nus - ma1505 (2012) - chapter 9

Upload: gilbert-sebastiano

Post on 02-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    1/38

    Chapter 9. Line Integrals

    9.1 Introduction

    9.1.1 Work Done I

    (i) Let F be a constant force acting on a particle

    in the displacement direction as shown in figure

    (i) above. Suppose the distance moved by the

    particle iss. The work done is given by

    W = F s.

    (ii) Let F be a constant force acting on a particle

    in the direction which form an angle against

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    2/38

    2 MA1505 Chapter 9. Line Integrals

    the displacement direction (see figure (ii) above).

    Suppose the distance moved by the particle is s.

    The work done is given by

    W = F cos s= (F T) s=F sTwhere T is the unit vector in the displacement

    direction.

    9.1.2 Work Done II

    LetF(x,y,z) be a variable force acting on a particle

    which moves along the curveCwith vector equation

    r(t) = x(t)i+y(t)j+z(t)k as shown in the figure

    below. Suppose the particle moves from point P to

    pointQ. What is the work done?

    Solution: To solve this problem, we divide the

    2

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    3/38

    3 MA1505 Chapter 9. Line Integrals

    curve C into n segments. If a segment i is small

    enough, it can be treated as a straight line segment

    and the force within which can be assumed to be con-

    stantFi. Then the work done for such a segment is

    approximately given by

    Wi Fi ri

    where ri = sTi and Ti is the unit tangent vector

    along this segment.

    3

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    4/38

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    5/38

    5 MA1505 Chapter 9. Line Integrals

    9.2 Vector Fields

    9.2.1 Vector field (two variables)

    Let R be a region in xy-plane. A vector field on

    R is a vector function F that assigns to each point

    (x, y) inRa two-dimensional vectorF(x, y).

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    .............

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    .................

    ................

    y

    ....................................................................................................................................................................................................................................................................................................................................................................................................................................... ................ x

    ...........................................................

    ...........................................................

    ............................................................................

    .........................

    ....

    ................

    ...........................................................................................

    ................

    .....................

    ......................................................

    .......... .......................................

    ...........................

    ...

    ................

    ......................

    ......................

    ......................

    .......................................

    R

    F(x, y)..................

    ............

    .............

    ...............

    ...................

    .........................

    .........................................................................................................................................................................................................................................

    ..................................................................................................................................................................................................................................................................................................................................

    ..................

    ..............

    ...............

    .....................................................................................................

    .......................

    ............

    We may write F(x, y) in terms of its component func-

    tions. That is

    F(x, y) =P(x, y)i +Q(x, y)j

    or simplyF=Pi +Qj.

    5

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    6/38

    6 MA1505 Chapter 9. Line Integrals

    9.2.2 Vector field (three variables)

    Let Dbe a solid region in xyz-space. A vector field

    onDis a vector functionFthat assigns to each point

    (x,y,z) in D a three-dimensional vector F(x,y,z).

    That is, F(x,y,z) =P(x,y,z)i +Q(x,y,z)j +R(x,y,z)k.

    9.2.3 Example

    A vector field in xy-plane is defined by F(x, y) =

    (y)i+xj. Show thatF(x, y) is always perpendic-

    ular to the position vector of the point (x, y).

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    .............

    ......

    ......

    ......

    ......

    ......

    .....

    ..................

    ................

    y

    ...................................................................................................................................................................................................................................................................................................................................................... ................ x........

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......................

    ................

    .................

    ................

    .................................

    ................

    ..................................................................

    ..............

    ..

    ..................................................................

    ................

    ..............

    ..............

    ..............

    ........................

    ................

    .............................................................

    ..........

    ......

    ..........

    .......................................................................................

    ....................................................................... ................

    .....

    ......

    ......

    ......

    .....................

    ................

    ........................................................................................................

    ......

    ..........

    ............................................ ................

    F(x, y) = (y)i+ xj

    The diagram above shows the vector fieldF.

    6

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    7/38

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    8/38

    8 MA1505 Chapter 9. Line Integrals

    9.2.5 Example

    The gradient field off(x, y) =xy2 +x3 is

    f(x, y) = (y2 + 3x2)i + (2xy)j.

    9.2.6 Conservative fields

    A vector field F is called a conservative vector field

    if it is the gradient of some (scalar) function. In other

    words, there is a function f such that F =f. In

    this case,f is called apotentialfunction forF.

    9.2.7 Example

    By Example 9.2.5,F(x, y) = (y2 + 3x2)i + (2xy)jis

    conservative since it has a potential function f(x, y) =

    xy2

    +x3

    .

    8

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    9/38

    9 MA1505 Chapter 9. Line Integrals

    9.2.8 Example

    Let F(x, y) = (3 + 2xy)i + (x2 3y2)j. Find a

    potential functionf forF.

    Solution: Asf=F, we have fx(x, y) = 3+2xy.Integrating with respect tox, we getf(x, y) = 3x +

    x2y +g(y), whereg(y) is an integration constant, but

    it could be a function ofy.

    Thus fy(x, y) = x2 +g(y) so that x2 + g(y) =

    x2 3y2. That is,g(y) = 3y2.

    Integratingg (y) with respect toy, we obtaing(y) =

    y3 +K, whereKis a constant.

    Consequently,f(x, y) = 3x+x2y y3 +K.

    9

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    10/38

    10 MA1505 Chapter 9. Line Integrals

    9.2.9 Example

    The gravitational field given by

    G=

    m1m2Kx(x2 +y2 +z2)

    32

    i

    +

    m1m2Ky(x2 +y2 +z2)

    32

    j+

    m1m2Kz(x2 +y2 +z2)

    32

    k

    is conservative because it is the gradient of the grav-

    itational potential function

    g(x,y,z) = m1m2K

    x2 +y2 +z2,

    where K is the gravitational constant, m1 and m2

    are the masses of two objects. Think of the mass

    m1 at the origin that creates the field and g is the

    potential energy attained by the massm2situated at

    (x,y,z).

    10

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    11/38

    11 MA1505 Chapter 9. Line Integrals

    9.2.10 Criteria of conservative fields

    Throughout this chapter, we will assume the compo-

    nent functions of any vector field to have continuous

    partial derivatives, unless otherwise stated.

    (a) Let F(x, y) = P(x, y)i+Q(x, y)j be a vector

    field on thexy-plane.

    If P

    y =

    Q

    x, thenFis conservative.

    (b) Let F(x,y,z) =P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k

    be a vector field on the xyz-space.

    If P

    y =

    Q

    x,

    P

    z =

    R

    x,

    Q

    z =

    R

    y,

    thenFis conservative.

    The converse of (a) and (b) also hold.

    11

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    12/38

    12 MA1505 Chapter 9. Line Integrals

    9.2.11 Example

    Consider the vector field

    F(x, y) = (3 + 2xy)i + (x2 3y2)j.

    As

    (x2

    3y2)

    x = 2x=

    (3 + 2xy)

    y ,

    Fis conservative.

    9.2.12 Example

    Show thatF(x,y,z) =xzi + xyzj y2kis not con-

    servative.

    Solution: For example,(xyz)

    x =yzwhich is not

    equal to(xz)

    y = 0.

    SoFis not conservative.

    12

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    13/38

    13 MA1505 Chapter 9. Line Integrals

    9.2.13 Exercise

    Show that the vector field F(x,y,z) =x2i+y2j+z2k

    is conservative. Find a functionfsuch that f=F.

    9.3 Line Integrals

    We have mentioned in section 9.1 that a line integral

    refers to an integration along a curve C. There are

    two types of line integrals. One is for vector fields

    and the other is for scalar functions.

    9.3.1 Line integrals of scalar functions (Two

    variables)

    Suppose we want to find the area of the following

    surface with the base, a plane curve C on the xy-

    plane and the top is described by a functionf(x, y).

    13

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    14/38

    14 MA1505 Chapter 9. Line Integrals

    Let C be described by the vector function r(t) =

    x(t)i+y(t)j for a t b. We assume C is asmooth curve (meaning that r(t)= 0) and r(t) is

    continuous for allt.

    To find the surface area along C, we subdivide the

    curve from r(a) to r(b) into n small arcs of length

    si,i= 1, n. Pick an arbitrary point (xi , yj ) in-

    side the ith small arc and form the sumn

    i=1 f(xi , yj )si.14

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    15/38

    15 MA1505 Chapter 9. Line Integrals

    The surface area is given by

    limn

    ni=1

    f(xi , y

    j )si.

    The above limit of sum is called the line integral

    of the scalar function f along the plane curve

    C, and is denoted by

    C f(x, y) dsHere,sdenotes the arc length ofC.

    Recall from Chapter 6 that, ifr(t) is the vector func-

    tion of a curve Cwith a

    t

    b, the arc length of

    Cis given by

    s=

    ba

    r(t)dt.

    If we replace the endpoint bby a variable t, then we

    15

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    16/38

    16 MA1505 Chapter 9. Line Integrals

    obtain the arc lengths(t) as a function oft:

    s(t) =

    ta

    r(u)du.

    Then, by Fundamental Theorem of Calculus, ds

    dt =

    r(t).Therefore, we can rewrite the line integral in terms

    oft:

    C

    f(x, y) ds= b

    af(x(t), y(t))r(t)dt

    =

    ba

    f(x(t), y(t))

    dx

    dt

    2+

    dy

    dt

    2dt

    where r(t) = x(t)i+y(t)j is the vector equation of

    the plane curveC.

    In other words, the formula above allows us to com-

    pute the line integral in terms of ordinary integration

    of single variable function (int).

    16

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    17/38

    17 MA1505 Chapter 9. Line Integrals

    9.3.2 Example

    Evaluate

    C

    (2y+x2y)ds, whereCis the upper half

    of the unit circle centered at the origin.

    Solution: The vector function of C is given by

    r(t) = cos ti + sin tjwith 0 t .

    Thus r(t) =

    sin2 t+ cos2 tand

    C

    (2y+x2y)ds=

    0

    (2sin t+ cos2 t sin t)

    sin2 t+ cos2 tdt

    =

    0

    (2sin t+ cos2 t sin t) dt

    =

    2cos t 1

    3cos3 t

    0

    =14

    3

    17

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    18/38

    18 MA1505 Chapter 9. Line Integrals

    9.3.3 Line integrals of scalar functions (Three

    variables)

    For line integral of a functionf(x,y,z) along a space

    curveC, we have the similar definitions:

    C

    f(x,y,z) ds=

    ba

    f(x(t), y(t), z(t))

    dx

    dt

    2+

    dy

    dt

    2+

    dz

    dt

    2dt

    9.3.4 Example

    Evaluate

    C

    xy sin z ds, whereCis the circular helix

    r(t) = cos ti + sin tj +tk,t

    [0, /2].

    18

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    19/38

    19 MA1505 Chapter 9. Line Integrals

    Solution:

    C

    xy sin z ds

    =

    /20

    (cos t)(sin t)(sin t)

    sin2 t+ cos2 t+ 1 dt

    =2 /20

    cos t sin2 tdt

    =

    2

    3

    sin3 t

    /20

    =

    2

    3

    9.3.5 Piecewise smooth curves

    We denote the union of a finite number of (smooth)

    curvesC1, C2, , Cnby

    C=C1+C2+ +Cn.

    We sayC is apiecewise-smoothcurve.

    ................

    .................

    ...................

    .........................

    .....................................................................................................

    ................ ..................................................................

    ..............

    ................

    ........................

    ..............

    .......................................

    ........................................................................................................................

    .......

    ...................... ...............

    .

    C1

    C2

    C3

    19

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    20/38

    20 MA1505 Chapter 9. Line Integrals

    Then the line integralf alongC is defined to be

    C

    f(x, y) ds=

    C1

    f(x, y) ds + +

    Cn

    f(x, y) ds.

    9.3.6 Example

    Evaluate

    C

    9y ds, whereCconsists of the arcC1of

    the cubicy=x3 from (0, 0) to (1, 1) followed by the

    vertical line segmentC2 from (1, 1) to (1, 5).

    Solution: We first obtain the vector function forC1

    andC2:

    ForC1, the Cartesian equation isy =x3. So we may

    let x = t and get y = t3 with 0 t 1. Hence

    r1(t) =ti +t3jand r1(t) =

    1 + (3t2)2

    20

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    21/38

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    22/38

    22 MA1505 Chapter 9. Line Integrals

    9.3.7 Line integrals of vector fields

    Let F be a continuous (2 or 3 variable) vector field

    defined on a domain containing a smooth curve C

    given by a vector function r(t), t[a, b]. Thelineintegral of the vector field Falong the curveC

    is

    C F dr=

    ba F(r(t)) r(t) dt.

    Ifr(t) =x(t)i +y(t)j +z(t)k, then

    F(r(t)) =F(x(t), y(t), z(t))

    refers to the vector field along the curve.

    Geometrically, the line integral ofF over C is sum-

    ming up the tangential component ofF with respect

    to the arc length ofC.

    22

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    23/38

    23 MA1505 Chapter 9. Line Integrals

    9.3.8 Example

    Evaluate

    C

    F dr, where

    F(x,y,z) =xi +xyj +xyzk

    andCis the curver(t) =ti +t2j +t3k,t [0, 2].

    Solution: Firstr(t) =i + 2tj + 3t2k. Thus

    F(r(t)) r(t) = (ti +t t2

    j +t t2

    t3

    k) (i + 2tj + 3t2

    k)

    =t+ 2t4 + 3t8.

    Therefore,

    C

    F dr=

    2

    0

    F(r(t)) r(t) dt

    =

    2

    0

    (t+ 2t4 + 3t8) dt= 2782/15.

    23

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    24/38

    24 MA1505 Chapter 9. Line Integrals

    9.3.9 Orientation of curves

    The vector equation of a curveCdetermines anori-

    entation(direction) ofC. The same curve with the

    opposite orientation ofCis denoted by C.

    ......

    .......................................................................................

    .................

    .......................

    ............................................................

    .................

    ..............

    ..................

    ...................... ................

    .............................................................................................

    .................

    .......................

    ............................................................

    .................

    ..............

    ..................

    ......................................

    A

    BC

    A

    BC

    We have C

    F dr=

    C

    F dr

    asr(t) changes sign in C.

    On the other hand, for line integral of scalar func-

    tions,

    Cf(x,y,z) ds=

    Cf(x,y,z) ds

    since the arc length is always positive.

    24

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    25/38

    25 MA1505 Chapter 9. Line Integrals

    9.3.10 Line integrals in component form

    Suppose

    F(x, y) =P(x, y)i +Q(x, y)j

    andC :r(t) =x(t)i +y(t)j, t [a, b].

    Then we may write the line integral as

    C F dr= C P dx+Qdy.Indeed

    C

    F dr

    = ba

    F(r(t))

    r(t) dt

    =

    ba

    [P(r(t))i +Q(r(t))j]

    dx

    dti +

    dy

    dtj

    dt

    =

    ba

    P(r(t))

    dx

    dt+Q(r(t))

    dy

    dt

    dt

    =

    CP dx+Qdy.

    25

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    26/38

    26 MA1505 Chapter 9. Line Integrals

    Similarly, for three variable vector field

    F=Pi +Qj +Rk,

    we can write the line integral as

    C F dr= C P dx+Qdy+Rdz.

    9.3.11 Example

    Evaluate the line integral C y2dx+xdy, where

    (a) C = C1 is the line segment from (5,3) to

    (0, 2),

    (b) C = C2 is the arc of the parabola x = 4 y2

    from (5,3) to (0, 2).

    Solution:

    (a) C1 is a line passing through the point (5,3)

    and parallel to the vector (2j) (5i3j) = 5i + 5j.26

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    27/38

    27 MA1505 Chapter 9. Line Integrals

    So the vector function ofC1 is given by

    r(t) = (5i 3j) + t(5i + 5j) = (5t 5)i + (5t 3)j

    with 0 t 1. Thus,

    C1 y

    2

    dx+xdy = 10 (5t 3)

    2dx

    dt dt+ 10 (5t 5)

    dy

    dt dt

    =

    1

    0

    (5t 3)25dt+

    1

    0

    (5t 5)5dt

    =5/6.

    (b) By settingy=t, we have the vector function of

    C2 given by

    r(t) = (4 t2)i +tj with 3 t 2. Thus

    C2

    y2dx+xdy =

    2

    3t2

    dx

    dtdt+

    2

    3(4 t2)dy

    dtdt

    =

    2

    3t2(2t)dt+

    2

    3(4 t2)dt

    = 245/6.

    27

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    28/38

    28 MA1505 Chapter 9. Line Integrals

    9.3.12 The fundamental theorem for line in-

    tegrals

    Recall the fundamental theorem for Calculus:

    b

    a

    F(x) dx=F(b)

    F(a).

    It has the following generalization in terms of line

    integrals:

    Let Cbe a smooth curve with vector function r(t),

    t [a, b].

    Iff is a function of 2 or 3 variables whose gradient

    f is continuous. ThenC

    f dr=f(r(b)) f(r(a)).

    28

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    29/38

    29 MA1505 Chapter 9. Line Integrals

    9.3.13 Example

    Find the work done by the (earth) gravitational field

    (see Example 9.2.9) in moving a particle of mass m

    from the point (3, 4, 12) to the point (1, 0, 0) along a

    curveC.

    Solution:

    W C

    G dr= C

    g dr=g(1, 0, 0)g(3, 4, 12).

    Since the potential function g(x,y,z) = mM K

    x2 +y2 +z2

    whereM is the mass of the earth and Kthe gravi-

    tational constant, we have W = 12mMK/13.

    29

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    30/38

    30 MA1505 Chapter 9. Line Integrals

    9.3.14 Consequences of conservative fields

    (I) IfFis a conservative vector field, then

    C

    F dr

    isindependent of path,

    i.e.

    C1F dr = C2 F dr for any 2 paths C1 and

    C2 that have the same initial and terminal points.

    (II) IfF is a conservative vector field, then

    F dr= 0

    for any closed curve (i.e. a curve with terminal

    point coincides with its initial point).

    Notation: If a curve is closed, we write the line

    integral as

    F dr.

    30

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    31/38

    31 MA1505 Chapter 9. Line Integrals

    9.3.15 Example

    Let F(x, y) = (y2+3x2)i+(2xy)j. Show that the line

    integral

    C

    F dr is independent of path and evaluate

    this integral over the curveCwhereC is

    (i) given byr(t) = cos ti +et sin tj, t [0, ];

    (ii) the unit circle.

    Solution: We have seen in Example 9.2.5 that

    f = F where f(x, y) = xy2 +x3 is the potential

    function ofF. So F is conservative. By section 9.3.14

    (I), the line integral

    CF dris independent of path.

    (i) The initial point ofCis givenr(0) =iwhich cor-

    responds to the coordinates (1, 0); and the terminal

    point is given r() =i which corresponds to the31

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    32/38

    32 MA1505 Chapter 9. Line Integrals

    coordinates (

    1, 0). SinceF=

    f, by Fundamental

    Theorem, we have

    C

    F dr=f(1, 0) f(1, 0) = 2.

    (ii) Since the unit circle is a closed path and F is

    conservative, by section 9.3.14 (II),

    C F dr= 0.9.4 Greens Theorem

    LetD be a bounded region in the xy-plane andD

    the boundary of D. Suppose P(x, y) and Q(x, y)

    has continuous partial derivatives onD. Then

    D

    P dx+Qdy =

    D

    Q

    x P

    y

    dA.

    The orientation ofD is such that, as one traverses

    32

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    33/38

    33 MA1505 Chapter 9. Line Integrals

    along the boundary in this direction, the region D

    is always on the left hand side. We call this the

    positive orientationof the boundary.

    9.4.1 Example

    Evaluate

    C

    2xy dx+xy2dy, where C is the trian-

    gular curve consisting of the line segments from (0, 0)

    to (2, 0), from (2, 0) to (0, 2) and from (0, 2) to (0, 0).

    Solution: The functions

    P(x, y) = 2xy andQ(x, y) =xy2

    have continuous partial derivatives on the xy-plane.

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ..............

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    .....................

    ................

    y

    .................................................................................................................................................................................................................................................................................................................................... ................ x........

    ......

    ......

    ......

    .....

    ......

    ......

    ...........

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......................................................................................................................................................................................................................................................................................................................................................................................................................................................... ................................... .......

    .........

    ...............

    ...........................................

    .........................

    ..........

    ......

    ..........

    .......................................................

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    ..

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .......

    (0, 2)

    (0, 0) (2, 0)x

    y= 2 x

    C

    D

    33

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    34/38

    34 MA1505 Chapter 9. Line Integrals

    The regionDis given by: 0

    y

    2

    x, 0

    x

    2.

    By Greens Theorem,

    C

    2xy dx+xy2dy =

    D

    (xy2)

    x 2xy

    y

    dA

    =

    D(y2

    2x) dydx=

    2

    0

    2x

    0

    (y2 2x) dydx

    =43

    .

    9.4.2 Example

    Evaluate

    C

    (4y ex2)dx+ (9x+ sin(y2 1))dy, where

    Cis the circlex2 +y2 = 4.

    Solution:Cbounds the circular diskDof radius 2

    and is given the positive orientation.

    34

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    35/38

    35 MA1505 Chapter 9. Line Integrals

    By Greens Theorem,

    C

    (4y ex2)dx+ (9x+ sin y2 1)dy

    =

    D

    (9x+ sin y2 1)

    x (4y e

    x2)

    y

    dA

    =

    D

    5 dA= 5

    D

    dA

    = 5 (area ofD) = 5(22) = 20.

    9.4.3 Exercise

    Evaluate by Greens Theorem

    C

    ex sin y dx+ex cos y dy

    whereCis the rectangle with vertices at (0, 0), (, 0),

    (,/2), (0, /2).

    [Answer: 2(e 1)]

    35

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    36/38

    36 MA1505 Chapter 9. Line Integrals

    9.4.4 Example

    Let F(x, y) = yi+yj and D a region in xy-plane

    bounded by the two circles centered at the origin with

    radius 1 and 2.

    ......

    ......

    ......

    ............

    .............

    ...............

    ..................

    ................................................................................................................................................................................................................................................................................................................

    ..................

    ..............

    ........................................... ......

    .....

    ......

    ......

    ......

    ......

    ........................

    ............

    ............

    ..............

    ..............

    .................

    ...................

    ........................

    .............................................

    .........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    .............................

    .....................

    .................

    ...............

    ..............

    ............................................................................................

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ................

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    ......

    .....

    ......

    ......

    ......

    ......

    ...................

    ................

    y

    ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ................ x

    ...........................................

    .....

    ...................

    ................

    C2

    C1

    D

    1 2

    Verify Greens Theorem.

    Solution:

    (i) Compute

    D

    F drdirectly:

    The boundary of D is made up of two disjoint

    curvesC1 andC2.

    36

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    37/38

    37 MA1505 Chapter 9. Line Integrals

    NowC1: r1= cos ti + sin tj and C2: r2=

    2cos ti + 2 sin tj with t [0, 2]. Note that

    the equations give counterclockwise orientation to

    both curves.

    However, to get positive orientation for the bound-

    ary of D, the outer boundary should traverse

    counterclockwise while the inner boundary should

    traverse clockwise.

    HenceD=C2 C1.

    C1

    F

    dr =

    2

    0

    (sin ti + sin tj)

    (

    sin ti + cos tj) dt

    =

    2

    0

    ( sin2 t+ sin t cos t) dt

    =

    2

    0

    1

    2(cos2t 1 + sin 2t) dt

    = 1

    2sin2t

    2 t cos2t

    220

    = 37

  • 8/10/2019 NUS - MA1505 (2012) - Chapter 9

    38/38

    38 MA1505 Chapter 9. Line Integrals

    Similarly,

    C2F dr= 4.

    So

    D

    F dr=

    C2

    F dr

    C1

    F dr= 3.

    (ii) Using Greens Theorem, we have

    D

    Fdr=

    D

    yx

    yy

    dA=

    D

    (1) dA.

    In polar coordinates,D is given by

    1 r 2, 0 2.

    So we have

    D

    (1) dA= 2

    0 2

    1

    r dr d= 3.