on impurity transport calculations in...

38
On impurity transport calculations in stellarators M. Landreman 2 , H. M. Smith 1 , S. Buller 3 , J. M. García-Regaña 4 , J. L. Velasco 4 , J. A. Alcusón 1 , P. Xanthopoulos 1 , A. Zocco 1 , K. Aleynikova 1 , M. Nunami 5 , M. Nakata 5 and P. Helander 1 1. Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald, Germany 2. Institute for Research in Electronics and Applied Physics, University of Maryland, 20742 Maryland, USA 3. Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden 4. Laboratorio Nacional de Fusión, CIEMAT, 28040 Madrid, Spain 5. National Institute for Fusion Science, Toki, Japan Acknowledgement: The LHD experiment group The W7-X team Albert Mollén 1 [email protected]

Upload: others

Post on 10-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

On impurity transport calculations in stellarators

M. Landreman2, H. M. Smith1, S. Buller3, J. M. García-Regaña4, J. L. Velasco4, J. A. Alcusón1, P. Xanthopoulos1,A. Zocco1, K. Aleynikova1, M. Nunami5, M. Nakata5 and P. Helander1

1. Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald, Germany2. Institute for Research in Electronics and Applied Physics, University of Maryland, 20742 Maryland, USA3. Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden4. Laboratorio Nacional de Fusión, CIEMAT, 28040 Madrid, Spain5. National Institute for Fusion Science, Toki, Japan

Acknowledgement: The LHD experiment groupThe W7-X team

Albert Mollén1

[email protected]

Page 2: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 2/33

Outline

• Introduction to impurity transport in stellarators

• Neoclassical calculations with equilibrium electrostatic potential variations ©1

• ©1 in linear gyrokinetic modelling

• Summary

Page 3: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 3/33

Outline

• Introduction to impurity transport in stellarators

• Neoclassical calculations with equilibrium electrostatic potential variations ©1

• ©1 in linear gyrokinetic modelling

• Summary

Page 4: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 4/33

Impurity accumulation isa concern for stellarators

► Impurity accumulation is a concern for stellarators,

e.g. ) radiation collapse.

► Radiative collapse: [Fuchert et al., internal meeting IPP Nov 2017]

If (locally) Prad > Pheat : dW/dt < 0

- Either new (local) equilibrium or collapse.

- Complex process if impurity radiation is involved.

Limits the operational space of stellarators

(critical density).

[Burhenn et al., Nucl. Fusion (2009)][Giannone et al., PPCF (2000)]

W7-ASSX

-radia

tion

[a.u

.]

ncr

it[1

019 /

m3 ]

Wendelstein 7-X OP1.1

Page 5: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 5/33

Neoclassical impurity accumulation

In a tokamak (toroidal symmetry)

► The Lagrangian is independent of the toroidal angle.

Additional constant of motion.

► The neoclassical particle fluxes are intrinsically ambipolar )cross-field transport not affected by Er = -d©=dr

(except centrifugal and Coriolis forces if strong rotation).

In a stellarator (broken toroidal symmetry)

► Helically trapped particles can drift out of the plasma )collisionless trajectories can leave the confined region.

► 1=º - , pº - regimes with enhanced neoclassical transport.

► Radial electric field Er restores ambipolarity.

► Er often points radially inwards )Impurity accumulation.

Trapped in smallpoloidal range.

Helically trappedparticle

Tokamak

Stellarator

Page 6: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 6/33

Temperature screening and the role ofEr in neoclassical transport

► The radial impurity flux can be written in the form

h¡z¢rri = L11zzA1z + L11

ziA1i + L12zzA2z+ L12

ziA2i

where we have defined the “thermodynamic forces” and the collisionality

A1a = d(lnpa)/dr + (Zae/Ta) d©/dr

A2a = d(lnTa)/dr (note: Tz = Ti )

► In a tokamak Er= - d©/dr has no effect on radial neoclassical transport.

Temperature screening of the impurities by the bulk ion temperature gradient can arise.

h¡i¢rri ' -Z h¡z¢rri

► In a stellarator Er has a strong impact on the radial transport.

Er determined from ambipolarity.

Page 7: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 7/33

Temperature screening and the role ofEr in neoclassical transport

► Conventional wisdom in stellarators (from pitch-angle scattering models)

Intra-species terms (L11zz,L12

zz) dominate over inter-species terms (L11zi,L12

zi), i.e.

h¡z¢rri ' L11zzd(lnpz)/dr + L11

zz(Ze/Tz)d©/dr + L12zzd(lnTz)/dr .

In ion root Er is determined by ambipolarity from bulk-ion transport:

(e/Ti) d©/dr = - d(lnpi)/dr - (L12ii/L11

ii) d(lnTi)/dr .

Substitute into impurity transport equation

h¡z¢rri = L11zz[d(lnpz)/dr - Z fd(lnpi)/dr + (L12

ii/L11ii) d(lnTi)/drg]

+ L12zz d(lnTz)/dr .

Coefficient in front of d(lnTi)/dr: -Z L11zz(1 + L12

ii/L11ii) is always positive )

No temperature screening.

Page 8: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 8/33

Impurity transport in stellarators

► The conventional picture successful in explaining experimental observations, with some notable exceptions:

- The carbon impurity hole in Large Helical Device. [Ida et al., Phys. Plasmas (2009)]

- The high-density H-mode in Wendelstein 7-AS. [McCormick et al., Phys. Rev. Lett. (2002)]

► Recent years a revived interest in neoclassical impurity physics, advances in analytical and numerical modeling:

- In Pfirsch-Schlüter regime º¤ii = ºii/!ti » ºii/vTiÀ 1 (all ion species) the impurity transport

is independent of Er. [Braun, Helander, PoP (2010)]

- Experimentally relevant Mixed-collisionality transport regime, º¤zz À 1; º¤ii ¿ 1, weak drive of impurity

transport by Er, screening fromrTi possible also in stellarators. [Helander et al., Phys. Rev. Lett. (2017)]

- Effect of flux-surface potential variations ©1 (µ, ³) = © - h©i. [García-Regaña et al., PPCF (2013); Nucl.

Fusion (2017); PPCF (2018)], [Mollén et al., PPCF (2018)], [Buller et al., J. Plasma Phys. (2018)]

- ©1 + tangential magnetic drifts. [Velasco et al., PPCF (2018)], [Calvo et al., PPCF (2017); arXiv (2018)]

► Gyrokinetics: [Mikkelsen et al., PoP (2014)], [Nunami et al., IAEA (2016)], [Helander, Zocco, PPCF (2018)]

Page 9: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 9/33

Outline

• Introduction to impurity transport in stellarators

• Neoclassical calculations with equilibrium electrostatic potential variations ©1

• ©1 in linear gyrokinetic modelling

• Summary

Page 10: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 10/33

Numerical tools for calculating neoclassicaltransport in stellarators

► DKES [Hirshman et al., Phys. Fluids (1986)] (Drift Kinetic Equation Solver)- The main workhorse for neoclassical calculations in stellarators.

- Radially local; mono-energetic, speed is a parameter ) 3D.

- Pitch-angle scattering (momentum correction can be applied afterwards).

New codes start to explore extended physics (these are a few of them):

• FORTEC-3D [Satake et al., Plasma Fusion Res. (2008)]5D, radial coupling is retained.

• EUTERPE [García-Regaña et al., PPCF (2013); Nucl. Fusion (2017)]Radially local particle in cell Monte Carlo code. Pitch-angle scattering + momentum correction.

Flux surface variations of electrostatic potential ©1 (µ, ³) = © - h©i.

• SFINCS [Landreman et al., Phys. Plasmas (2014), Mollén et al., PPCF (2018)]Radially local 4D, continuum code. Eulerian uniform grid in µ, ³.

Linearized Fokker-Planck collisions + ©1 + additional effects.

• KNOSOS [Velasco et al., PPCF (2018)]Orbit-averaged equation. Pitch-angle scattering. ©1 + tangential magnetic drifts.

Page 11: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 11/33

Stellarator Fokker-Planck IterativeNeoclassical Conservative Solver

Solves the time-independent radially local ±f 4D drift-kinetic equation and calculates flows and radialfluxes, e.g. h¡s¢rri = hs d3vf1s(vds+ vE)¢rri.

SFINCS can simultaneously take into account:

► Full linearized Fokker-Planck collision operator.

► Arbitrary number of kinetic species (non-trace impurities, non-adiabatic electrons).

► Self-consistent calculation of ambipolar Er

found by iterating until hJ¢rri = §s Zseh¡s¢rri = 0.

► Flux-surface potential variations

©1(µ, ³) = © - ©0(r); ©0(r) = h©i; ©1 ¿ ©0 )f1s(µ, ³, », x), ©1(µ, ³) unknowns ) nonlinear system of equations.

SFINCS available on:

[Landreman, Smith, Mollén & Helander, Phys. Plasmas (2014)]

Ions

Electrons

several roots

Page 12: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 12/33

Drift-kinetic equation that SFINCS solves

R = vkb - (r©0£b)/B

vk = - Zseb¢r©1/ms - ¹b¢rB - vk(b£rB)¢r©0/B2

¹ = 0

f0s = fMs exp(-Zse©1/Ts)

R¢rf1s + vk(@f1s/@vk) - Clinear[f1s] =

= - f0s[ns-1 dns/dr + ZseTs-1 d©0/dr +

+ (msv2/ 2Ts - 3/2 + ZseTs

-1 ©1) Ts-1 dTs/dr](vds+ vE)¢rr

occurrence of ©1 in red

²

²

²

² ²

Page 13: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 13/33

Flux-surface asymmetries in stellarators

► Often neglected in transport calculations because impact on main plasmaspecies is small (and equations more complicated to solve).

► Flux-surface variation of © arisesto preserve quasi-neutrality.©1(µ, ³) = © - h©i

► ©1 can have strong impact on high-Z impurity transport[García-Regaña et al., Nucl. Fusion (2017)]:

- radial E£B-drift can be of the same size as magnetic drift,

- modify the boundaries of the trapped particle regions,- smaller effect expected in neoclassically optimized stellarators,- important for impurity transport in tokamaks (both neoclassical

and turbulent). [Angioni et al., Nucl. Fusion (2014)]

► Experimental measurements of asymmetric radiation patterns and flux-surface potentialvariations (TJ-II) confirm the existence of asymmetries [Pedrosa et al., Nucl. Fusion (2015)].

©1 on flux-surface

Page 14: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 14/33

©1 + tangential magnetic drifts

Drift-kinetic equation

R = vkb - (r©0£b)/B + vds¢rf1s

vk = - Zseb¢r©1/ms - ¹b¢rB - vk(b£rB)¢r©0/B2

R¢rf1s + vk(@f1s/@vk) - Clinear[f1s] =

= - f0s[ns-1 dns/dr + ZseTs-1 d©0/dr +

+ (msv2/ 2Ts - 3/2 + ZseTs

-1 ©1) Ts-1 dTs/dr](vds+ vE)¢rr

► Magnetic drifts implemented in SFINCS [Paul et al., Nucl. Fusion (2017)].

► To include tangential magnetic drifts in a numerical solver is somewhat ambiguous.

Example: Approximation df1s/dr = 0 in vds¢rf1s different in different coordinate systems.

► 9 different versions implemented in SFINCS.

► SFINCS calculations with ©1 + tangential magnetic drifts very numerically challenging.

► KNOSOS significantly faster. → See talk by J. L. Velasco [Velasco et al., PPCF (2018)]

²

²

² ²

extra term containing tangential magnetic drifts,drop terms with radial coupling to keep locality

Page 15: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 15/33

Benchmark EUTERPE, SFINCS, KNOSOS

► Pitch-angle scattering collisions (no momentum correction).

► Large Helical Device equilibrium (10-fold symmetry in ³) [García-Regaña et al., Nucl. Fusion (2017)].

C6+ particle fluxes

r=a

h¡z¢rri

/nz[m

s{1]

³[rad] ³[rad]

µ[ra

d]

µ[ra

d]

SFIN

CSEU

TERP

E

r=a ¼ 0.6 r=a ¼ 0.8

Page 16: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 16/33

Benchmark EUTERPE, SFINCS, KNOSOS

► Pitch-angle scattering collisions (no momentum correction).

► TJ-II equilibrium (4-fold symmetry in ³).

Page 17: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 17/33

Benchmark EUTERPE, SFINCS, KNOSOS

► Pitch-angle scattering collisions (no momentum correction).

► Large Helical Device equilibrium.

► Tangential magnetic drifts.

Without tangentialmagnetic drifts

With tangentialmagnetic drifts

Page 18: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 18/33

Benchmark EUTERPE, SFINCS, KNOSOS

Summary benchmark

► Three different numerical tools EUTERPE, SFINCS, KNOSOS, based on different numerical

techniques, used to calculate radial impurity transport and variation of the electrostatic potential

©1(µ, ³) in various stellarator plasmas.

► Benchmark for TJ-II, Large Helical Device and Wendelstein 7-X.

► In about half of the cases studied the agreement between the codes is very good.

► For the other cases there are discrepancies, but the shape of ©1(µ, ³) is always similar.

Discrepancy does not seem to be connected to which device is analyzed.

► Study more experimental plasmas, e.g. W7-X OP1.2, and search for the reason to the discrepancy.

Page 19: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 19/33

Classical impurity transport in stellarators

[Buller et al., J. Plasma Phys. (2018)]

► The flux-surface averaged collisional impurity flux is given by

Zeh¡z¢rri = hB£rr ¢ Rz/B2i + Zehnz B£rr ¢ E/B2i - hB£rr ¢ rpz/B2i.

classical neoclassical neoclassical

► Classical flux is often neglected as small compared to the neoclassical

Zeh¡z¢rriclassical = (miniTi/e nz¿iz) hnzjrrj2/B2i [ni-1 dni/dr - 0.5 ¢ Ti-1 dTi/dr].

Estimate: h¡z¢rriclassical / h¡z¢rrineoclassical ' hjrrj2/B2i hB2i / (hu2B2i hB2i - huB2i2).

► Ratio small for conventional tokamaks/stellarators.

W7-X standard configuration: » 3.0 - 3.5 (optimized for low jk/j?).

W7-X high-mirrortest case

h¡¢rri

[SFIN

CS

unit

s]

r=ar=a

´=d

lnT

/d

lnn

´Ne = ´i

´e

--- neoclassical

––– total

-¡e

¡i

10¢¡Ne

u = jk/(Bp0)

Page 20: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 20/33

Outline

• Introduction to impurity transport in stellarators

• Neoclassical calculations with equilibrium electrostatic potential variations ©1

• ©1 in linear gyrokinetic modelling

• Summary

Page 21: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 21/33

Is impurity transport neoclassical inoptimized stellarators?

► Wendelstein 7-X OP1.1 discharge [email protected]

x-ray imaging crystal spectrometer (XICS).

► Wendelstein 7-X OP1.2a:

Iron atoms injected via laser blow-off and analyzed by

VUV and x-ray spectrometers.

STRAHL + DKES modelling of helium plasma #17110918.

“The anomalous diffusion profile is more than two orders of magnitude larger than the

neoclassical one”. [Geiger et al., submitted Nucl. Fusion (2018)]

► Nonlinear gyrokinetic flux-tube simulations of impurity hole plasmas in Large Helical

Device with the GKV code find an order of magnitude larger C6+-fluxes than neoclassical

calculations. [M. Nunami, M. Nakata]

► Idea: include ©1 in linear gyrokinetics. Model based on [Helander, Zocco, PPCF (2018)].

SFINCS

Ar16+Experiment

Page 22: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 22/33

Effect of ©1 on quasilinear impurity fluxes

► Non-fluctuating potential ©1(µ, ³) = © - ©0(r); ©0(r) = h©i; ©1 ¿ ©0

► Energy is " = msv2/2 + Zse ©1(µ, ³) + Zse Á(t, µ, ³)

©1(µ, ³) - equilibrium potential

Á(t, µ, ³) - fluctuating potential

Note: Keeping ©0 in our treatment we will simply find that in linear gyrokinetics it can be

transformed away since turbulent transport is automatically ambipolar to lowest order and

independent of Er = -d©0=dr.

► Lowest order distribution f0s = fMs exp(-Zse©1/Ts)

fMs = n0s(Ã) (msv2/2¼Ts)

3/2 exp(-msv2/2Ts) .

► ©1(µ, ³) is obtained from a neoclassical calculation with a code like SFINCS.

In our gyrokinetic model ©1(µ, ³) is an input.

Page 23: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 23/33

Effect of ©1 on quasilinear impurity fluxes

► Linear gyrokinetic equation for the non-adiabatic distribution gsfs = f0s (1 - Zse Á/Ts) + gs

vkrkgs - i (! - !E - !ds) gs = C [gs] - i (Zse Á/Ts) J0(k?v?/Ωs) f0s (! - !T?s)

! = !r + iγ mode frequency

® = q(Ã) µ - ³ (same definition as in GENE)

k? = k®r® + kÃrà ¼ k®r®

!E = v©1¢ k? = (k®/B) (b£r©1) ¢ r® (usually ignored because small for i, e)

!ds = vds¢ k? = k® [b£(v?2 r lnB/2 + vk

2 ∙)/ Ωs] ¢ r®!T

?s = - (Ts/ZseB)f0s-1 (b £ k?) ¢ r(f0s)" = !?s q [1 + ηs(msv

2/ 2Ts - 3/2 + ZseTs-1 ©1)]

!?s = (k®Ts/Zse) d lnn0s/dÃ; ηs = (d lnTs/dÃ) / (d lnn0s/dÃ)

We neglect parallel streaming vkrkgs and collisions C [gs].

Page 24: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 24/33

Effect of ©1 on quasilinear impurity fluxes

► The E£B drift frequency !E usually neglected because it is small, unless Zse©1/Ts » O(1).

► Note that !E independent of Zs, whereas

!ds » 1/Zs

!T?s » 1/Zs.

) for high-Z impurities !E could play a role.

► The flux-surface-averaged quasilinear impurity flux is given by

¡z = - k® Im [hs gzJ0Á¤ d3vi]

and we find that

¡z = - (Ze/Tz) k® γ hjÁj2 s(!T?z - !E - !dz) j! - !E - !Dzj-2 J0

2 f0z d3viwhich implies that ©1 can only change the sign of ¡z if it can change the sign of

(!T?z - !E - !dz).

Page 25: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 25/33

Effect of ©1 on quasilinear impurity fluxes

► To perform the velocity integral we assume:

- Low-¯ plasma ) simplify !dz using ∙ ¼ r?B/B:

!dz = !B (v?2 / 2 + vk

2) / vz2

- Ion-scale turbulence ) k?2½z

2/2 ¿ 1.

- Assume high-Z trace impurities so ! obtained from bulk species gyrokinetic equation.

- Order !E/!, !dz/!, !T?z/! and J0(k?v?/Ωz) - 1 as 1/Z small quantities.

► Use Boozer coordinates B = H(Ã, µ, ³) rà + I(Ã) rµ + G(Ã) r³.

► ¡z ' - (Ze/Tz) k® [γ/(!r2 + γ2)] n0z(Ã) q !?z hjÁj2 exp(-Zse©1/Ts) f1 + ηz ZeTz-1 ©1 - !E/(q

!?z) - !B /(q !?z)gi =

- k®2 [γ/(!r

2 + γ2)] (dn0z/dÃ) q hjÁj2 exp(-Zse©1/Ts) f1 + ηz ZeTz-1 ©1

+ (Ze/Tz) (dlnn0z/dÃ)-1 (q G + I)-1[H (q d©1/d³ + d©1/dµ) + µ dq/dà (Gd©1/dµ - Id©1/d³)]

+ (2/B) (dlnn0z/dÃ)-1 (q G + I)-1[H (q dB/d³ + dB/dµ) + µ d q/dà (GdB/dµ - IdB/d³)]

- (2/B) (dlnn0z/dÃ)-1 dB/dÃgi

Page 26: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 26/33

Effect of ©1 on quasilinear impurity fluxes

► Using B = H(Ã, µ, ³) rà + I(Ã) rµ + G(Ã) r³ with

G À I (poloidal current outside flux-surface À toroidal current inside flux-surface).

jH rÃj/(GjrÃj) » (¯¢B/B)/(r/R0) ¿ 1 ) neglect H/G terms.

¡z '- k®2 [γ/(!r

2 + γ2)] (dn0z/dÃ) q hjÁj2 exp(-Zse©1/Ts) f1 + ηz ZeTz-1 ©1

+ (dlnn0z/dÃ)-1 µ q-1 d q/dà (Ze/Tz) d©1/dµ

+ (2/B) (dlnn0z/dÃ)-1 µ q-1 d q/dà dB/dµ - (2/B) (dlnn0z/dÃ)-1 dB/dÃgi.

► What is the physics behind the ηz ZeTz-1 ©1 term?

Real lowest-order density N0z(Ã, µ, ³) = n0z(Ã) exp(-Zze©1/Tz) )

dlnN0z/dà = (dlnn0z(Ã)/dÃ) (1 + ηz ZeTz-1 ©1)

varies over the flux-surface with ©1.

► The most important is dlnN0z/dà where the

turbulence is located!

► Remains to explore size of other terms in ¡z.Different line-of-sight

N0z

r/a

Peaked

N0z

r/a

Hollow

Page 27: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 27/33

The impurity hole in the Large Helical Device

► No accumulation of C6+ impurities in Large Helical Device although all predictions of both

neoclassical and turbulent transport point towards accumulation. (Inward pointing Er).

[Ida et al., Phys. Plasmas (2009)], [Yoshinuma et al., Nucl. Fusion (2009)].

Assuming that external source/sink is zero (or negligible) steady

density profiles should be sustained by balanced fluxes;

¡c(turb) + ¡c

(neo) = 0

► Still an open problem.

► Large Helical Device deuterium experiment started March 2017.

C6+ -profile more peaked in deuterium plasmas than in hydrogen plasmas.

[Morisaki et al., International Stellarator-Heliotron Workshop (2017)]

Isotope effect on C6+ transport. Suggests that turbulent impurity transport dominates?

0

0 0.5 10

0.02

0.04

ρ

n C[1

019m

-3]

¡c(neo)¡c

(turb)

?

radius

[Nunami et al., International Stellarator-Heliotron Workshop (2017)]

Page 28: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 28/33

©1 in neoclassical transport does not seemto explain the impurity hole in LHD

► Large Helical Device discharge 113208 at t = 4.64s studied in [Nunami et al., IAEA conference (2016)],

[Mikkelsen et al., Phys. Plasmas (2014)], [Velasco et al., Nucl. Fusion (2017)].

► Neoclassical particle fluxes compared to turbulent particle fluxes at steady-state.

► Direction of e--, H+- and He2+-fluxes match; C6+-fluxes do not match!

► Can ©1 in neoclassical calculation explain the discrepancy in the C6+-fluxes?

► SFINCS calculations: - ©1 can vary strongly on flux-surface: ± 200 V.

- ©1 has large impact on C6+-fluxes, but in wrong direction to

explain hollow C6+-profile.©1(µ, ³) [V]

µ[ra

d]

00 ¼/5

³[rad] r=a

h¡C¢rri

[10

20m

{2s{

1] £10-2

DKES

SFINCS w/o ©1

SFINCS w/ ©1

C6+ flux

[Mollén et al., PPCF (2018)]

Page 29: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 29/33

Can effect of ©1 on quasilinear impurity fluxesexplain the impurity hole in LHD?

Large Helical Device10-periodic in toroidal direction

Bad curvature L2 Metric coefficient g11 = j rÃj2

► Most probable location for turbulence is areas on outboard side

between ridges (around µ = 0, ³ = 0). There L2 < 0 (bad curvature)

and g11 is maximized ) optimal conditions for turbulence.

► Approximate jÁj2 with 2D parabola around µ = 0, ³ = 0.

µ µ

³ ³

180±

-180±

180±

-180±0± 0± 270±270± 360±90± 90± 360±

-3.26

3.16 3.77

0.35

jÁj2

µ/2¼ ³/(2¼/N)

Page 30: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 30/33

Can effect of ©1 on quasilinear impurity fluxesexplain the impurity hole in LHD?

► Large Helical Device discharge 113208 at t = 4.64s

► Look at r=a = 0.7, hollow density profile,

ηz = (d lnTz/dÃ) / (d lnn0z/dÃ) = -3.5,

©1(0, 0) = 34.5 V,

ηz ZeTz-1 ©1(0, 0) = -0.29.

► ηz ZeTz-1 ©1 seems to contribute to outward ¡z.

► Maybe not enough to explain impurity hole but a more

careful analysis is needed.

Densities Temperatures

Zeff » 2.0

r=a

ns[1

019m

{3]

r=a

Ts[k

eV]

ne

ni

nHe

10 £ nC

Te

Ti = THe = TC

©1(µ, ³) [V]

µ[ra

d]

00 ¼/5³[rad]

Page 31: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 31/33

Notes on quasilinear impurity fluxes

Effect of ©1 could possibly become stronger by:

► Tangential magnetic drifts included in the SFINCS calculations.

► Including effects of plasma heating.

► Include parallel streaming term.

Axi-symmetry: Trapped Electron Modes ) outwards transport,

Ion Temperature Gradient modes ) inwards transport.

► Including radial variation ©1(Ã, µ, ³), requires radially global neoclassical code.

Page 32: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 32/33

Outline

• Introduction to impurity transport in stellarators

• Neoclassical calculations with equilibrium electrostatic potential variations ©1

• ©1 in linear gyrokinetic modelling

• Summary

Page 33: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 33/33

Summary

► Three different numerical tools EUTERPE, SFINCS, KNOSOS that can calculate ©1 have been

benchmarked to each other. In several cases the agreement is very good, but some discrepancies

have to be solved.

► ©1 could play a role in quasilinear impurity transport, but work remains to explore this effect

further. Linear gyrokinetic flux-surface simulations?

Page 34: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 34/33

Extra slides

Page 35: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 35/33

SFINCS implementation and numerical details

► Eulerian uniform grid in µ, ³

MPI parallelization with PETSc library + MUMPS

► Spectral discretization in » = vk/v: Legendre polynomials Pn(»)

► Spectral collocation discretization for x = v/vTs, non-standard orthogonal polynomials

[Landreman & Ernst, J Comput. Phys. (2013)].

Collocation: function is known on a set of grid points rather than explicitly

expanded in a set of modes ) integration/differentiation weight matrices.

► Non-linear system solved with Newton method:

x = (f1, ©1) Residual R(x) = 0 Jacobian R0= R(x)/ x

State-vector updated as xn+1 = xn - R(xn)/R0(xn)

► System solved using preconditioned GMRES.

► Code written in Fortran (also MATLAB version).

±±

Page 36: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 36/33

SFINCS numerical resolution,expensive simulations at low collisionality

► Trapped-passing boundary (tokamak example):

► Simulations typically become more demanding at low collisionality (small ºss/vTs). Thinnertrapped-passing boundary layer harder to resolve.

► Resolution in SFINCS runs for W7-X OP1.1:(Nspecies £ Nµ £ N³ £ Nx £ N»)£ (Nspecies £ Nµ £ N³ £ Nx £ N») » 107£107

Runs on IPP Draco cluster ∙ 32 nodes (128GB) in ∙ 20 min (often ∙ 5 min)

► Most time consuming activities: - find numerical convergence- find ambipolar Er

Polo

idal

angl

e

Pitch angle parameter

Particle orbits Collisional response g g at µ= 0

Page 37: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 37/33

Flux-surface potential variations ©1

in collision operator

r=a

h¡C¢rri

[10

20m

{2s{

1] £10-2

Cablinear[fs] = Cab[fMa, fMb] exp(-Zae©1/Ta -Zbe©1/Tb) +

+ Cab[f1a, fMb] exp(-Zbe©1/Tb) + Cab[fMa, f1b] exp(-Zae©1/Ta)

SFINCS w/o ©1 in collision operator

SFINCS w/ ©1 in collision operator

C6+ fluxLHD113208

Page 38: On impurity transport calculations in stellaratorsfusionsites.ciemat.es/kineticsmadrid2018/files/2018/09/... · 2018-09-19 · Benchmark EUTERPE, SFINCS, KNOSOS Pitch-angle scattering

Albert Mollén | Kinetic Theory Working Group Meeting 2018 Madrid | September 17 - 21, 2018 | Page 38/33

Multigrid version of SFINCS

[Landreman APS 2017]

► In neoclassical transport calculations high resolution is required in at least 3 dimensions

(poloidal angle µ, toroidal angle ³, pitch-angle ») due to internal boundary layers.

► Continuum solvers often use a direct solver, which scales poorly with resolution.

► 3D multigrid version of SFINCS (mono-energetic: velocity x input parameter).

Geometric multigrid (there is also Algebraic multigrid):

► Gauss-Seidel iterative method quickly reduces short-wavelength errors but is ineffective for long-

wavelength errors. On coarser grid, long-wavelength errors are more quickly corrected.

► V-cycle: Combination of Gauss-Seidel smoothing with a coarse-grid solve.

Coarse-grid solve recursively.

On coarsest level, a direct solve is cheap.

► Test case on IPP computer Draco:

- DKES gets radial transport to +/- 12% in 58 160s (1 proc).

- Algebraic multigrid code +/- 4% in 168s (1 proc) or 33s (32 procs).