn(j) = Vn(τj).Then (Pn,Vn) has the same distribution as the perimeter andvolume processes associated to the peeling of a uniformtriangulation of the sphere with n

2 vertices.

Lemma

If jn = o(n3/4) then max0≤j≤jn Pn(j) = o(√n) and Vn(jn) = o(n)

in probability.

Proof :estimates by Curien–Le Gall for the UIPT : the lemma holds ifwe replace Pn(j) and Vn(j) by P∞(j) and V∞(j),coupling between the UIPT and uniform finite triangulations.

Thomas Budzinski Flips on triangulations of the sphere

Page 73: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Peeling estimates

We write τj for the times k such that ek−1 ∈ ∂T 1n (k − 1). Let

Pn(j) = Pn(τj) and Vn(j) = Vn(τj).Then (Pn,Vn) has the same distribution as the perimeter andvolume processes associated to the peeling of a uniformtriangulation of the sphere with n

2 vertices.

Lemma

If jn = o(n3/4) then max0≤j≤jn Pn(j) = o(√n) and Vn(jn) = o(n)

in probability.

Proof :estimates by Curien–Le Gall for the UIPT : the lemma holds ifwe replace Pn(j) and Vn(j) by P∞(j) and V∞(j),coupling between the UIPT and uniform finite triangulations.

Thomas Budzinski Flips on triangulations of the sphere

Page 74: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Peeling estimates

We write τj for the times k such that ek−1 ∈ ∂T 1n (k − 1). Let

Pn(j) = Pn(τj) and Vn(j) = Vn(τj).Then (Pn,Vn) has the same distribution as the perimeter andvolume processes associated to the peeling of a uniformtriangulation of the sphere with n

2 vertices.

Lemma

If jn = o(n3/4) then max0≤j≤jn Pn(j) = o(√n) and Vn(jn) = o(n)

in probability.

Proof :estimates by Curien–Le Gall for the UIPT : the lemma holds ifwe replace Pn(j) and Vn(j) by P∞(j) and V∞(j),coupling between the UIPT and uniform finite triangulations.

Thomas Budzinski Flips on triangulations of the sphere

Page 75: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Time change estimates

Conditionally on (Pn,Vn), the τi+1 − τi are independent andgeometric with parameters Pn(i)

3n−6 , so for ε > 0 small, w.h.p.

E [τεn3/4 |Pn] =εn3/4∑i=1

3n − 6Pn(i)

>n × εn3/4√n

= εn5/4,

so after o(n5/4), the number of peeling steps performed is o(n3/4)in probability.

Hence,

Pn(o(n5/4)) = Pn(o(n

3/4)) = o(√n),

Vn(o(n5/4)) = Vn(o(n

3/4)) = o(n).

Thomas Budzinski Flips on triangulations of the sphere

Page 76: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Time change estimates

Conditionally on (Pn,Vn), the τi+1 − τi are independent andgeometric with parameters Pn(i)

3n−6 , so for ε > 0 small, w.h.p.

E [τεn3/4 |Pn] =εn3/4∑i=1

3n − 6Pn(i)

>n × εn3/4√n

= εn5/4,

so after o(n5/4), the number of peeling steps performed is o(n3/4)in probability. Hence,

Pn(o(n5/4)) = Pn(o(n

3/4)) = o(√n),

Vn(o(n5/4)) = Vn(o(n

3/4)) = o(n).

Thomas Budzinski Flips on triangulations of the sphere

Page 77: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Small cycles in triangulations with a small perimeter

We know that T 2n

(o(n5/4)

)is a uniform triangulation with a

boundary of length o(√n) and

(12 − o(1)

)n inner vertices.

Theorem (Krikun, 2005)

In the UIPT, there is a cycle of length O(r) in probabilitysurrounding the ball of radius r .

Coupling lemma : for pn << r2n <<

√n, w.h.p.

γ

o(rn)

pnrn

T∞

γ

≤ rn

pn

Tn,pn

Thomas Budzinski Flips on triangulations of the sphere

Page 78: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Small cycles in triangulations with a small perimeter

We know that T 2n

(o(n5/4)

)is a uniform triangulation with a

boundary of length o(√n) and

(12 − o(1)

)n inner vertices.

Theorem (Krikun, 2005)

In the UIPT, there is a cycle of length O(r) in probabilitysurrounding the ball of radius r .

Coupling lemma : for pn << r2n <<

√n, w.h.p.

γ

o(rn)

pnrn

T∞

γ ≤ rn

pn

Tn,pn

Thomas Budzinski Flips on triangulations of the sphere

Page 79: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Is the lower bound sharp ?

Back-of-the-enveloppe computation :in a typical triangulation, the distance between two typicalvertices x and y is ≈ n1/4.The probability that a flip hits a geodesic is ≈ n−3/4.The distance between x and y changes ≈ kn−3/4 times beforetime k .If d(x , y) evolves roughly like a random walk, it varies of≈√kn−3/4 = n1/4 for k = n5/4.

For triangulations of a convex polygon (no inner vertices), thelower bound n3/2 is believed to be sharp but the best knownupper bound is n5 [McShine–Tetali].Prove that the mixing time is polynomial ?

Thomas Budzinski Flips on triangulations of the sphere

Page 80: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

Is the lower bound sharp ?

Back-of-the-enveloppe computation :in a typical triangulation, the distance between two typicalvertices x and y is ≈ n1/4.The probability that a flip hits a geodesic is ≈ n−3/4.The distance between x and y changes ≈ kn−3/4 times beforetime k .If d(x , y) evolves roughly like a random walk, it varies of≈√kn−3/4 = n1/4 for k = n5/4.

For triangulations of a convex polygon (no inner vertices), thelower bound n3/2 is believed to be sharp but the best knownupper bound is n5 [McShine–Tetali].Prove that the mixing time is polynomial ?

Thomas Budzinski Flips on triangulations of the sphere

Page 81: On the mixing time of the flip walk on triangulations of ...budzinski/slides/talk_flips.pdf · Sketchofproof Wewillbeinterestedintheexistenceofsmallseparatingcycles. Theorem(ˇLeGall–Paulin,2008)

THANK YOU !

Thomas Budzinski Flips on triangulations of the sphere